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Abstract New high-precision observations are now possi-
ble to constrain different gravity theories. To examine the
accelerated expansion of the Universe, we used the newly
proposed f (Q, T ) gravity, where Q is the non-metricity, and
T is the trace of the energy–momentum tensor. The investiga-
tion is carried out using a parameterized effective equation of
state with two parameters, m and n. We have also considered
the linear form of f (Q, T ) = Q + bT , where b is constant.
By constraining the model with the recently published 1048
Pantheon sample, we were able to find the best fitting values
for the parameters b, m, and n. The model appears to be in
good agreement with the observations. Finally, we analyzed
the behavior of the deceleration parameter and equation of
state parameter. The results support the feasibility of f (Q, T )

as a promising theory of gravity, illuminating a new direction
towards explaining the Universe dark sector.

1 Introduction

Starting with the Big Bang and moving on to the birth of
elements, dark matter, and anti-matter, some fundamental
questions about the universe are now making their way into
the scientific realm. However, there are now several solu-
tions available to these issues. Around the same time, cos-
mological discoveries revealed that the universe seems to be
expanding faster. This has been supported by observations of
distant Type Ia Supernovae (SNe Ia) [1,2], and it is one of
the most intriguing questions in recent years. Furthermore,
these results revealed that a mysterious component known as
dark energy makes up roughly 70% of the universe.

General Relativity is a geometrical theory that has offered
a definitive explanation of the observational evidence and
has led to new ideas into the problems of space and time.
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Despite its extraordinary success, several recent observa-
tions have raised concerns regarding standard GR valid-
ity, which may still have certain limitations, particularly
on cosmic scales and beyond the solar system. The cos-
mological constant is the most obvious candidate for dark
energy, but it has flaws like the coincidence problem and
fine-tuning problem [3–5]. Rapid expansion can be associ-
ated with two aspects. The first method involves manipulating
the energy–momentum tensor in Einstein’s field equations,
such as scalar fields (quintessence, phantom) [6–8], exotic
equations of state (Chaplygin gas) [9,10], viscosity (bulk
viscosity) [11,12], and so forth. The second approach is to
alter the geometry of spacetime in Einstein’s equations. This
is often known as the modified theories of gravity.

Modified gravity is a prominent branch of modern cosmol-
ogy that seeks to provide a unified explanation for the uni-
verse early epoch while also accounting for its later acceler-
ated expansion. One of the simplest modified gravity theories
is the f (R) [13–15] gravity theory, which expresses gravi-
tational motion in terms of an arbitrary function of R, the
Ricci scalar. However, the extra degree of freedom afforded
by the metric formulation in f (R) would conflict with obser-
vational data observed in the solar system. Another modified
gravity based on a non-minimal interaction between matter
and geometry has been proposed to pass the solar system level
such as f (R, T ) theory [18–21], f (R,G) theory [22,23].

The most successful gravity theory at this moment is Gen-
eral Relativity. Not only did Einstein and Hilbert’s contribu-
tions to physics and cosmology have a significant impact on
astronomy, but they also had a significant effect on mathemat-
ics. They employed Riemannian geometry, a geometric the-
ory of gravity that is now regarded as one of modern science’s
key pillars. Till now, GR has three equivalent geometrical
representations: the curvature representation; the teleparal-
lel representation; and the symmetric teleparallel represen-
tation. Following the introduction of Riemannian geometry
in 1918, Weyl [26] attempts to create a more general geom-
etry that can be used to achieve a geometrical integration
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of electromagnetism and gravitation. As a result, a new uni-
fied teleparallel theory was proposed [27]. The torsion in
the teleparallel theory is utilized to characterize gravitational
phenomena and is referred to as the teleparallel equivalent
of GR or f (T ) gravity [16,17]. Based on the third represen-
tation of GR, a new theory has been proposed [28] named
as symmetric teleparallel gravity, in which the gravitational
interaction is geometrically defined using the non-metricity
Q, representing the variability in the length of a vector during
parallel transport. As a result, a new extended gravity called
f (Q) was developed. The cosmological consequences of the
f (Q) gravity principle with observational constraints have
also been studied [24,25,29–31]. It is observed that the cos-
mological evolution in f (Q) gravity is similar to �CDM, but
it shows deviation from �CDM at perturbation level [32].

