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Abstract In this paper, we formulate two new classes of
black hole solutions in higher curvature quartic quasitopo-
logical gravity with nonabelian Yang–Mills theory. At first
step, we consider the SO(n) and SO(n − 1, 1) semisimple
gauge groups. We obtain the analytic quartic quasitopologi-
cal Yang–Mills black hole solutions. Real solutions are only
accessible for the positive value of the redefined quartic qua-
sitopological gravity coefficient, μ4. These solutions have a
finite value and an essential singularity at the origin, r = 0
for space dimension higher than 8. We also probe the thermo-
dynamic and critical behavior of the quasitopological Yang–
Mills black hole. The obtained solutions may be thermally
stable only in the canonical ensemble. They may also show
a first order phase transition from a small to a large black
hole. In the second step, we obtain the pure quasitopological
Yang–Mills black hole solutions. For the positive cosmolog-
ical constant and the space dimensions greater than eight, the
pure quasitopological Yang–Mills solutions have the ability
to produce both the asymptotically AdS and dS black holes
for respectively the negative and positive constant curvatures,
k = −1 and k = +1. This is unlike the quasitopological
Yang–Mills theory which can lead to just the asymptotically
dS solutions for � > 0. The pure quasitopological Yang–
Mills black hole is not thermally stable.

1 Introduction

Einstein’s gravity as a relatively weak theory may be the only
appropriate model in four dimension. For higher dimensions,
Einstein’s equations are not the most perfect ones which
can satisfy the Einstein’s assumptions. Higher-dimensional
spacetime as a requirement of the string theory also plays an
important role in the AdS/CFT correspondence which makes
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a relation between the n-dimensional conformal field theo-
ries and the (n + 1)-dimensional anti-de Sitter (AdS) black
holes [1]. Therefore, we can extend our study to the general-
ized gravities with the higher-order derivative terms that lead
to the second order field equations.

Quasitopological gravity is one of the candidates of the
modified theories having the ability to resolve the Einstein’s
equation defects [2,3]. From the viewpoint of the AdS/CFT
correspondence, quasitopological gravity can cause a broader
class of four (and higher)-dimensional CFT’s which includes
three (or higher) independent parameters relating the central
charges of the conformal field theories with the coupling
parameters of the gravitational spacetimes [2,4–7]. On the
other hand, by choosing some special constraints on the cou-
pling constants of the quasitopological gravity, the causal-
ity bound on the CFT’s can be respected [8]. This gravity
has also priority over the Lovelock theory [9,10]. As the
Euler density terms of the quasitopological gravity are not
true topological, this gravity contributes to the equations of
motion in higher dimensions. For example, the fourth-order
Lovelock theory contributes to the equations of motions only
in nine and higher dimensions. This is while that the quar-
tic quasitopological gravity contributes to the field equa-
tions for space dimensions n ≥ 4, except for n = 7 [2].
Therefore, this leads to a wide class of dual CFT’s for lower
dimensions [2]. Until now, some investigations of the qua-
sitopological black hole solutions have been done [3,11–
14]. Two classes of the uncharged and charged quartic qua-
sitopological black holes with the linear Maxwell theory
have been studied in respectively Refs. [15,16]. Rotating
black branes and magnetic branes in the presence of the qua-
sitopological gravity have been respectively probed in Refs.
[17,18].

The nonabelian Yang–Mills theory is a generalization
of the abelin Maxwell theory which is more common in
the gauged supergravity AdS theories. The idea of con-
sidering Yang–Mills theory with gravity was first studied
in Ref. [19]. By using a numeric method in four dimen-
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sion, the authors could achieve a class of asymptotically
flat spherically symmetric solitonic solution in the pres-
ence of a SU(2) Einstein–Yang–Mills field. The first black
hole solution in the presence of the Einstein–Yang–Mills
theory was constructed in Ref. [20]. Einstein–Yang–Mills
solutions in the presence of the cosmological constant have
been checked out in Refs. [21–23]. Some other studies of
the Yang–Mills theory are in Refs. [24–28]. In this paper,
we are eager to use the Wu–Yang ansatz [26] and obtain
an analytic quasitopological Yang–Mills black hole solu-
tion in the presence of the SO(n) and SO(n − 1, 1) gauge
groups.

Recently, the idea of pure Lovelock gravity has attracted
a lot of attention. It originates from the idea of construct-
ing a black string/brane in Lovelock gravity. Unlike the pure
Einstein gravity which can lead to a black string/brane by
adding flat directions to a vacuum black hole solution, it
is not possible to obtain a black string/brane in the Love-
lock theory. Pure Lovelock gravity with just one Euler den-
sity term was introduced with the aim of solving this prob-
lem [29]. Black holes in pure Lovelock gravity have been
investigated in Ref. [30]. In this study, an asymptotically
AdS black hole is accessible only for the constant curva-
ture k = −1 which is related to the hyperbolic angular
coordinates. This is while that in general relativity, an AdS
black hole can be described by all, k = −1, 0,+1, where
the constant curvatures k = 0,+1 describe the flat and
spherical angular coordinates. In Ref. [31], the authors have
proved that the pure Lovelock black hole in the dimension,
d = 3N + 1, is stable. Some studies about the quasi-local
energy and ADM mass of the pure Lovelock gravity are in
Ref. [32]. Thermodynamic extended phase space and PV
criticality of the black holes in pure Lovelock gravity have
been also probed [33]. Based on the advantages of the qua-
sitopological gravity over the Lovelock theory as mentioned,
now, we are willing to obtain the solutions of the pure qua-
sitopological Yang–Mills black hole in the second part of this
paper.

