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Abstract In this current study, our main focus is on model-
ing the specific charged compact star SAX J 1808.4-3658 (M
= 0.88 M�, R = 8.9 km) within the framework of f (R, T )

modified gravity theory using the metric potentials proposed
by Tolman–Kuchowicz (Tolman in Phys Rev 55:364, 1939;
Kuchowicz in Acta Phys Pol 33:541, 1968) and the interior
spacetime is matched to the exterior Reissner–Nordström
line element at the surface of the star. Tolman–Kuchowicz
metric potentials provide a singularity-free solution which
satisfies the stability criteria. Here we have used the sim-
plified phenomenological MIT bag model equation of state
(EoS) to solve the Einstein–Maxwell field equations where
the density profile (ρ) is related to the radial pressure (pr)
as pr(r) = (ρ − 4Bg)/3. Furthermore, to derive the val-
ues of the unknown constants a, b, B, C and the bag con-
stant Bg, we match our interior spacetime to the exterior
Reissner–Nordström line element at the surface of stellar sys-
tem. In addition, to check the physical validity and stability of
our suggested model we evaluate some important properties,
such as effective energy density, effective pressures, radial
and transverse sound velocities, relativistic adiabatic index,
all energy conditions, compactness factor and surface red-
shift. It is depicted from our current study that all our derived
results lie within the physically accepted regime which shows
the viability of our present model in the context of f (R, T )

modified gravity.

1 Introduction

Einstein’s General Relativity (GR) has continued to with-
stand the test of time in its predictions of physical phenom-
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ena within the realms of astrophysics and cosmology. From
the classical predictions of the precession of Mercury’s orbit
and the deflection of starlight by a massive gravitating body
to present day detection of gravitational waves and observa-
tions of black holes GR has triumphed. Early attempts seek-
ing solutions of the Einstein field equations which describe
stellar objects were crude and for most part unrealistic. The
first exact solution of the Einstein field equations describing a
self-gravitating sphere was obtained by Schwarzschild. The
so-called interior Schwarzschild solution which described a
constant density sphere suffered from various pathologies,
the most notable being that the propagation speed for any
signals within the fluid sphere was noncausal [1]. A survey
of exact solutions appearing in the literature describing stel-
lar objects by Delgaty and Lake [2] revealed that only a small
subset of solutions meet the rigorous tests for physical via-
bility, regularity and stability of fluid spheres.

The search for more realistic stellar models within GR
required researchers to connect the macroscopic properties
of stars determined through observations to the microphysics.
A new era of stellar modeling was born, which went beyond
the mathematical excursion of the Einstein field equations
where ad hoc assumptions were made just to generate a
toy model. Standard approaches which included assump-
tions on the metric function, density profiles, pressure pro-
files, anisotropy parameter and even the matter content which
allowed for the system of equations to be integrated gave
way to well-motivated techniques intrinsically connected to
physics which include an equation of state (EoS), mass pro-
files linked to surface redshift and compactness of typical
stellar structures. The linear EoS which links the radial pres-
sure to the energy density has been generalized to include
the microphysics (at least on a phenomenological level) via
the so-called MIT bag model. The departure from pressure
isotropy makes the modeling of stellar objects mathemati-
cally tractable. Imposing a barotropic EoS of the form pr =
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pr(ρ) reduces the problem of finding an exact model of the
Einstein field equations using a single generating function.
The imposition of an EoS has richly rewarded researchers
with a handle on understanding complicated microphysics
on a macroscale [3–6]. The color–flavor locked (CFL) EoS
describing strange quark matter was shown to mimic the lin-
ear EoS. The CFL EoS has also been used to investigate the
surface tension of stars which placed tighter restrictions on
the bag constant as well as tangential pressure associated with
the model. It has been recently demonstrated that the pres-
sure isotropy condition is unstable. A self-gravitating sphere
in quasi-static equilibrium will evolve into a regime in which
the radial and transverse pressures are unequal. A shear-free
fluid sphere will evolve into a shear-like epoch due to contri-
butions from the Weyl tensor, density inhomogeneities and/or
dissipative fluxes [7].

Though General Relativity (GR) has been used success-
fully to predict various phenomena that Newtonian grav-
itation fails to explain, there are still many unresolved
issues. After the discovery of the accelerated expansion
of the universe, several extended theories of gravity have
been developed, like f (R) gravity, f (R, T ) gravity, f (T )

gravity, f (G, T ) gravity, and EGB gravity. In our present
paper, we will consider f (R, T ) gravity, which has got
immense interest in recent years. In fact, f (R, T ) grav-
ity was phenomenologically introduced by Harko et al.
[8]. In this connection, we want to mention that recently
the anisotropic charged and uncharged models in modi-
fied f (R, T ) theory gravity have been studied in [9–13].
Pretel et al. [14] examined the static structure configura-
tions and radial stability of compact stars within the con-
text of f (R, T ) gravity. Mahanta [15] constructed Locally
Rotationally Symmetric Bianchi type I (LRSBI) cosmolog-
ical models in the f (R, T ) theory of gravity when the
source of gravitation is a bulk viscous fluid. The mod-
els were constructed for f (R, T ) = R + 2 f (T ) and
f (R, T ) = f1(R) + f2(T ). Singh et al. [16] have stud-
ied a flat Friedmann–Lemaitre–Robertson–Walker (FLRW)
model with a modified Chaplygin gas (MCG) in f (R, T )

gravity with particle creation. The cosmological reconstruc-
tion of the Little Rip model in f (R, T ) gravity was inves-
tigated by Houndjo et al. [17], perfectly reproducing the
present stage of the universe, characterized by the �CDM
model, without singularity at future finite time (without
the Big Rip). The problem of the violation of causality in
f (R, T ) modified gravity was proposed by Santos and Ferst
[18]. Static spherically symmetric wormholes in f (R, T )

gravity were proposed by Zubair et al. [19]. Azmat and
Zubair [20] have adopted gravitational decoupling by a
minimal geometric deformation (MGD) approach and have
developed an anisotropic version of the well-known Tol-
man VII isotropic solution in the framework of f (R, T )

gravity.