After that, Yixin et al. [33,34] introduced a symmetric
teleparallel gravity extension based on the coupling between
non-metricity Q and the trace of the energy–momentum
tensor T , i.e., considering an arbitrary function f (Q, T )

in the gravitational action. Using some functional forms of
f (Q, T ), some works in this modified gravity look at cos-
mological models and rapid expansion of the universe. It
has recently been discovered that f (Q, T ) gravity dramat-
ically alters the nature of tidal forces and the equation of
motion in the Newtonian limit [35]. Also, it is mentioned
that generalized metric theories can be compared among
each other with experimental results and Newtonian grav-
ity. Thus, the post-Newtonian limit is almost appropriate for
comparing theoretical predictions with solar system obser-
vations. As a result, comparing Weyl type f (Q, T ) grav-
ity predictions concerning tidal force changes with observ-
able evidence from a wide range of astrophysical phenomena
should provide some understanding of the fundamental char-
acteristics of the gravitational interaction and its geometrical
description. So, there is a motivation to study various theo-
retical, observational, and cosmological aspects in f (Q, T )

theory. Arora et al. [36] tried to see if f (Q, T ) gravity could
solve the late-time acceleration conundrum without adding
an extra form of dark energy from a cosmological perspec-
tive. Bhattacharjee et al. [37] investigated baryogenesis in
f (Q, T ) gravity.

As it is well established, the EoS parameter defines the
relationship between pressure and energy density. The EoS
parameter is used to classify various phases of the uni-
verse’s decelerated and accelerated expansion. The matter-
dominated phase is represented by ω = 0. In the current
accelerated period of evolution, −1 < ω ≤ 0 represents the
quintessence phase, ω = −1 represents the cosmological
constant (�CDM) model, and ω < −1 is the phantom age.
In this work, we use the reconstruction of an efficient equa-
tion of state parameter to understand the late-time accelera-
tion in f (Q, T ) gravity. The effective equation of state is not
influenced by the individual properties of the different com-

ponents of the matter field. Model parameters constrained by
observational results determine the current value of the effec-
tive equation of the state parameter. Observational cosmol-
ogy is the science of using observations to research the struc-
ture, existence, and evolution of the universe. Microwave
Background Radiation [38], Type Ia Supernovae [1,2], Cos-
mic Baryon Acoustic Oscillations [39], Planck data, and
other observational datasets are currently available for var-
ious measurements and are providing robust evidence for
the universe’s acceleration. As a consequence, we will use
Pantheon datasets [42] to constrain the model parameters.
The recently proposed Supernovae Pantheon sample contains
1048 points covering the redshift range 0.01 < z < 2.26. We
use the MCMC ensemble sampler given by the emcee library.
The article is divided into various sections. An overview of
f (Q, T ) gravity is given in Sect. 2. In Sect. 3, we discussed
the cosmological model and the parameterized equation of
state and obtained an expression of the Hubble parameter.
The brief discussion on observational data used to constrain
the model parameters is given in Sect. 4. Section 5 includes
the behavior of cosmological parameters such as decelera-
tion parameter and EoS parameter. The last Sect. 6 contains
the concluding remarks.

2 Overview of f (Q, T ) Gravity

The action which is used to define f (Q, T ) gravity read as
[33],

S =
∫ (

1

16π
f (Q, T ) + Lm

) √−gd4x, (1)

where f is an arbitrary function that couples the non-
metricity Q and the trace of the energy–momentum ten-
sor T . Also, Lm represents the matter Lagrangian and g =
det (gμν). We also define the nonmetricity Q as [24]

Q ≡ −gμν(Lβ
αμL

α
νβ − Lβ

αβL
α
μν), (2)

where Lβ
αγ is the disformation tensor written as,

Lβ
αγ = −1

2
gβη(∇γ gαη + ∇αgηγ − ∇ηgαγ ). (3)

The nonmetricity tensor is represented by

Qγμν = ∇γ gμν, (4)

with trace of the non-metricity tensor given as

Qβ = gμνQβμν Q̃β = gμνQμβν. (5)

We can also define a superpotential or the non-metricity con-
jugate as

Pβ
μν = −1

2
Lβ

μν + 1

4
(Qβ − Q̃β)gμν − 1

4
δ
β

(μQν). (6)
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giving the nonmetricity scalar as [24]