The outline of this paper is as follows: In Sect. 2, we
obtain the black hole solutions of the (n + 1)-dimensional
quartic quasitopological gravity coupled to the Yang–Mills
theory and then discuss the physical properties of the solu-
tions. Then, we probe the thermodynamic behaviors of the
Yang–Mills quartic quasitopological black hole and study
the thermal stability in Sect. 3. We also study the critical
behavior of the Yang–Mills quasitopological black hole in
Sect. 4. In the second part of this paper, we obtain the pure
quasitopological Yang–Mills black hole solution and inves-
tigate the physical properties in Sect. 5. We also study the
thermodynamic behaviors and thermal stability of this black
hole in Sect. 6 and finally, we have a conclusion of the whole
paper in Sect. 7.

2 General structure of the quasitopological gravity
coupled to the Yang–Mills theory

Higher dimensional quasitopological gravity with Maxwell
theory has been defined in Ref. [16]. In this section, we
first introduce the quasitopological gravity and the non-
abelian Yang–Mills theory and then obtain the quasitopo-
logical Yang–Mills black hole solutions. We consider a N-
parameters gauge group G with the structure constants Ca

bc
which have the definitions

γab ≡ − �ab

|det�ab|1/N
and �ab ≡ Cc

adC
d
bc, (1)

and the indices a, b, c goes from 1 to N. The (n + 1)-
dimensional action for the quasitopological gravity with the
nonabelian Yang–Mills theory is followed by

Ibulk = 1

16π

∫
dn+1x

√−g
{− 2� + L1 + μ̂2L2 + μ̂3L3

+μ̂4L4 − γabF
(a)
μν F (b)μν

}
, (2)

where � is the cosmological constant and μ̂2, μ̂3 and μ̂4

are the coefficients of the quasitopological gravity. L1 = R,
L2, L3 and L4 are respectively, Einstein-Hilbert, the second-
order Lovelock (Gauss-Bonnet term), the cubic and quartic
quasitopological gravities which are defined as

L2 = Rabcd R
abcd − 4RabR

ab + R2, (3)
L3 = Ra

c
b
d Rc

e
d
f Re

a
f
b

+ 1

8(2n − 1)(n − 3)

(
b1Rabcd R

abcd R + b2Rabcd R
abc

e R
de

+b3Rabcd R
ac Rbd + b4Ra

bRb
c Rc

a

+b5Ra
bRb

a R + b6R
3), (4)

L4 = c1Rabcd R
cde f Rhg

e f Rhg
ab + c2Rabcd R

abcd Ref
e f

+c3RRabR
ac Rc

b + c4(Rabcd R
abcd )2

+c5RabR
ac Rcd R

db + c6RRabcd R
ac Rdb

+c7Rabcd R
ac Rbe Rd

e + c8Rabcd R
ace f Rb

e R
d
f

+c9Rabcd R
ac Ref R

bed f + c10R
4 + c11R

2Rabcd R
abcd

+c12R
2RabR

ab

+c13Rabcd R
abe f Ref

c
g R

dg

+c14Rabcd R
aec f Rgeh f R

gbhd , (5)

where we have written the coefficients ci ’s in the
Appendix (8.1). The Yang–Mills gauge field tensor is of the
form

F (a)
μν = ∂μA

(a)
ν − ∂ν A

(a)
μ + 1

e
Ca
bc A

(b)
μ A(c)

ν , (6)

where e is a coupling constant and A(a)
μ ’s are the gauge poten-

tials. We use the metric

ds2 = − f (r)dt2 + dr2

f (r)

+r2[dθ2 + k−1sin2(
√
kθ)d	2

k,n−2], (7)
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where d	2
k,n−2 represents the metric of a unit (n−2)-sphere

with constant curvatures k = −1, 1 that are respectively
related to the hyperbolic and spherical angular coordinates.
We introduce the following coordinates to write the Yang–
Mills potentials

x1 = r√
k

sin(
√
k θ)
n−2

j=1 sin φ j ,

xl = r√
k

sin(
√
k θ) cos φn−l 


n−l−1
j=1 sin(φ j ) , l = 2, ..., n − 1

xn = r cos (
√
k θ), (8)

where k = −1,+1 are the constant curvatures. By the Wu-
Yang ansatz [26], the gauge potentials can be derived

A(a) = e

r2 (xldxn − xndxl) for a = l = 1, ..., n − 1,

A(b) = e

r2 (xldx j − x j dxl) for b = n, ..., n(n − 1)/2,

l = 1, ..., n − 2, j = 2, ..., n − 1, and l < j. (9)

For a better understanding, we have written the gauge poten-
tials of the gauge groups SO(3), SO(2, 1), SO(4) and
SO(3, 1) in the Appendix (8.2). The gauge potentials have
the Lie algebra of SO(n − 1, 1) and SO(n). To obtain the
gravitational field equation, we should vary the action (2)
with respect to the metric gμν . If we use the gauge potentials
(9) and redefine the coefficients in the following way

μ2 ≡ (n − 2)(n − 3)μ̂2,

μ3 ≡ (n − 2)(n − 5)(3n2 − 9n + 4)

8(2n − 1)
μ̂3,

μ4 ≡ n(n − 1)(n − 3)(n − 7)(n − 2)2(n5 − 15n4

+72n3 − 156n2 + 150n − 42)μ̂4, (10)

then the fourth-order gravitational field equation is obtained
as

μ4�
4 + μ3�

3 + μ2�
2 + � + ζ = 0, (11)

where �(r) = [k − f (r)]/r2 and

ζ =
{

− 2�
n(n−1)

− m
rn − (n−2)e2

(n−4)r4 , n > 4,

−�
6 − m

r4 − 2e2

r4 ln( r
r0

), n = 4,
(12)

that we choose r0 = 1 for simplification. In the above rela-
tion, m is an integration constant which is interpreted as the
mass of the black hole. The quasitopological Yang–Mills
black hole solutions of Eq. (11) is obtained as follows

f (r) = k − r2

×

⎧⎪⎨
⎪⎩

− μ3
4μ4

+ −W+
√

−(3A+2y− 2B
W )

2 , μ4 > 0,

− μ3
4μ4

+ W−
√

−(3A+2y+ 2B
W )