Charged compact objects have been studied for about a
century within the context of classical GR. The Einstein–
Maxwell field equations can be interpreted as an anisotropic
system in which the electric field intensity mimics the
anisotropy factor. These toy models have helped us in under-
standing the (in)stability of static fluid spheres in the presence
of a charge. There have been various mechanisms put forward
to account for a significant residual charge in stars. Several
researchers have discovered the solution of the Einstein–
Maxwell equations to describe the model of strange quark
stars, charged black holes and other astrophysical compact
objects [21–26]. Kiczek and Rogatko [27] studied the proper-
ties of ultra-compact spherically symmetric dark matter sec-
tor star objects, being the solution of Einstein equations with
two U(1)-gauge fields—the first one is the ordinary Maxwell
field, while the second one is auxiliary gauge field pertains to
the hidden sector, mimicking the properties of dark matter.
Arbañil and Malheiro [28] studied the hydrostatic equilib-
rium and the stability against a radial perturbation of charged
strange quark stars composed of a charged perfect fluid. To
construct the model one considered the perfect fluid to follow
the MIT bag model equation of state and the radial charge
distribution to follow a power law. Negreiros and collabora-
tors [29,30] modeled compact objects considering spheres
composed of strange matter that follows the MIT bag model
equation of state (EoS) and a Gaussian distribution of the
electric charge on the surface of the star. In this paper the
authors estimated that the electric charge that has a signifi-
cant impact on the structure of the strange stars produces a
surface electric field of the order of E ∼ 1022 [V/m].

We have organized the paper as follows: In Sect. 2 we
briefly summarize f (R, T ) gravity and we present the cor-
responding relativistic equations within the framework of
f (R, T ) = R + 2γ T model in the presence of an electric
field. Section 3 deals with the solution of the field equations
by choosing Tolman–Kuchowicz ansatz. In the next section
we describe various physical properties of our present model
analytically as well as graphically. The stability of the model
is studied under various forces in Sect. 5. Finally in Sect. 6,
our conclusions are summarized.

2 Basic field equations in f (R, T ) gravity with charge

The general formulation of the Einstein–Hilbert (EH) action
in General Relativity is expressed by

SEH = 1

16π

∫
d4x

√−gR. (1)

The above expression of the action in f (R, T ) theory of
gravity in the presence of charge is modified as [31]

123



Eur. Phys. J. C (2021) 81 :316 Page 3 of 15 316

S = 1

16π

∫
f (R, T )

√−gd4x +
∫

Lm
√−gd4x

+
∫

Le
√−gd4x, (2)

where g = det (gμν), f (R, T ) represents the general func-
tion of Ricci scalar R and trace T of the energy–momentum
tensor Tμν , Lm and Le, respectively, denote the Lagrangian
matter density and the Lagrangian for the electromagnetic
field.

Let us assume a static spherically symmetric spacetime in
curvature coordinates (t, r, θ, φ) as follows:

ds2 = −eνdt2 + eλdr2 + r2
[
sin2 θdφ2 + dθ

2
]
, (3)

the metric potentials ν and λ are purely dependent on the
radial co-ordinate r and it ranges from 0 to ∞. The main
aim of our present work is to obtain a physically reasonable
and singularity-free model of a compact star and for this rea-
son our present paper is developed by utilizing the following
ansatz:

eλ = 1 + ar2 + br4, eν = C2eBr
2
, (4)

where a, b, B,C are constants. These metric potentials are
known as the Tolman–Kuchowicz ansatz [32,33]; it was suc-
cessfully used earlier by several authors to model a com-
pact star both in the context of General Relativity and of
modified gravity. In the background of Tolman–Kuchowicz
spacetime, Javed et al. [34] obtained anisotropic spheres in
f (R, G) modified gravity, Majid and Sharif [35] obtained
quark stars in massive Brans–Dicke gravity, Farasat Shamir
and Fayyaz [36] obtained the model of charged compact star
in f (R) gravity, Naz and Shamir [37] found the stellar model
in f (G) gravity and its charged version [38], Biswas et al.
[39] obtained an anisotropic strange star with f (R, T ) grav-
ity, Bhar et al. [40] modeled a compact star in EGB modified
gravity.

It is worth to mention that, for an asymptotically flat space-
time, both the metric potential ν(r) and λ(r) tend to 0 as
r → ∞, but in our present case this condition is not satis-
fied. Here, we have taken the signature of the spacetime as
(−, +, +, +). Now the Einstein–Maxwell field equations
for obtaining the hydrostatic stellar structure of the charged
sphere in modified f (R, T ) gravity corresponding to action
(2) is given by

fR Rμν − 1

2
gμν f + (gμν� − ∇μ∇ν) fR

= 8π(Tμν + Eμν) − fT (Tμν + 
μν). (5)

Here f = f (R, T ), fR(R, T ) = ∂ f (R,T )
∂R , fT (R, T ) =

∂ f (R,T )
∂T . ∇ν represents the covariant derivative associated

with the Levi-Civita connection of gμν , 
μν = gαβ δTαβ

δgμν

and � ≡ 1√−g
∂μ(

√−ggμν∂ν) represents the D’Alembert
operator.

Landau and Lifshitz [41] defined the stress-energy tensor
of matter as follows:

Tμν = − 2√−g

δ
√−gLm

δ
√
gμν

, (6)

and its trace T is defined by T = gμνTμν . Now, if the
Lagrangian density Lm depends only on gμν , not on its
derivatives, the above equation of Tμν takes the following
form:

Tμν = gμνLm − 2
∂Lm

∂gμν

. (7)

Now the matter Lagrangian density could be a function of
both density and pressure, Lm = Lm(ρ, p), or it becomes
an arbitrary function of the density of the matter ρ only, so
that Lm = Lm(ρ) [42]. For the present paper, we choose
the matter Lagrangian as Lm = ρ and the expression of

μν = −2Tμν − ρgμν.