Q = −Qβμν P
βμν. (7)

In addition the energy–momentum tensor is known to be
defined as

Tμν = − 2√−g

δ(
√−gLm)

δgμν
(8)

and

�μν = gαβ δTαβ

δgμν
. (9)

Also, the variation of energy–momentum tensor with
respect to the metric tensor is such that

δ g μν Tμν

δ g α β
= Tαβ + �α β. (10)

Thus, taking the variation of action (1) with respect to
the metric and equating it to zero, we get the following field
equations:

− 2√−g
∇β( fQ

√−gPβ
μν − 1

2
f gμν + fT (Tμν + �μν)

− fQ(PμβαQ
βα

ν − 2Qβα
μPβαν) = 8πTμν.

(11)

where fQ = d f

dQ
and fT = d f

dT
.

Now, let us assume that the Universe is described by the
homogeneous, isotropic and spatially flat FLRW metric given
by,

ds2 = −dt2 + a2(t)δi j dx
i dx j , (12)

where a(t) is the scale factor of the Universe. Moreover, the
matter content of the Universe is assumed to be consisting
of a perfect fluid, for which energy–momentum tensor is
Tμ

ν = diag(−ρ, p, p, p). Also, the nonmetricity function
Q for such a metric is calculated and obtained as Q = 6H2.

Using the metric and the field equation (11), the general-
ized Friedmann equations are obtained as,

8πρ = f

2
− 6FH2 − 2G̃

1 + G̃
(Ḟ H + F Ḣ), (13)

8πp = − f

2
+ 6FH2 + 2(Ḟ H + F Ḣ). (14)

Here (·)dot represents a derivative with respect to time,
besides F = fQ , and 8π G̃ = fT denote differentiation
with respect to Q, and T , respectively.

Using the above two equations (13) and (14), we can define
the equations similar to the form of standard general relativ-
ity(GR),

3H2 = 8πρe f f = f

4F
− 4π

F

[
(1 + G̃)ρ + G̃ p

]
, (15)

and

2Ḣ + 3H2 = −8πpef f = f

4F
− 2Ḟ H

F

+4π

F

[
(1 + G̃)ρ + (2 + G̃)p

]
. (16)

Moreover, ρe f f , and pef f are the effective density and effec-
tive pressure respectively.

3 Cosmological model and Equation of State

We consider the simplest functional form f (Q, T ) = Q +
bT , where b is a constant. So, we get F = fQ = 1 and
8π G̃ = b. Now, Solving for p and ρ from Eqs. (13) and (14).
We obtained the effective or total equation of state parameter
ω = p

ρ
as

ω = 3H2(8π + b) + Ḣ(16π + 3b)

bḢ − 3H2(8π + b)
. (17)

Also, using the relation a0
a = 1 + z, we can define the

relation for t and z as mentioned below.

d

dt
= dz

dt

d

dz
= −(1 + z)H(z)

d

dz
, (18)

Normalizing the present value of scale factor to be a0 =
a(0) = 1. The Hubble parameter can be written in the form
of

Ḣ = −(1 + z)H(z)
dH

dz
. (19)

To solve equation (17) for H , we need one more alternate
equation. So, we assume a well-motivated parametric form
of equation of state parameter as a function of redshift z [40],

ω = − 1

1 + m(1 + z)n
, (20)

where m and n are model parameters. Mukherjee [40] has
described the behavior of this considered equation of state
parameter. At the epoch of recent acceleration, it has a neg-
ative value of less than − 1

3 . For positive values of the model
parameters m and n, the value of ω tends to zero at a high
redshift z and depends on the model parameter at z = 0. The
functional model of the effective equation of state assumed
for the current reconstruction conveniently accommodates
these two phases of evolution. A positive model parameter
often sets a lower bound on the value of ω and keeps it in the
non-phantom regime.

Using Eqs. (17), (19) and (20), we obtained the Hubble
parameter H in terms of redshift z.