2 , μ4 < 0,

(13)

where, for simplicity we have used the following definitions

W = √A + 2y, A = −3μ2
3

8μ2
4

+ μ2

μ4
,

y =
⎧⎨
⎩

− 5
6 A +U − P

3U , U �= 0,

− 5
6 A +U − 3

√
H , U = 0,

(14)

U =
(

− H

2
±
√

H2

4
+ P3

27

) 1
3

,

H = − A3

108
+ AC

3
− B2

8
, P = − A2

12
− C, (15)

B = μ3
3

8μ3
4

− μ2μ3

2μ2
4

+ 1

μ4
,

C = − 3μ4
3

256μ4
4

+ μ2μ
2
3

16μ3
4

− μ3

4μ2
4

+ ζ

μ4
. (16)

It is clear from Eq. (13) that the solutions are divided into
two categories for μ4 > 0 and μ4 < 0. For small r , the
parameter ζ in Eq. (12) takes a negative large value which
can enlarge the fourth term of the parameter C in Eq. (16)
and so the parameter P in Eq. (15). For μ4 < 0, this leads to
a negative large value for the parameter P in Eq. (15) which
produces an imaginary solution for the parameter U . Thus,
we do not consider the solutions with μ4 < 0 because they
are imaginary for small r .

Now, we would like to investigate the physical properties
of the obtained solutions in two cases, μ̂i = 0 and μ̂i �= 0,
which i = 2, 3 .

2.1 The μ̂2 = 0 and μ̂3 = 0 case

In an attempt to get a simple expression for the obtained
solution f (r), we consider the special cases μ̂2 = 0 and
μ̂3 = 0. In this case, the quartic quasitopological Yang–Mills
solution gets the form

f (r) = k − r2

2

⎡
⎢⎢⎢⎢⎢⎣

∓
√√√√√2
( 1

16μ2
4

+ √
�
) 1

3 + 2ξ

3μ4
( 1

16μ2
4

+ √
�
) 1

3

±

⎛
⎜⎜⎜⎜⎝−2

(
1

16μ2
4

+ √
�

) 1
3 − 2ξ

3μ4

(
1

16μ2
4

+ √
�

) 1
3

± 2

μ4

(
2

(
1

16μ2
4

+ √
�

) 1
3 + 2ξ

3μ4( 1
16μ2

4
+ √

�)
1
3

)− 1
2

⎞
⎟⎟⎟⎟⎠

1
2
⎤
⎥⎥⎥⎥⎥⎦

,

(17)
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where

� = 1

256μ4
4

− ζ 3

27μ3
4

. (18)

The obtained signs (−,+,+) and (+,−,−) in Eq. (17) are
respectively corresponded to μ4 > 0 and μ4 < 0. The expan-
sion of f (r) around μ4 → 0 reduces to

f (r) = k + ζr2 + μ4ζ
4r2 + 4μ2

4ζ
7r2 + O((μ4)

8/3), (19)

where ζ was defined in Eq. (12). This relation shows the
Einstein–Yang–Mills solutions with some correction terms
proportional to μ4.

We also check the solution f (r) at the origin, r = 0. As the
term m/rn becomes so large at r = 0 in Eqs. (17) and (18),
we should choose μ4 > 0 in order to have a real solution.
Therefore, if we expand f (r) near the origin for the positive
finite values of μ4 and n �= 4, it is obtained as follows

f (r) = k −
(
m

μ4

) 1
4

r
8−n

4 − (n − 2)e2

4(n − 4)m
×
(
m

μ4

) 1
4

r
3n−8

4

+O(r). (20)

This shows that the quasitopological gravity has the ability
to provide a finite value for the laps function at the origin,
for n ≤ 8. This is unlike the Einstein gravity which makes a
divegent value at this point. If we calculate the Kretchmann
scalar for the positive finite value of μ4 at the limit r → 0,
we get to

Rabcd R
abcd ∝

√
m

μ4
r− n

2 . (21)

This manifests a divergence at r = 0 which demonstrates
that there is an essential singularity located at the origin.

In order to have a better look of the obtained solution,
we have plotted f (r) versus r for μ̂4 = 0.005 in Fig. 1a,
for μ̂4 = 5 × 10−7 in Fig. 1b and the Einstein–Yang–Mills
solution in Fig. 1c. We can observe that for the mentioned
parameters in Fig. 1a, there is an extreme black hole with
the Yang–Mills charge, eext = 2.65. For e > eext, there is a
black hole with two horizons, while for e < eext, there is a
naked singularity. Figure 1a also shows that the function f (r)
in quasitopological gravity has a finite value at r = 0. By
decreasing the value of μ̂4 in Fig. 1b, f (r) increases near the
origin while in the case of the Einstein–Yang–Mills solution
in Fig. 1c, it diverges as r → 0. So unlike the Einstein’s
gravity, the quasitopological gravity is successful to create
a finite value for the laps function at r = 0. The figures
also show that for r → ∞, the function f (r) has a similar
behavior in both Einstein–Yang–Mills and quasitopological-
Yang–Mills theories. So, we can deduce that the effect of the
quasitopological gravity will be removed at the infinity. In
Fig. 1b, c, the radius of the event horizon r+ (which is the

root of the equation f (r+) = 0) increases as the value of e
increases.

2.2 The μ̂i �= 0 case

Now, we probe the behavior of the quasitopological Yang–
Mills black hole solution for the general case μ̂i �= 0, using
Eq. (13). For this purpose, we have plotted f (r) versus r
in Figs. 2, 3 and 4 for μ̂4 > 0 with l = 1. These figures
indicate that in the presence of the quasitopological gravity in
low dimensions, the laps function goes to the constant value
k, as r → 0. In Fig. 2, we have investigated the obtained
six-dimensional(n = 5) solution for different values of e.
Depending on the parameter e in Fig. 2, the solution can lead
to a black hole with three horizons(solid red line and dashed
blue line) or a naked singularity(dashed-dot green line). It
should be noted that the largest horizon is the cosmological
horizon and the smaller ones are the black hole horizons.