Let us assume that the underlying fluid distribution of our
proposed model is anisotropic in nature and therefore Tμν

has an anisotropic fluid form having the components

Tμν = diag(−ρ, pr, pt, pt), (8)

ρ being the matter density, pr and pt being, respectively,
the radial and transverse pressure in modified gravity. The
electromagnetic energy–momentum tensor Eμν has the fol-
lowing form:

Eμν = 1

4π

(
Fα

μ Fνα − 1

4
FαβFαβgμν

)
, (9)

where Fμν is the antisymmetric electromagnetic field
strength tensor defined by

Fμν = ∂Aν

∂xμ
− ∂Aμ

∂xν
, (10)

and it satisfies the Maxwell equations,

Fμν

;ν = 1√−g

∂

∂xν
(
√−gFμν) = −4π jμ, (11)

Fμν;λ + Fνλ;μ + Fλμ;ν = 0, (12)

where Aν = (φ(r), 0, 0, 0) is the four-potential and jμ is
the four-current vector, defined by

jμ = ρe√
g00

dxμ

dx0 , (13)

where ρe denotes the proper charge density. The expression
for the electric field can be obtained from Eq. (11) as follows:

F01 = −e
λ+ν

2
q(r)

r2 , (14)

here q(r) represents the net charge inside a sphere of radius
r and it can be obtained as follows:

q(r) = 4π

∫ r

0
ρee

λ
2 r2dr. (15)
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In order to discuss the coupling effects of matter and curva-
ture components in f (R, T ) gravity, let us consider a sepa-
rable functional form,

f (R, T ) = R + 2γ T, (16)

where γ is some small positive constant. Harko et al. [31]
proposed that for γ → 0, Eq. (16) produces the field equa-
tions in General Relativity. The term 2γ T induces a time-
dependent coupling between curvature and matter.

For the line element (3), the field equations in modified
gravity can be written as follows:

8πρeff + q2

r4 = λ′

r
e−λ + 1

r2 (1 − e−λ), (17)

8πpeff
r − q2

r4 = 1

r2 (e−λ − 1) + ν′

r
e−λ, (18)

8πpeff
t + q2

r4 = 1

4
e−λ

[
2ν′′ + ν′2 − λ′ν′ + 2

r
(ν′ − λ′)

]
.

(19)

The quantity q(r) actually determines the electric field as
follows:

E(r) = q(r)

r2 , (20)

where ρeff, peff
r and peff

t are, respectively, the density and
pressures in Einstein Gravity where

ρeff = ρ + γ

8π
(ρ − pr − 2pt), (21)

peff
r = pr + γ

8π
(ρ + 3pr + 2pt), (22)

peff
t = pt + γ

8π
(ρ + pr + 4pt). (23)

The prime denotes differentiation with respect to r . Our aim
is to find the solution of the system (17)–(19) which will fully
specify the behavior of the interior of the stellar object. ρ, pr

and pt , respectively, denote the matter density and pressures
in modified gravity.

Now by the taking the covariant divergence of (5), the
divergence of the stress-energy tensor Tμν can be obtained
[31,43,44],

∇μTμν = fT (R, T )

8π − fT (R, T )

[
(Tμν + 
μν)∇μ ln fT (R, T )

+∇μ
μν − 1

2
gμν∇μT − 8π

fT
∇μEμν

]
. (24)

From Eq. (24), we can check that ∇μTμν 
= 0 if fT (R, T ) 
=
0. So the system will not be conserved like Einstein gravity. In
the next section we are interested to find the solutions of the
field equations in the charged case in the f (R, T ) modified
theory of gravitation.

3 Our proposed model in f (R, T ) modified gravity

Employing the expressions of the metric coefficients given
in (4), in Eqs. (17)–(19), the following set of equations are
obtained:

8πρeff + q2

r4 = 3a + (a2 + 5b)r2 + 2abr4 + b2r6

�2 , (25)

8πpeff
r − q2

r4 = −a − 2B + br2

�
, (26)

8πpeff
t + q2

r4 = 1

�2

[
− a + 2B + (

B(a + B) − 2b
)
r2

+aB2r4 + bB2r6
]
, (27)

where � is a function of r given by

� = (1 + ar2 + br4).

To describe strange quark matter, a very general approach is
to use the MIT bag model equation of state. A stellar object
whose matter content consists only of up, down and strange
quarks, the MIT bag model is the simplest equation of state to
study the equilibrium configuration of the model. This equa-
tion of state takes into account that these quarks are massless
and non-interacting quarks confined by a bag constant Bg. For
the anisotropic fluid studied, we consider the energy density
and the radial pressure of the fluid to be connected through
the relation

ρ = 3pr + 4Bg. (28)

Here Bg is defined as the bag constant. Mak and Harko inves-
tigated the difference between the bag constant and the mass
density of the perturbed and non-perturbed QCD vacuum, in
units of the bag constant, MeVfm−3, as derived by Chodos
et al. [45].

Equation (28) can be written as follows:

pr = 1

3
(ρ − 4Bg). (29)

Witten [46] proposed that the formation of strange matter can
be classified into two possibilities: the quark–hadron phase
transition in the early universe and conversion of neutron stars
into strange stars at ultra-high densities. Farhi and Jaffe [47]
showed that, for massless and non-interacting quarks, the
Witten conjecture is verified for a bag constant approximately
between the values 57 MeV/fm3 and 94 MeV/fm3. For our
present paper we consider Bg = 60 MeV/fm3.