H(z) = H0

(
b + (16π + 3b)(1 + m(1 + z)n)

b + (16π + 3b)(1 + m)

)l

, (21)

where l = 3(8π+b)
n(16π+3b) , H0 is the Hubble value at z = 0.
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4 Observational data

This section describes the observational dataset used to con-
strain the model parameters b, m, and n after obtaining the
solutions for our model. To explore the parameter space,
we use the MCMC sampling technique and mainly employ
Python’s emcee [41] library. For estimating the parameters,
one need not compute the evidence, which is a normalizing
constant. Instead, the prior and likelihood are sufficient to
determine the posterior distributions of the parameters.
We used the recent Pantheon dataset for our work; it consists
of 1048 Supernova Type Ia experiment results, discovered by
the Pan-STARRS1(PS1) Medium Deep Survey, the Low-z,
SDSS, SNLS, and HST surveys [42,43], in the redshift range
z ∈ (0.01, 2.26).

The chi-square (χ2) function, which relates the predic-
tions of the model and SNe Ia observations read as,

χ2
SN (b,m, n) =

∑
D

[μth(b,m, n, zi ) − μobs(zi )]2

σ 2
μ(zi )

, (22)

where D is the Pantheon samples with 1048 points, σ 2
μ(zi )

is the standard error in the observed value, μth
i represents

the theoretical value of distance modulus and μobs
i is the

observed value of distance modulus.

μth
i = μ(Dl) = m − M = 5log10Dl(z) + μ0, (23)

where m and M are the apparent and absolute magnitudes
with

μ0 = 5log(H−1
0 /Mpc) + 25. (24)

as the marginalized nuisance parameter. The formula for Dl

is given by

DL(z) = (1 + z)c
∫ z

0

dz′

H(z′)
. (25)

The 2-σ bounds for the parameters from our analysis are
b = 0.2+2.7

−2.9 ,m = 0.47+0.27
−0.21, n = 3.2+1.8

−2.0. As the functional
form f contains b as a model parameter and m, n are the
parameters in the parametric functional form of the equation
of state ω, refer to Eq. (17).

Figure 1 shows a comparison between our model and the
widely-accepted �CDM model in cosmology; we consider
�m0 = 0.3, ��0 = 0.7 and H0 = 67.4 ± 0.5 km s−1 Mpc−1

[44] for the plot. The figure also includes the Pantheon exper-
imental results, 1048 data points along with their error, and
allows for a clear comparison between the two models.

We present the results in the form of triangle plots in Fig. 2,
where, in addition to the parameter space, we also observe
the marginalised distribution for the parameters b, m, and n
in our model. The contour represent the 1 − σ and 2 − σ

confidence intervals.

Initially, we perform the analysis considering a flat prior
for all the parameters; however, we notice the marginalized
distribution for parameter b to be roughly uniform in the
range. We then motivate our work to study the result in the
neighborhood of b = 0. This approach intends to find any
deviation from GR, which accounts for a local minimum
for the function in Eq. (21). We also perform the numerical
analysis with a Gaussian prior for the parameter b with σ =
1.0 as dispersion. The results are presented in Fig. 2; there is
no significant difference in the marginalized distributions of
the remaining parameters, m, and n.

If we consider the case of b = 0, the model reduces
to f (Q, T ) = f�(Q) = Q, i.e. it has a direct link to
�CDM model. Therefore, the equation of Hubble parameter
H reduces to

H(z) = H0

(
m(z + 1)n + 1

m + 1

) 3
2n

(26)

where m and n are model parameters. One interesting point
regarding this expression of Hubble parameter is that for
n = 3, this becomes exactly like the �CDM model as stated
by [40]. The constraints for m and n using Pantheon SNeIa
datasets is shown in Fig. 3.

5 Cosmological parameters

In this section, we study the behavior of the deceleration
parameter and the equation of state parameter.

5.1 The deceleration parameter

The deceleration parameter as a function of Hubble parame-
ter H is defined as

q = −1 − Ḣ

H2 . (27)

In any cosmological model, the deceleration parameterq play
an important role in characterizing the decelerated phase(q >

0) and an accelerated phase(q < 0) of the universe. There
are many works in literature in which deceleration parameter
is useful in explaining the evolution phase of the universe
[45,46]. The equation of deceleration parameter q according
to our model reads,

q = −1 − 3(b + 8π)m(−z − 1)(z + 1)n−1

b + (3b + 16π) (m(z + 1)n + 1)
. (28)