In Fig. 3, we can observe the behavior of f (r) with respect
to r for different values of the parameter μ̂4 in space dimen-
sion, n = 6. We can see that for the mentioned parameters
μ̂2, μ̂3 k, n, m, � and μ̂4, there are black holes with inner
and outer horizons, r− and r+. The outer horizon is indepen-
dent of the parameter μ̂4, while the inner one increases as μ̂4

increases. We can conclude that the behavior of the metric
function is independent of the parmater μ̂4 at the infinity.

We have also checked out the behavior of the metric func-
tion in the five-dimensional (n = 4) quasitopological grav-
ity for different values of the mass parameter, m in Fig. 4a
and then compared with the Einstein–Yang–Mills solution in
Fig. 4b. According to Eq. 12, we should choose the region
r > 1 in order to have real solutions in five dimensions.
Figure 4a shows that there is a nonextreme black hole with
a horizon r+ for all values of the mass parameter m with
the mentioned parameters. As the parameter m increases, the
horizon r+ also increases. Comparing these results with the
Einstein–Yang–Mills solutions in Fig. 4b, we find that the
laps function has a large value at r = 1. This is while the
quasitopological Yang–Mills solution has a small value at
this limit in Fig. 4a.

As the Kretchmann scalar diverges at r = 0 for the positive
finite value of μ4, so there is an essential singularity at the
origin for these solutions.

3 Thermodynamic behaviors of the quasitopological
Yang–Mills black hole

In this part, we want to calculate the thermodynamic quanti-
ties such as mass, Yang–Mills charge, temperature, entropy
and Yang–Mills potential of the quasitopological Yang–Mills
black hole. We also probe the thermal stability of this black
hole in both the canonical and the grand canonical ensembles.
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(b)(a) (c)

Fig. 1 f (r) with respect to r for different values of the Yang–Mills charge e with μ2 = μ3 = 0, k = 1, n = 5, m = 3 and � = 0

Fig. 2 f (r) with respect to r for different values of e with μ̂2 = 0.3,
μ̂3 = 0, μ̂4 = 10−7, k = 1, n = 5, m = 1 and � = 1

Using the subtraction method [34], we obtain the Arnowitt
Deser Misner mass per unit volume ωn−1 (the volume of a
(n-1)-dimensional unit sphere) of this black hole as follows

M = (n − 1)

16π
m, (22)

where the mass parameter m is gained from the equation
f (r+) = 0,

m(r+) =

⎧⎪⎪⎨
⎪⎪⎩

μ4k4

r8−n+
+ μ3k3

r6−n+
+ μ2k2

r4−n+
+ k

r2−n+
− 2�

n(n−1)
rn+ − (n−2)e2

(n−4)r4−n+
, n > 4,

μ4k4

r4+
+ μ3k3

r2+
+ μ2k2 + kr2+ − �

6 r
4+ − 2e2ln(r+), n = 4.

(23)

Fig. 3 f (r) with respect to r for different values of μ̂4 with μ̂2 =
−0.9, μ̂3 = −0.06, k = 1, n = 6, m = 10, e = 20 and � = −1

The Yang–Mills charge of this black hole per unit volume
ωn−1 can be determined from the Gauss law

Q = 1

4π
√

(n − 1)(n − 2)

∫
dn−1r

√
Tr(F (a)

μν F (a)
μν ) = e

4π
.

(24)

If we differentiate Eq. (11) with respect to r and use the fact
that f (r+) = 0, the Hawking temperature of the quasitopo-
logical Yang–Mills black hole can be derived from
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Fig. 4 f (r) with respect to r
for 5-dimensional
spacetime(n = 4) and different
values of the mass parameter m
with k = −1, e = 4 and
� = −1

(a) (b)

T+ = | f ′
(r+)|
4π

= |(n − 8)μ4k4 + (n − 6)μ3k3r2+ + (n − 4)μ2k2r4+ + k(n − 2)r6+ − 2�r8+
n−1 − (n − 2)e2r4+|

4πr+|(4μ4k3 + 3k2μ3r2+ + 2kμ2r4+ + r6+)| . (25)

Relation (25) shows that the solutions with negative cos-
mological constant may have a larger range of parameters
with positive temperature than the ones with positive cosmo-
logical constant. Using Ref. [35], we can obtain the entropy
density of the quasitopological Yang–Mills black hole

S = rn−1+
4

+ (n − 1)kμ2

2(n − 3)
rn−3+ + 3(n − 1)k2μ3

4(n − 5)
rn−5+

+ (n − 1)k3μ4

(n − 7)
rn−7+ . (26)

Now, if we consider the mass M as a function of S and Q,
the first law of the thermodynamics is established as

dM = TdS +UdQ, (27)

where T = ( ∂M
∂S

)
Q and U = ( ∂M

∂Q

)
S . The calculations show

that the evaluated T is the same as Eq. (25). Using the relation
U = ( ∂M

∂Q

)
S , the Yang–Mills potential can be obtained as

U+ =
{

− 2πQ(n−1)(n−2)
(n−4)

rn−4+ , n > 4
−4πQ(n − 1)ln(r+) n = 4.