With the help of (29), we solve Eqs. (25)–(27) and obtain
the expressions for matter density and pressures in Einstein
gravity as follows:
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Fig. 1 The matching condition of the metric potential eλ and eν are
shown against the radius for the compact star SAX J 1808.4 − 3658

ρeff = Bg + 3(a + B + (2b + aB)r2 + bBr4)

16π�2 , (30)

peff
r = −Bg + a + B + (2b + aB)r2 + bBr4

16π�2 , (31)

peff
t = Bg + 1

16π�2

[
− 5a + 7B + (−2a2 − 8b

+5aB + 2B2)r2 + (
3bB + 2a(−2b + B2)

)
r4

+2b(−b + B2)r6
]
. (32)

The expression for the anisotropic factor in General Relativ-
ity is given by (Fig. 1)

�eff = peff
t − peff

r

= 2 Bg + −2a + 2B − 4br2 + aBr2

8π�2

+−a + B + (−b + B2)r2

8π�
. (33)

The electric field E2 in modified gravity is obtained as
follows:

E2 = 1

3γ + 4π

[
− 4 Bg(γ + 2π)(γ + 4π)

+ 1

�

{
2a(γ + 2π) − 2B(γ + 3π)

+
(
B2γ + 2b(γ + 2π)

)
r2

}
+ 1

�2

{
2Bγ

+2b(γ + 2π)r2 + a(γ + 2π + Bγ r2)
}]

. (34)

To obtain the expressions forρ, pr and pt we solve Eqs. (21)–
(23) by using the expressions given in (30)–(32). Solving
those equations, we find the expressions for matter density
and pressures in modified gravity as follows:

ρ = 3

4

[4Bg

3
+ a + B + (2b + aB)r2 + bBr4

(γ + 4π)�2

]
, (35)

pr = −Bg + a + B + (2b + aB)r2 + bBr4

4(γ + 4π)�2 , (36)

pt = 1

4(γ + 4π)(3γ + 4π)

[
4Bg(γ + 4π)2

+ 1

�

[
− B(γ − 12π) − 2a(γ + 4π)

+2(−b + B2)(γ + 4π)r2
]

+ 1

�2

{
4B(γ + 4π)

−2b(7γ + 12π)r2 + a
(

2B(γ + 4π)r2

−(7γ + 12π)
)}]

. (37)

The anisotropic factor � = pt − pr in modified gravity is
obtained as follows:

� = 1

2(3γ + 4π)

[
8Bg(γ + 2π) + 1

(γ + 4π)�2

×
{
(2B − 5a)γ + (B − a)8π +

(
aB(γ + 4π)

−2b(5γ + 8π)
)
r2

}
+ 1

(γ + 4π)�

{
2B(2π − γ )

−a(γ + 4π) − (b − B2)(γ + 4π)r2
}]

. (38)

So, the model parameters, like density, radial and transverse
pressure, anisotropic factor, and electric field, in the back-
ground of General Relativity as well as in modified gravity
have been successfully obtained.

To find the various constants in the TK metric poten-
tials, we match our interior solution to the exterior spacetime
smoothly outside the event horizon r > M + √

M2 − Q2,
where M and Q are, respectively, the total mass and charge
enclosed within the boundary r = R. Now one can note
that the exterior spacetime is zero as there is no matter in
the vacuum spacetime. Therefore, there will be no change of
the GR solution for the exterior spacetime metric even in the
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f (R, T ) theory of gravity. The exterior spacetime of the star
will be described by the Reissner–Nordström metric [48,49]
given by

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1

dr2

+r2(dθ2 + sin2 θdφ2). (39)

Now the continuity of the metric coefficients gtt , grr and ∂gtt
∂r

across the boundary surface r = R between the interior and
the exterior regions gives the following set of relations:

1 − 2x̃ + ỹ = C2eBR2
, (40)

1 − 2x̃ + ỹ = (1 + aR2 + bR4)−1, (41)

x̃ − ỹ = BR2C2eBR2
, (42)

where x̃ = M
R and ỹ = Q2

R2 and both x̃, ỹ are dimensionless
quantities.

Solving Eqs. (40)–(42) and using the condition pr(R) =
0, one can determine the values of the constants B, C , a and
b as follows:

B = U

R2

[
x̃ − ỹ

]
, (43)

C = e− BR2
2 U− 1

2 , (44)

a = 1

(γ + 2π)R2(1 + 3U 2)

[
− 2(γ + 2π) + (γ + 2π)

×(2 + BR2)U + 6BπU 2R2
]
, (45)

b = −1 − aR2 +U

R4 , (46)

where U =
(

1 − 2x̃ + ỹ
)−1

.

Now from the condition that the radial pressure vanishes
at the boundary of the star (pr(r = R) = 0) one can get

ρs = 4Bg, (47)

where ρs is the surface density given by

ρs = Bg + 3
(
a + B + (2b + aB)R2 + bBR4

)
4(γ + 4π)(1 + aR2 + bR4)2 . (48)

For drawing the plots we have considered the compact star
SAX J 1808.4-3658 by assuming M = 0.88 M�, R =

8.9 km. Along with this we have also assumed Q = 0.0089.
The central density, surface density and central pressure for
different values of γ have been obtained in Table 1.

4 Physical aspects of f (R, T ) gravity

In this section we perform both an analytic and a graphi-
cal analysis in order to check the physical and mathematical
properties of our present model. Now we shall check the
conditions one by one.

• Metric potentials In this paper, we choose the metric
potentials as follows: eν = C2eBr

2
, eλ = (1+ar2+br4),

we note that eν |r=0 = eC > 0 and eλ|r=0 = 1, moreover,
(eν)′ = 2BeC+Br2

r,
(
eλ

)′ = 2AeAr
2
r . We will notice in

a later section that this behavior allows one to match the
inner geometry to the exterior spacetime in a smooth way
at the boundary r = R to get the constant parameters that
characterize the model. So the metric potentials are well
behaved in the interval (0, R).