The behavior of q(z) is shown in Fig. 4 according to the
estimated values of model parameters b,m and n by Pantheon
sample. We can observe that there is a well behaved transition
from deceleration to acceleration phase at redshift zt . The
value of the transition redshift is zt = 0.58 ± 0.30 [47]. The
result obtained is consistent with several works in literature
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Fig. 1 The plot of distance
modulus μ(z) vs. redshift z for
our model shown in red line and
�CDM in black dotted line
which shows nice fit to the 1048
points of the Pantheon datasets
shown with it’s error bars

Fig. 2 The plot compares the
two numerical analyses with
different prior distributions for
the parameter b. For either case,
we considered a uniform
distribution for the other two
parameters, m, and n. The
counter represent 1 − σ and
2 − σ confidence intervals

[48,49]. Also, we can note that the value of q0 = −0.52 [50]
which is negative at present indicating an acceleration in the
universe.

5.2 The EoS parameter

The equation of state parameter as a whole determines a
relation between energy density and pressure. The com-
mon phases observed through EoS parameter includes the
dust phase at ω = 0. Then, ω = 1

3 shows the radiation-

dominated phase whereas ω = −1 corresponds to the vac-
uum energy i.e. �CDM model. Besides this, the accel-
erating phase of the universe which is in recent discus-
sion is depicted when ω < − 1

3 which includes the
quintessence (−1 < ω ≤ 0) and phantom regime (ω <

−1).
In this work, we have considered an effective EoS param-

eter which contains two model parameters m and n. Accord-
ing to the constrained values of m and n, the behavior of EoS
parameter is shown below. The value of EoS parameter at
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Fig. 3 The plot showing the best fit values of the model parameters
m and n obtained with 1048 points of Pantheon datasets at 1 − σ and
2 − σ confidence level with b = 0

- 1 0 1 2 3 4
- 1.0

- 0.5

0.0

0.5

z

q

Fig. 4 Variation of deceleration parameter q(z) for the best fitted value
of b = 0.2, m = 0.47 and n = 3.2 from the analysis of SNeIa Pantheon
samples

z = 0 is ω0 = −0.68+0.10
−0.11 [50] which clearly indicates an

accelerating phase (Fig. 5).

6 Conclusion

As new theories of gravity emerge in the literature, it is vital
to put them to the test to see if they are viable in describing the
dark sector of the universe. The f (Q, T ) is a promising new
gravity theory based on a combination of the non-metricity
function Q and the trace of the energy–momentum T . To

Fig. 5 Variation of EoS parameter for the best fitted value ofm = 0.47
and n = 3.2 from the analysis of SNeIa Pantheon samples

begin, we considered the functional form f (Q, T ) = Q +
bT , where b is a free parameter.

We use a well-motivated parametric form of the equa-
tion of state parameter as a function of redshift z to solve
the field equations for H . It has a negative value of less
than − 1

3 at the epoch of recent acceleration. At a high red-
shift z, the value of ω tends to zero for positive values of
the model parameters m and n and depends on the model
parameter at z = 0. The Pantheon study, a recently pro-
posed observational dataset, was used to constrain the param-
eter space. The parameters from our study have 2-σ limits
of b = 0.2+2.7

−2.9 , m = 0.47+0.27
−0.21, n = 3.2+1.8

−2.0. The error
bar plot of the 1048 points in the Pantheon datasets and our
obtained model compared to the �CDM model considering
�m0 = 0.3, ��0 = 0.7 and H0 = 67.4 ± 0.5 km s−1 Mpc−1

shows a good match to the observational results.
Finally we observed the behavior of the deceleration

parameter and equation of state parameter. We can see that
there is a well behaved transition from deceleration to accel-
eration phase at redshift zt . The value of the transition redshift
zt = 0.58±0.30 with the value of q0 = −0.52. And also, the
value of EoS parameter at z = 0 is ω0 = −0.68+0.10

−0.11 which
clearly supports an accelerating phase. The present analy-
sis motivates and encourages the study of such extensions,
which may represent a geometric alternative to dark energy.
Apart from the cosmic evidence, we also need to ensure that
the new f (Q, T ) theory is stable so that the differences in
approach from �CDM can be performed at the perturbation
level. This can be investigated in detail for f (Q, T ) through
future works.
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