(28)

We can also probe the thermal stability of the quasitopo-
logical Yang–Mills black hole in both the canonical and the
grand canonical ensembles. In the canonical ensemble, the
electric charge Q is fixed, and so, we analyze the stability of
the black hole considering the small variation of the entropy
S. Thereby, thermal stability in the canonical ensemble will
be established if the heat capacity

Ce = T

(
∂S

∂T

)
Q

= T

(
∂2M

∂S2

)−1

Q
, (29)

is positive. We should note that the positive value of the tem-
perature is also a necessary condition in order to have a phys-
ical solution. In the grand canonical ensemble, both parame-
ters S and Q are variables. For this ensemble, in addition to

T+ and Ce, the positive values of the parameters
(

∂2M
∂Q2

)
and

the Hessian matrix determinant

det H =
(

∂2M

∂S2

)(
∂2M

∂Q2

)
−
(

∂2M

∂S∂Q

)2

, (30)

guarantee the thermal stability of the black hole. If we cal-

culate
(

∂2M
∂Q2

)
for this black hole, we get to

(∂2M

∂Q2

)
=
⎧⎨
⎩

− 2π(n−1)(n−2)
(n−4)

rn−4+ , n > 4,

−4π(n − 1)ln(r+) n = 4,

(31)

which is negative for n > 3. As the quasitopological Yang–
Mills black hole does not satisfy one of the conditions of
thermal stability in the grand canonical ensemble, so this
black hole is not thermally stable in this ensemble. In order to
recognize the stability regions of the quasitopological Yang–
Mills black hole, we have plotted Figs. 5 and 6 for � < 0 and
� > 0. In Fig. 5a with � < 0, there is a r+QY which both T+
and Ce in the six-dimensional quasitopological Yang–Mills
black hole are positive for r+ > r+QY and thus this black
hole is stable in this range for the mentioned parameters in the
caption. As the value of the Yang–Mills charge e increases
in Fig. 5b, the value of r+QY increases. Therefore we can
conclude that for the mentioned parameters, the solutions
may have a larger region in thermal stability for the smaller
values of e. According to our above statement, detH is not
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Fig. 5 Thermal stability of
Quasitopological Yang–Mills
black hole with respect to r+
with μ̂2 = 0.3, μ̂3 = 0.1,
μ̂4 = 10−7, k = 1, n = 5 and
� = −1

(a) (b)
Fig. 6 Thermal stability of
Quasitopological Yang–Mills
black hole with respect to r+
with μ̂2 = 0.3, μ̂3 = 0.2,
μ̂4 = 10−7, k = 1, n = 6 and
� = 1

(a) (b)

positive for the mentioned region r+ > r+QY and thus this
black hole is not stable in the grand canonical ensemble. In
Fig. 6, we have depicted the stability of the quasitopological
Yang–Mills black hole for � > 0. Figure 6 manifests that
in the dS spacetime like the AdS one, the quasitopological
Yang–Mills solutions have a larger range of parameters in
thermal stability for the small values of e than the large ones.
Comparing Figs. 5 and 6 also shows that the solutions with
� > 0 have a smaller stable region in comparison to the ones
with � < 0.

4 Critical behavior of the quasitopological Yang–Mills
black holes in the extended phase space

Until now, a lot of studies about the black hole phase transi-
tion have been done where some new researches are in Refs.
[36–39]. In this section, we investigate the critical behav-
ior and phase transition of the quasitopological Yang–Mills
black hole. We consider an extended phase space in which
the quantities S, Q, the cosmological constant �, the Gauss-
Bonnet, the cubic and quartic quasitopological coefficients
(μ̂i ) and their conjugates are considered as the thermody-

namic variables. We consider � as a thermodynamic pressure
by the relation P = − �

8π
, which its conjugate quantity (the

thermodynamic volume) is defined by the relation V = rn+
n

[40]. We also introduce the specific volume v = 4r+
n−1 to com-

pare the equation of state with the Van der Walls equation.
By these definitions, the first law of the black hole thermo-
dynamics in the extended phase space can be written [41] as
follows

dM = TdS +UdQ + VdP + �2dμ̂2 + �3dμ̂3

+�4dμ̂4, (32)

where �i is denoted as the conjugate of the coefficient μ̂i

which can be obtained from Eqs. (22) and (23) as follows

�2 = ∂M

∂μ̂2
= k2(n − 1)

16π
rn−4+ − k(n − 1)

2(n − 3)
rn−3+ T+,

�3 = ∂M

∂μ̂3
= k3(n − 1)

16π
rn−6+ − 3k2(n − 1)

4(n − 5)
rn−5+ T+,

�4 = ∂M

∂μ̂4
= k4(n − 1)

16π
rn−8+ − k3(n − 1)

(n − 7)
rn−7+ T+. (33)

To study the critical behavior of the quasitopological Yang–
Mills black hole, we first plot the P−v isotherms and the
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G−T diagrams and then obtain the critical exponents in the
following sections:

4.1 P−v isotherm

P−v isotherm is one of the candidates by which we can
compare the critical behavior of a black hole with the Van
der Walls fluid. In this section, we probe P − v isotherm for
the obtained black hole. From the relation � = −8π P and
Eq. (25), the equation of state can be found as

P = T

v
− k(n − 2)

(n − 1)πv2 + 16(n − 2)e2

(n − 1)3πv4

+ 32kμ2

(n − 1)2v3

(
T − k(n − 4)

2π(n − 1)v

)

+ 768k2μ3

(n − 1)4v5

(
T − k(n − 6)

3π(n − 1)v

)

+16384k3μ4

(n − 1)6v7

(
T − k(n − 8)

4π(n − 1)v

)
. (34)

The critical points can be derived from the following condi-
tions:

∂P

∂v
= 0,

∂2P

∂v2 = 0. (35)

We specify the volume, pressure and temperature of the crit-
ical points such as vC , PC and TC . By applying the above
conditions (35) to the equation of state (34), we can not find
any analytic solutions for the critical points and therefore,
we use a numeric method. The results show that there is no
critical behavior for the hyperbolic case, k = −1 and there-
fore, we concentrate on the spherical case with k = 1. By
considering three cases T < TC , T = TC and T > TC , we
have plotted P vs v for μ̂4 > 0 and k = 1 in Fig. 7. This
figure shows that the critical behavior of the quasitoplogical
Yang–Mills black hole is similar to that of the Van der Walls
fluid.