• Pressure and density In this regard the main thermo-
dynamic variables must respect some criteria. From Eqs.
(35)–(37), at the center of the compact configuration we
have

ρc = 3a + 3B + 4Bg(γ + 4π)

4(γ + 4π)
,

pc = −Bg + a + B

4(γ + 4π)
,

where ρc and pc are, respectively, the central density and
central pressure of the compact star in modified gravity.
The corresponding quantities in GR can be obtained by
simply putting γ = 0.
We obtain the density and pressure gradients for our
present model by differentiation of Eqs. (35)–(37) with
respect to r as follows:

Table 1 The numerical values
of central density, surface
density, central pressure,
relativistic adiabatic index, mass
and effective surface redshift for
different values of γ for the
compact star SAX J1808.4-3658
by assuming
M = 0.88 M�, R = 8.9 km, Q
= 0.0089

γ ρc ρs pc �r0 M zs(R)

0.0 6.83316 × 1014 5.2929 × 1014 4.62079 × 1034 4.76969 1.298 0.188193

0.08 6.77128 × 1014 5.2744 × 1014 4.49062 × 1034 4.85695 1.30959 0.190383

0.16 6.71063 × 1014 5.25577 × 1014 4.36458 × 1034 4.9459 1.32074 0.192503

0.24 6.65118 × 1014 5.23702 × 1014 4.2425 × 1034 5.03659 1.33148 0.194554

0.32 6.5929 × 1014 5.21816 × 1014 4.12421 × 1034 5.12908 1.34183 0.19654
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ρ′ = − 3r

2(γ + 4π)�3

[
a2(2 + Br2) + a(B

+6br2 + 3bBr4) + 2b
{ − 1 + 3br4

+B(r2 + br6)
}]

< 0,

p′
r = − r

2(γ + 4π)�3

[
a2(2 + Br2) + a(B

+6br2 + 3bBr4) + 2b
{ − 1 + 3br4

+B(r2 + br6)
}]

< 0,

p′
t = r

2(γ + 4π)(3γ + 4π)�3

[
2�

{
aB(γ + 4π)

−b(7γ + 12π)
} − �(a + 2br2)

{
B(12π − γ )

−2a(γ + 4π) + 2(−b + B2)(γ + 4π)r2}
+2�2(−b + B2)(γ + 4π) − 2(a + 2br2)

×
{

4B(γ + 4π) − 2b(7γ + 12π)r2

−a
{
7γ + 12π − 2B(γ + 4π)r2}}]

< 0.

We see that

ρ′|r=0 = 0, p′
r|r=0 = 0, p′

t|r=0 = 0,

and

ρ′′|r=0 = 6b − 3a(2a + B)

2(γ + 4π)
,

p′′
r |r=0 = 2b − a(2a + B)

2(γ + 4π)
,

p′′
t |r=0 = −2b + a(2a + B)

(γ + 4π)

+4a2 − 4b − 11aB + 2B2

(6γ + 8π)
.

The profiles of the matter density and both the pressures
are plotted against the radius in Fig. 2. The profiles show
that ρ, pr and pt all are positive for r ∈ (0, R). All are
monotonically decreasing functions of r , i.e., all of them take
maximum value at the center of the star and take minimum
value at the boundary. Moreover, the radial pressure vanishes
at the boundary of the star but both transverse pressure and
matter density are positive at the boundary of the star.

For a physically acceptable model, the pressure should
be non-negative inside the fluid sphere, and therefore, pc >

0 ⇒ a+B
4(γ+4π)

> Bg. Again by the Zeldivich condition [50]

pc/ρc < 1 ⇒ Bg > − a+B
4(γ+4π)

. This lower limit for the
bag constant Bg is always satisfied since Bg is positive. So
we obtain a reasonable upper bound for the bag constant as
follows:

Bg <
a + B

4(γ + 4π)
. (49)

Fig. 2 (Top) Matter density ρ, (middle) radial pressure pr , (bottom)
transverse pressure pt against r inside the stellar interior for different
values of γ mentioned in the figure

• Causality condition In order to fulfill the physical require-
ments for realistic models, it is necessary to examine the
causality and hydrostatic equilibrium of the present self-
gravitating system. First, we discuss the causality condi-
tion of the model, which says that the velocity of sound
must be less than the velocity of light everywhere within
the object. The square of radial and transverse velocity of
sound V 2

r and V 2
t , respectively, are given by
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V 2
r = dpr

dρ
= 1

3
, (50)

V 2
t = dpt

dρ
= 1

χ

[
− 16a2γ + 16bγ + 5aBγ

−2B2γ − 32a2π + 32bπ

+36aBπ − 8B2π

+D1r
2 − 3bD2r

4 + 2bD3r
6

−2b2(b − B2)(γ + 4π)r8
]
, (51)

where χ = χ(r) and its expression is given by

χ = 3(3γ + 4π)
[
a2(2 + Br2) + a(B + 6br2 + 3bBr4)

+2b
( − 1 + 3br4 + B(r2 + br6)

)]
,

and D1, D2 and D3 are constants dependent on γ and their
expressions are as follows:

D1 = −2a3(γ + 4π) + a2B(γ + 20π) + 2bB(7γ + 44π)

−2a
(
B2(γ + 4π) + b(22γ + 40π)

)
,

D2 = 2a2(γ + 4π) + 2b(7γ + 12π) − aB(γ + 20π),

D3 = −bB(γ − 12π) − a(3b − B2)(γ + 4π).

Moreover, for a relativistic object, Herrera [52] proposed
the method of “cracking” which is related to the stability of
anisotropic stars under small radial perturbations. Using the
concept of cracking, Abreu et al. [51] proved that the region
of an anisotropic star where the radial speed of sound crosses
the transverse speed of sound is potentially stable, otherwise,
the region is potentially unstable. In mathematical terms, it
can be written as follows:

−1 ≤ V 2
t − V 2

r ≤ 0 ⇒ Potentially stable region,

0 < V 2
t − V 2

r ≤ 1 ⇒ Potentially unstable region.