4.2 G−T diagrams

Another candidate for probing the critical behavior of a black
hole is theG−T diagram(Gibbs free energyG versus temper-
ature T ). The Gibbs energy for the quasitopological Yang–
Mills black hole is gained by

G = M − T S. (36)

We have plotted G vs T in Fig. 8. It shows that for P < PC ,
there is a swallowtail behavior which informs of a first-order
phase transition from a small to a large black hole in the
quasitopological Yang–Mills theory.

Fig. 7 P versus v for different temperature T with μ̂2 = 0.2, μ̂3 = 0.1
μ̂4 = 0.001, k = 1 and n = 4 e = 0.2

Fig. 8 G versus T for different pressure P with μ̂2 = 0.2, μ̂3 = 0.1
μ̂4 = 0.001, k = 1 and n = 4 e = 0.2

4.3 Critical exponents

To describe the physical behavior near the critical points,
we aim to obtain the critical exponents α, β, γ and δ for
the quasitopological Yang–Mills black hole. As the entropy
of this black hole is independent of the temperature T in
Eq. (26), we conclude that

CV = T

(
∂S

∂T

)
V

= 0 ⇒ α = 0. (37)
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Let us substitute the following definitions

p = P

PC
, ν = v

vC
, τ = T

TC
, (38)

in Eq. (34) and expand it near the critical point, τ = 1 + t
and ν = (1 + ω)1/z . So we obtain

p = 1 + t

ρC
− 1

zρC
tw − Aw3 + O(tw2, w4), (39)

where

A = 1

z3

(
1

ρc
− h(3)|ν=1

6

)
, ρC = PCvC

TC
,

h(ν) = 1

PC

[
− k(n − 2)

(n − 1)πν2v2
C

+ 16(n − 2)e2

(n − 1)3πν4v4
C

+ 32kμ2

(n − 1)2ν3v3
C

(
τTC − k(n − 4)

2π(n − 1)νvC

)

+ 768k2μ3

(n − 1)4ν5v5
C

(
τTC − k(n − 6)

3π(n − 1)νvC

)

+ 16384k3μ4

(n − 1)6ν7v7
C

(
τTC − k(n − 8)

4π(n − 1)νvC

)]
. (40)

Differentiating Eq. (39) with respect to w and imposing the
Maxwell’s equal area law, we get to

p = 1 + t

ρC
− 1

zρC
twl − Aw3

l = 1 + t

ρC
− 1

zρC
tws − Aw3

s ,

0 =
∫ ωs

ωl

ωdP, (41)

where wl and ws are denoted as the “volume” of large and
small black holes. Equation (41) has the following unique
solution

ws = −ωl =
√

− t

zρC A
, (42)

which yields to

η = vC (ωl − ωs) = 2vCωl ∝ √−t ⇒ β = 1

2
. (43)

The isothermal compressibility can also be obtained from
Eq. (39) as

κT = − 1

V

∂V

∂P

∣∣∣
T

∝ ρC

PC

1

t
⇒ γ = 1. (44)

Finally, we can obtain the “shape” of the critical isothem
t = 0, from Eq. (39)

p − 1 = −Cw3 ⇒ δ = 3. (45)

The obtained results show that the critical exponents of the
quasitopological Yang–Mills black hole coincide with the
ones for the Van der Waals fluid.

In the first part of this paper, we obtained the quasitopo-
logical Yang–Mills black hole solutions and then investi-
gated their physical and thermodynamic behaviors. In the

second part, we are willing to obtain a new class of pure
quasitopological Yang–Mills black hole solutions and probe
their behaviors.

5 Pure quasitopological Yang–Mills black hole solutions

In this section, we first define the pure quasitopological action
with Yang–Mills theory and then obtain the related black hole
solutions. For this purpose, we choose L1 = L2 = L3 = 0,
where it leads to the action

Ibulk = 1

16π

∫
dn+1x

√−g
{− 2� + μ̂4L4

−γabF
(a)
μν F (b)μν

}
. (46)

Therefore, the gravitational field equation (11) gets to

μ4�
4 + ζ = 0, (47)

where we have defined � and ζ in Eq. (12). For this equation,
we arrive at the solution

fPY (r) = k ∓ r
3
2

μ4

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
μ3

4

( 2�r2

n(n−1)
+ (n−2)e2

(n−4)r2 + m
rn−2

)] 1
4

, n > 4,

[
μ3

4

(
�r2

6 + 2e2ln( r
r0

)

r2 + m
r2

)] 1
4

, n = 4,

(48)

where we choose r0 = 1. In order to have real solutions,
we should consider a positive value for � and μ4. Since all
dimensions exceptn = 8 lead to a positive value for μ4, so we
ignore this dimension. Our numerical results also show that
in order to have a black hole, the spacetime dimension should
be larger than eight. The pure quasitopological Yang–Mills
black hole has a horizon, if the equation fPY (r+) = 0 has a
real solution. So, depending on the values of the parameters
n, m, e, � and μ4, the solutions may lead to a black hole with
horizons. For r → ∞, fPY (r) goes to

fPY (r) = k ∓
(

2�

μ4n(n − 1)

) 1
4

r2, (49)

which shows that we should define “−” and “+” for rep-
sectively k = +1 and k = −1, otherwise we face a naked
singularity. So, we can conclude that with � > 0 in Eq. (49),
the solutions in pure quasitopological Yang–Mills gravity
may lead to the asymptotically AdS and dS black holes with
k = −1 and k = +1, respectively.

For better understanding, we have plotted fPY (r) versus
r with positive cosmological constant in Figs. 9 and 10. In
Fig. 9, there are two small and large horiozons for all black
hole which are respectively related to the balck hole and
cosmological horizons.
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Fig. 9 fPY (r) with respect to r for different values of e with μ̂4 =
10−7, k = 1, n = 9, m = 1 and � = 1. There are two horizons
which the left one is the black hole horizon and the right one is the
cosmological horizon

In Fig. 10, we have plotted AdS solutions with k = −1
and n = 9 for different values of the mass parameters m.
It shows that although the two above mentioned conditions
(spacetime dimensions larger than eight and k = −1 for
AdS solutions) are established, however depending on the
parameters e,n, μ̂4 andm, there is an AdS black hole with two
horizons, an extreme dS black hole and a naked singularity.
For the mentioned parameters, the solutions with small mass
parameter m may lead to a black hole with two horizons.

For a finite positive value of μ4 in the pure quasitopologi-
cal Yang–Mills black hole solutions, the Kretschmann scalar
diverges at the origin r = 0

RabcdRabcd ∝
√

m

μ4
r− n

2 . (50)

Therefore, the pure quasitopological Yang–Mills black hole
has an essensial singularity at r = 0.

6 Thermodynamic behaviors of the pure
quasitopological Yang–Mills black holes

We also search for the thermodynamic behaviors of the pure
quasitopological Yang–Mills black holes. The mass of this
black hole is also followed from Eq. (22), where the mass
parameter is gained as

m(r+) =

⎧⎪⎪⎨
⎪⎪⎩

− 2�
n(n−1)

rn+ − (n−2)e2

(n−4)r4−n+
+ μ4k4

r8−n+
, n > 4,

−�
6 r

4+ − 2e2ln(r+) + μ4k4

r4+
, n = 4.

(51)

Fig. 10 fPY (r) with respect to r for different values of m with μ̂4 =
10−7, k = −1, e = 5, n = 9 and � = 1

Using Eq. (47) and the condition fPY (r+) = 0, the Hawking
temperature and the entropy density of the pure quasitopo-
logical Yang–Mills black hole are followed from

T+ = | f ′
(r+)|
4π

=
∣∣∣∣∣
k(n − 8)

16πr+
− �r7+

8π(n − 1)μ4k3

− (n − 2)e2r3+
16πμ4k3

∣∣∣∣∣ , (52)

and

S = (n − 1)μ4k3

(n − 7)
rn−7+ . (53)

The pure quasitopological Yang–Mills black hole solutions
obey from the first law of black hole thermodynamics if the
Yang–Mills potential is followed from

U+ =

⎧⎪⎪⎨
⎪⎪⎩

−�rn+
2n − (n−1)(n−2)e2

4(n−4)r4−n+
+ (n−1)μ4k4

4r8−n+
, n > 4

−�r4+
8 − 3

2e
2ln(r+) + 3μ4k4

4r4+
n = 4.

(54)

To probe the thermal stability of the pure quasitopological
Yang–Mills black hole, we calculate the heat capacity

CQ = − 16πμ2
4k

6(n − 1)2rn−6+
14�r8+ + 3(n − 1)(n − 2)e2r4+ + (n − 1)(n − 8)μ4k4

T+.

(55)

This relation shows that for � and μ4 > 0, it is not possible
to have positive values for both CQ and T+ simultaneously.
So, the pure quasitopological Yang–Mills black hole is not
thermally stable in the canonical and the grand canonical
ensembles.
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7 Concluding remarks

In this paper, we achieved two new sets of (n + 1)-
dimensional black hole solutions in the quasitopological
gravity with the nonabelian Yang–Mills theory. Followed by
AdS/CFT correspondence, the obtained solutions may pro-
vide vast backgrounds to study the n-dimensional CFT’s. At
first, we considered the quasitopological gravity up to the
fourth-order curvature tensor and an N -parameters gauge
group G with the structure constants Ci

jk . Using the Wu-
Yang ansatz, we defined the gauge potentials which have the
Lie algebra of the SO(n) and SO(n − 1, 1) gauge groups.
For this theory, we obtained two types of the analytic qua-
sitopological Yang–Mills black hole solutions for μ4 > 0
and μ4 < 0. Real solutions in the range 0 < r < ∞(which
is described for n > 5 and the range 1 < r < ∞ which is
defined for n = 4) were obtained only for μ4 > 0. We also
probed the physical structures of the quasitopological Yang–
Mills solutions in two cases. The first one is μ̂2 = μ̂3 = 0,
μ̂4 �= 0 and the other one is μ̂i �= 0 (i = 2, 3, 4). We proved
that for small values of μ̂i (i = 2, 3, 4), the quasitopologi-
cal Yang–Mills solutions reduce to the Einstein–Yang–Mills
ones plus some correction terms proportional to μ4. We also
showed that unlike the Einstein’s theory, the quasitopolog-
ical gravity has the ability to provide a finite value for the
metric function at the origin for n ≤ 8. For the limit r → ∞,
the quasitopological gravity effect will be negligible and so
the black hole has a similar behavior as the one in Einstein
gravity. Depending on the values of the parameters μ̂2, μ̂3,
μ̂4, e, m, � and k, we encountered a black hole with inner
and outer horizons, an extreme black hole or a naked singu-
larity. For n ≤ 8, the Kreshmann scalar diverges at r → 0
which we can deduce that there is an essential singularity at
this point.

An investigation of the thermodynamic behaviors of the
quasitopological Yang–Mills black hole was raised in this
paper. We also checked out the accuracy of the first law
of the thermodynamics and probed the thermal stability of
this black hole in the both canonical and the grand canoni-
cal ensembles. The results showed that the quasitopological
Yang–Mills black hole is thermally stable in just the canon-
ical ensemble. We deduced that the solutions with negative
cosmological constant and small Yang–Mills charge e may
lead to a larger range of parameters in thermal stability com-
pared to the ones with the positive cosmological constant and
large e.

We also probed the critical behavior of the quasitopolog-
ical Yang–Mills black hole in the extended phase space in
which the entropy S, the Yang–Mills charge e, the cosmolog-
ical constant �, the coupling constants μ̂i ’s (i = 2, 3, 4) and
also their conjugate quantities are considered as the thermo-
dynamic variables. We concluded that the P − v isotherms
with k = 1 and the critical exponents of this black hole

behave like the ones in the Van der Walls fluid. We also
found a swallowtail behavior for the Gibbs free energy which
showed a first order small-large black hole transition.