Since both sound speeds maintain causality, we have V 2
r , V 2

t
< 1 [51,52]. Again, Le Chatelier’s principle requires that
V 2

r , V 2
t > 0. Combining the above two cases we get 0 <

V 2
r , V 2

t < 1 and it gives, −1 < V 2
r − V 2

t < 1, it further
implies that |V 2

r − V 2
t | < 1. The profiles of V 2

r , V 2
t and

|V 2
r − V 2

t | for different values of γ are plotted in Fig. 3.

• Relativistic adiabatic index To study the stability of both
relativistic and non-relativistic compact star models, the
relativistic adiabatic index is used and it also character-
izes the stiffness of the EoS for a given density. After the
pioneering work by Chandrasekhar [53], many scientists
studied the dynamical stability of the stellar system against
an infinitesimal radial adiabatic perturbation. The collaps-
ing condition of the anisotropic model is given by �r < 4/3
[54]. The radial adiabatic index �r reads [55]

Fig. 3 (Top) Square of the radial sound velocity V 2
r , (middle) square

of the transverse sound velocity V 2
t and (bottom) the stability factor

|V 2
t − V 2

r | against r for the strange star candidate SAX J1808.4-3658
by taking different values of γ

�r =
(

ρ

pr
+ 1

) (
dpr

dρ

)
S
. (52)

Here the derivation is performed at constant entropy S and
dpr
dρ

is the speed of sound in units of the speed of light. From
the expression of �r we see that the adiabatic index depends
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on the ratio ρ/pr . The profile of �r is plotted in Fig. 4 for
different values of γ .

• Behavior of electric field and anisotropic factor The
expression of the electric field is given in Eq. (34). Now for
a physically acceptable model it is required that E2(r =
0) = 0, which leads to the following equation:

3aγ − 4γ 2Bg + 6aπ − 6Bπ − 24γ Bgπ − 32Bgπ
2

3γ + 4π
= 0.

(53)

The above equation gives the expression of the bag con-
stant as follows:

Bg = 3

4

(
− B

γ + 2π
+ a + B

γ + 4π

)
.

The expression of the anisotropic factor is given in Eq. (38),
which is defined as the difference between the transverse
and radial pressure. It may be positive or negative, accord-
ing as pt > pr or pt < pr, and it is denoted by �. The
anisotropic force is defined by 2�

r , and this force may be
positive or negative, depending upon the sign of �, this
force vanishes for the isotropic case. The profiles of elec-
tric field and anisotropic factor are plotted in Fig. 5.

• Energy conditions Our proposed model of a charged com-
pact star will satisfy the null energy condition (NEC), the
weak energy condition (WEC), the strong energy condition
(SEC) and the dominant energy condition (DEC) if the fol-
lowing inequality holds simultaneously for each and every
point inside the stellar model:

Fig. 4 The relativistic adiabatic index �r against r inside the stellar
interior

Fig. 5 (Top) E2 and (bottom) anisotropic factor � are shown against
the radius for different values of γ mentioned in the figure

– NEC: ρ + pr ≥ 0, ρ + pt + E2

4π
≥ 0, and this

energy condition implies that an observer crossing a
null diagram will quantify the usual matter density to
be nonnegative.

– WEC: ρ+ pr ≥ 0, ρ+ pt+ E2

4π
≥ 0, ρ+ E2

8π
≥ 0, and

WEC suggests that the matter density measured by
an observer traversing a time-like diagram is always
positive.

– SEC: ρ + pr ≥ 0, ρ + pt + E2

4π
≥ 0, ρ + pr +

2pt + E2

4π
≥ 0, and SEC indicates that the trace of the

tidal tensor tested by the relating observers is always
positive.

– DEC: ρ − pr + E2

4π
≥ 0, ρ − pt ≥ 0, ρ + E2

8π
≥ 0,

and DEC represents the mass-energy never to be seen
to be flowing faster than light.

The expressions on the l.h.s. of the above inequalities are
plotted in Fig. 8. From the figure we see that all the energy
conditions are satisfied. In our study on the charged com-
pact star, SEC is satisfied, implying the fact that gravity
will be attractive and also the matter-energy density will
be always positive.

• Equation of state The equation of state parameters ωr and
ωt can be obtained from the following relation:
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pr = ωr × ρ, pt = ωt × ρ.

Moreover, we know that the radial pressure maintains a
linear relationship from our assumptions but the variation
of the transverse pressure with respect to the density is
unknown to us. The equation of state parameter and vari-
ation of pressure with respect to the density is depicted in
Fig. 7.

• Mass, compactness and redshift The effective gravita-
tional mass within the radius r of the charged strange star
can be obtained from the following formula [56]:

m(r) = 4π

∫ r

0
ρ(r̃) r̃2dr̃ + q2

2r
+ 1

2

∫ r

0

q(r̃)2

r̃2 dr̃

= meff − γ

2

∫ r

0
(ρ − pr − 2pt)(r̃) r̃

2dr̃

+q2

2r
+ 1

2

∫ r

0

q(r̃)2

r̃2 dr̃ . (54)

In Eq. (54), meff = 4π
∫ r

0 ρeff(r̃)r̃2dr̃ . In Einstein–
Maxwell gravity the mass function is obtained when
γ → 0. The mass function inside the radius r of the
charged fluid sphere can be obtained as follows:

m(r) = r

2

(
1 − 1

�

)
+ r3

2(3γ + 4π)

[
− 4 Bg

×(γ + 2π)(γ + 4π) + 1

�

[
2a(γ + 2π)

−2B(γ + 3π) +
(
B2γ + 2b(γ + 2π)

)
r2

]

+ 1

�2

[
2Bγ + 2b(γ + 2π)r2

+a(γ + 2π + Bγ r2)
]]

. (55)

The mass function is regular at the center as m(r) → 0 as
r → 0. The compactness factor inside the radius r for our
present model is obtained as follows:

u(r) = m(r)

r
. (56)

We denoteU = M/R, whereM = m(R). The compactness
factor is useful to classify the compact objects in different
categories: for a normal star U ∼ 10−5, in the case of white
dwarfs M

R ∼ 10−3, for a neutron star, U ∈ (10−1, 1
4 ), when

U lies between
( 1

4 , 1
2

)
, it denotes an ultra-compact star and

if U = 1
2 , it represents a black hole.