In the second step, we obtained the pure quasitopologi-
cal Yang–Mills black hole solutions. For this purpose, we
just considered the cosmological constant, Yang–Mills and
quartic quasitopological terms. Real pure quasitopological
Yang–Mills solutions are accessible only for the positive val-
ues of � and μ4. For space dimensions greater than eight, the
solutions may have two black hole and cosmological hori-
zons, if we consider k = −1 and k = +1 for respectively
AdS and dS black holes. Finally depending on the values of
the parameters n, m, �, μ4 and e, the solutions may lead to
a black hole with two horizons, an extreme black hole or a
naked singularity.

In the future works, we would like to search for the other
quantities such as shadow, quasinormal modes, thermody-
namic geometry and central charge of the obtained quasitopo-
logical Yang–Mills black holes.
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8 Appendix

8.1 Coefficients of the quartic quasitopological gravity

The coefficients bi ’s and ci ’s for the cubic and quartic
quasitopological terms in Eqs. (4) and (5) are respectively
defined as

b1 = 3(3n − 5)

b2 = −24(n − 1)

b3 = 24(n + 1)

b4 = 48(n − 1)
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b5 = −12(3n − 1)

b6 = 3(n + 1) (56)

and

c1 = −(n − 1)(n7 − 3n6 − 29n5 + 170n4 − 349n3

+348n2 − 180n + 36)

c2 = −4(n − 3)(2n6 − 20n5 + 65n4 − 81n3

+13n2 + 45n − 18)

c3 = −64(n − 1)(3n2 − 8n + 3)(n2 − 3n + 3)

c4 = −(n8 − 6n7 + 12n6 − 22n5 + 114n4 − 345n3

+468n2 − 270n + 54)

c5 = 16(n − 1)(10n4 − 51n3 + 93n2 − 72n + 18)

c6 = −32(n − 1)2(n − 3)2(3n2 − 8n + 3)

c7 = 64(n − 2)(n − 1)2(4n3 − 18n2 + 27n − 9)

c8 = −96(n − 1)(n − 2)(2n4 − 7n3 + 4n2 + 6n − 3)

c9 = 16(n − 1)3(2n4 − 26n3 + 93n2 − 117n + 36)

c10 = n5 − 31n4 + 168n3 − 360n2 + 330n − 90

c11 = 2(6n6 − 67n5 + 311n4 − 742n3 + 936n2

−576n + 126)

c12 = 8(7n5 − 47n4 + 121n3 − 141n2 + 63n − 9)

c13 = 16n(n − 1)(n − 2)(n − 3)(3n2 − 8n + 3)

c14 = 8(n − 1)(n7 − 4n6 − 15n5 + 122n4 − 287n3

+297n2 − 126n + 18).

(57)

8.2 Gauge potentials for some gauge groups

The gauge potentials of the groups SO(3), SO(2, 1), SO(4)

and SO(3, 1) are described as follows:
For SO(3) guage group with k = 1 and n = 4,

C1
23 = C2

31 = C3
12 = −1 , γab = diag(1, 1, 1)

A(1)
μ = e (−cos φ dθ + sin θ cos θ sin φ dφ),

A(2)
μ = −e (sin φ dθ + sin θ cos θ cos φ dφ),

A(3)
μ = e sin2 θ dφ, (58)

for SO(2, 1) gauge group with k = −1 and n = 4,

C1
23 = C2

31 = −C3
12 = 1 , γab = diag(−1,−1, 1)

A(1)
μ = e (−cos φ dθ + sinh θ cosh θ sin φ dφ),

A(2)
μ = −e (sin φ dθ + sinh θ cosh θ cos φ dφ),

A(3)
μ = e sinh2 θ dφ, (59)

for SO(4) gauge group with k = 1 and n = 5

C1
24 = C1

35 = C2
41 = C2

36 = C3
51 = C3

62 = 1,

C4
56 = −C4

21 = C5
64 = −C5

31 = C6
45 = −C6

32 = 1,

γab = diag(1, 1, 1, 1, 1, 1),

(60)

A(1)
μ = −e (sin φ cos ψ dθ + sin θ cos θ (cos φ cos ψ dφ

−sin φ sin ψ dψ))

A(2)
μ = −e (sin φ sin ψ dθ + sin θ cos θ (cos φ sin ψ dφ

+sin φ cos ψ dψ))

A(3)
μ = −e (cos φ dθ − sin θ cos θ sin φ dφ)

A(4)
μ = −e sin2 θ sin2 φ dψ

A(5)
μ = e sin2 θ (cos ψ dφ − sin φ cos φ sin ψ dψ) (61)

A(6)
μ = e sin2 θ (sin ψ dφ + sin φ cos φ cos ψ dψ) (62)

and for for SO(3, 1) gauge group with k = −1 and n = 5,
we have

C1
24 = C1

35 = C2
41 = C2

36 = C3
51 = C3

62 = 1

C4
56 = C4

21 = C5
64 = C5

31 = C6
45 = C6

32 = 1

γab = diag(−1,−1,−1, 1, 1, 1), (63)

A(1)
μ = −e (sin φ cos ψ dθ + sinh θ cosh θ (cos φ cos ψ dφ

−sin φ sin ψ dψ)),

A(2)
μ = −e (sin φ sin ψ dθ + sinh θ cosh θ (cos φ sin ψ dφ

+sin φ cos ψ dψ)),

A(3)
μ = −e (cos φ dθ − sinh θ cosh θ sin φ dφ),

A(4)
μ = e sinh2 θ sin2 φ dψ,

A(5)
μ = −e sinh2 θ (cos ψ dφ − sin φ cos φ sin ψ dψ),

(64)

A(6)
μ = −e sinh2 θ (sin ψ dφ + sin φ cos φ cos ψ dψ).

(65)
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