For a charged compact star model, Böhmer and Harko
[57] proposed a lower bound for the compactness factor,
whereas Andréasson [58] proposed an upper bound for the
compactness factor. Combining the two results a bound for
the compactness factor for a model of a charged compact star

is obtained as follows:

3Q2

4R2

1 + Q2

18R2

1 + Q2

12R2

≤ U ≤
⎛
⎝1

3
+

√
1

9
+ Q2

3R2

⎞
⎠

2

, (57)

where Q is the total charge inside the star, i.e., q(r = R) =
Q. In the case of an uncharged compact object Q = 0 and
under this condition the upper limit of U in Eq. (57) obeys
the Buchdahl limit [59], U < 4

9 . We have shown the nature
of the mass function and compactness in Fig. 6 for different
values of γ mentioned in the figure.

Now we are in a position to check the bound for U given
in Eq. (57) for different values of γ . For this purpose we
have to find the numerical values of U from our model which
are presented in the following table and it confirms that the
inequality is verified for our model of a charged compact star
in f (R, T ) gravity.

Fig. 6 The variation of mass function and compactness against the
radius for different values of γ mentioned in the figure
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γ Value of lower limit
of Eq. (57)

ueff(R) Value of upper limit
of Eq. (57)

0.0 0.0007499 0.145843 0.666667
0.08 0.0382305 0.147145 0.667967
0.16 0.0535169 0.148398 0.669213
0.24 0.0649036 0.149605 0.670408
0.32 0.0742308 0.150767 0.671556

Now the surface redshift for a compact star model is
obtained as follows: zs(R) = 1√

(1−2U)
− 1. The numeri-

cal values of the surface redshift for different values of γ are
presented in Table 1. The gravitational redshift of our present
model is calculated as follows:

z = e− ν
2 − 1,⇒ z = 1

C
e− Br2

2 − 1,

and its central value is obtained as zc = 1
C − 1. Now zc > 0

gives 1/C > 1, which consequently gives C < 1. Now
dz
dr = − B

C e
− Br2

2 r , at the origin dz
dr = 0 and d2z

dr2 = − B
C < 0.

It indicates that the gravitational redshift is a monotonically
decreasing function of the radius of the star.

• Generating function Based on the choice of a single
monotone function subject to boundary conditions which
generates all regular static spherically symmetric perfect-
fluid solutions of Einstein equations, an algorithm was pro-
posed by Lake [60]. Herrera et al. [61] extended this work
to the case of locally anisotropic fluids and proved that two
functions instead of one are required to generate all pos-
sible solutions for an anisotropic fluid. Thus they proved
that any solution describing a static anisotropic fluid distri-
bution is fully determined by means of the two generating
functions � and Z , where the expression for these two
generating functions are given by

�(r) = 8π(pr − pt),

eν(r) = e
∫ (

2Z(τ )− 2
τ

)
dτ

.

For our present model, these two generating functions are
obtained:

�(r) = 8π(pr − pt) = −8π�, (58)

Z(r) = Br + 1

r
. (59)

Here the expression of � present in Eq. (58) has been given
in Eq. (38).

5 Equilibrium condition under different forces

In this section we shall check the equilibrium condition of our
present model under different forces acting on our present
system. The equilibrium equation can be decomposed into
five different forces, namely: the hydrostatic force Fh, the
gravitational force Fg, the anisotropic force Fa, the electric
force Fe and finally the force related to modified gravity, i.e.,
Fm. Moreover, the explicit form of these forces can be written
as

Fg = −ν′

2
(ρ + pr)

= − Br
(
a + B + (2b + aB)r2 + bBr4

)
(γ + 4π)�2 , (60)

Fh = −dpr

dr

= 2(a2 − 4b)r + �r
(
aB + 2b(3 + Br2)

)
2(γ + 4π)�3 ,

Fa = 2

r
(pt − pr) = 2

r
�, (61)

Fe = 8π

8π + 2γ

q

4πr4

dq

dr

= 1

4π + γ

(
2

r
E2 + 1

2

d

dr
(E2)

)
, (62)

Fm = − γ

8π + 2γ
(ρ′ + p′

r + 2p′
t)

= γ r

2(γ + 4π)(3γ + 4π)�3

[
4(b − a2) + 11aB

−2B2 − (
2a3 − 7a2B − 26bB + 2a(4b + B2)

)
r2

−3b
(
2(a2 + b) − 7aB

)
r4 + 2b2(−b + B2)r8

+2b
(
5bB + a(−3b + B2)

)
r6

]
. (63)

The TOV equation in modified gravity can be written as fol-
lows:

−ν′

2
(ρ + pr) − dpr

dr
+ 2

r
(pt − pr)

+ γ

8π + 2γ

(
dρ

dr
+ pr

dr
+ 2

dpt

dr

)

+ 8π

8π + 2γ

q

4πr4

dq

dr
= 0. (64)

In Eq. (64), for γ = 0 we regain the conservation equation
in Einstein–Maxwell gravity. Now the above equation can be
denoted by

Fg + Fh + Fa + Fm + Fe = 0. (65)

The expression of the different forces acting on our system
are depicted in Fig. 9 for different values of the coupling
constant γ .
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6 Discussion

In this exposition we have successfully modeled the compact
star SAX J 1808.4-3658 within the framework of f (R, T )

modified gravity theory. We have employed the physically
motivated Tolman–Kuchowicz ansatz [32,33] for the metric
potentials. We also argued that most researchers consider an
ad hoc equation of state (EoS) ρ + p = 0 in constructing the
electromagnetic mass model, which results in a negative pres-
sure. Instead of choosing this type of EoS, in order to solve
the system of governing equations, we adopted the MIT bag
model equation of state. Our model has been subjected to
rigorous regularity, causality and stability tests which high-
lighted the role of charge and the f (R, T ) coupling constant
γ . The free constants arising from integrating the field equa-
tions are fixed through the boundary conditions. In order to
bring out the contributions from the modified theory we have
plotted the thermodynamical and physical properties of the
star for various values of the f (R, T ) coupling constant. The
main findings of this analysis can be summarized as follows:

• In Fig. 1 we have plotted the metric potential with respect
to the radius. The exterior spacetime is also shown in the
figure. One can also note that, at the boundary, the interior
and exterior metrics coincide. The interior metric poten-
tials are free from singularities and continuous inside the
boundary. We can see that the metric potentials do not
depend on the coupling constant γ .

• In Fig. 2 the profiles of density and both radial and trans-
verse pressures are plotted with respect to the radius for
different values of γ . The black, red, blue, purple and cyan
colored plots correspond to γ = 0, 0.08, 0.16, 0.24 and
0.32, respectively. The pressure and density all are mono-
tonic decreasing functions of r , i.e., they have a maximum
value at the center and then it gradually decreases toward
the boundary. It is also verified that the density and both the
pressures are non-negative inside the stellar interior and at
the boundary r = R, ρ(r = R) > 0, pt(r = R) > 0 for
different values of γ . The radial pressure pr vanishes at
the point r = R, i.e., it determines the size of the compact
object.

• In Fig. 3 we have shown the behavior of the radial and
transverse velocity of sound and the stability factor for
different values of γ . One can note that the radial velocity
of sound is independent of γ but the transverse velocity of
sound depends on the coupling constant. For higher values
of γ the value of V 2

t increases. The profiles of |V 2
t − V 2

r |
have been plotted for different values of γ and it is clear
that the Andréasson condition is satisfied.

• In Fig. 4 the profiles of the radial relativistic adiabatic
index are shown for γ = 0, 0.08, 0.16, 0.24 and 0.32. For
larger values of γ , �r takes higher values. �r is monotonic Fig. 7 The pressure density relation for different values of γ men-

tioned in the figure
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increasing function of r and greater than 4/3 everywhere
inside the fluid sphere for each values of γ mentioned in the
figure; hence our model of charged compact star is stable.

• In Fig. 5 the nature of the electric field and pressure
anisotropy are plotted for different values of γ and one
can note that E2 is positive everywhere inside the fluid
sphere. Moreover, we note that E2 is monotonic increas-
ing up to about 7 km for different values of γ ; then it
becomes monotonically decreasing.

We found that an increase in the coupling constant lowers
the density and the radial and transverse pressures at each
interior point of the configuration, while there is a corre-
sponding increase in the star’s mass. Further investigation
by Astashenok et al. [62] gives a non-perturbative model
of strange spherical objects in f (R) = R + 2αR2 grav-
ity theory, where α is a constant. They have shown that the
masses of candidate strange spherical objects increase when
the value of the parameter α increases progressively. In our
present work, we have obtained the same trend. We conclude
that f (R, T ) stars have larger masses compared to their 4D
classical GR counterparts. The stability of the star is derived
from the fact that the force due to anisotropy is attractive
(pt < pr) up to some radius r = r0 within the boundary. The

repulsive contributions from the electromagnetic field and
the f (R, T ) coupling constant help to stabilize the inner
core. The anisotropic factor becomes positive closer to the
surface layers of the star, leading to greater stability in this
region. The surface redshift increases as γ increases. It is well
known that the presence of anisotropy within the stellar core
leads to higher surface redshifts compared to an isotropic,
perfect-fluid matter distribution.

• In Fig. 7 the equation of state parameters ωr and ωt are
plotted for different values of the coupling constant and
we note that both are monotonically decreasing functions
of r and moreover 0 < ωr, ωt < 1 and it corresponds to
the radiating era [63]. The variation of the radial pressure
with respect to the density follows a linear relationship,
which is clear from our assumption. On the other hand
the variation of the transverse pressure with respect to the
density follows almost a parabolic curve.

• The charged compact star model obeys all the energy
conditions namely the null energy conditions, weak
energy conditions, strong energy conditions and domi-
nant energy conditions for different values of γ , which
is shown in Fig. 8.

• In Fig. 9 all five different forces, namely gravitational
force, anisotropic force, hydrostatic force, electric force

Fig. 8 All the energy conditions inside the stellar interior for the strange star SAX J1808.4-3658 for different values of γ mentioned in the figure
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Fig. 9 Different forces acting on the present model against r for the
strange star candidate SAX J1808.4-3658 by taking different values of
γ

Fig. 10 The variation of Bg with respect to γ

and force due to modified gravity, are shown for γ =
0, 0.08, 0.16, 0.24 and 0.32. We see that the gravita-
tional force Fg is always negative and the hydrostatic
force Fh is always positive; the another three forces show
mixed behaviors. In this situation, the contribution of the
force due to modified gravity Fm is very negligible com-
pared to the other four forces so that it seems likely to be
overlapped with the X -axis. This means that the effect of
coupling also becomes less effective.

• In Fig. 10 we have shown the variation of the bag con-
stant Bg with respect to the coupling constant γ and it is
observed that the value of the bag constant takes a lower
value when γ increases.

To summarize, in the present paper we have obtained a
singularity-free model of a charged anisotropic compact star
in the presence of an electric field in f (R, T ) modified the-
ory of gravity and the results have been analyzed both ana-
lytically and graphically. We show that solutions of the field
equations depend on the MIT bag model EoS, which is a
familiar equation of state already having been used by sev-
eral researchers for modeling a compact star. Finally, it is
worth mentioning that taking γ → 0 GR results in a situa-
tion where models in four dimensions are recovered.
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