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Abstract We consider Maxwell- f (R) gravity and obtain
an exact charged black hole solution with dynamic curvature
in D-dimensions. Considering a spherically symmetric met-
ric ansatz and without specifying the form of f (R) we find
a general black hole solution in D-dimensions. This general
black hole solution can reduce to the Reissner–Nordström
(RN) black hole in D-dimensions in Einstein gravity and to
the known charged black hole solutions with constant curva-
ture in f (R) gravity. Restricting the parameters of the gen-
eral solution we get polynomial solutions which reveal novel
properties when compared to RN black holes. Specifically
we study the solution in (3 + 1)-dimensions in which the
form of f (R) can be solved explicitly giving a dynamic cur-
vature and compare it with the RN black hole. We also carry
out a detailed study of its thermodynamics.

1 Introduction

Modified theories of gravity with the presence of higher-
order curvature terms have been introduced in a attempt to
describe the early and late cosmological history including the
early time inflation and the late time acceleration. Another
motivation to study such theories is for understanding the
presence of dark matter and the confrontation between grav-
ity theories and the recent observations [1–4]. On more the-
oretical grounds, higher-order corrections to the Einstein–
Hilbert term lead to a renormalizable and thus quantizable
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gravitational theory [5]. Therefore, modified theories of grav-
ity with higher-order corrections, provide a deeper under-
standing of general relativity (GR). The presence of high
curvature correction terms in GR provides some interest-
ing physical results, for examples, it makes the condensation
harder to be formed in holographic superconductivity [6,7];
it modifies the low-energy tensor perturbation spectrum in
string backgrounds [8]; and it influences the dynamics of
stellar structure [9].

At very early times, to avoid restricting the gravitational
Lagrangian to be only a linear function of R, variable mod-
ified theories of gravity that contain some of the four pos-
sible second-order curvature invariants were proposed with
the effects of quadratic Lagrangians. Besides, one particular
class of models that includes higher order curvature invari-
ants as functions of the Ricci scalar is the f (R) gravity model
[10–19]. Although such theories exclude contributions from
any curvature invariants other than R, they could also avoid
the Ostrogradsk’s instability [20] which proves to be prob-
lematic for general higher derivative theories [21]. Consider-
ing the gravitational collapse, one would expect all the matter
present to be absorbed by the black hole, so the final state
should be vacuum except for the presence of electromag-
netic fields associated with the black hole. Therefore, it is of
great interest to study the stationary black hole solutions in
Maxwell- f (R) theory, which describe how the nonlinearity
of f (R) guides and affects the contribution of Maxwell field
on the geometry.

Although it is well known that the black hole solutions
in GR are also solutions in many modified gravity theories,
including a large class of f (R) gravity [22], the black hole
solutions in modified gravity theories that differ from the
solutions in GR can be used to distinguish different modified
gravity theories or give the constraints on parameters of the
models by gravitational waves or shadows. Therefore the
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searching for exact solutions in the f (R) theory of gravity is
important but challenging because the equations of motion
are very complicated with higher order terms.

Nevertheless a lot of exact and numerical solutions are
obtained by various of methods, including the method of
Lagrange multiplier [23] and the so-called generator method
[24]. Firstly the most simple case is a special class of
f (R) gravity with constant curvature, the solutions of which
(including Schwarzschild-like [22], RN-like [25,26] and
Kerr-Newman-like solutions [27]) differ from GR solutions
only by a constant coefficient f ′(R0) that however can be
absorbed into the Newton’s constant. While the solutions
with dynamic curvatures [22,23] have real distinctions with
the solutions in GR. Besides, static spherically symmetric
solutions with perfect fluid [28], Yang–Mills field [29], non-
linear Yang–Mills field [26,30], Maxwell field and non-linear
electromagnetic fields [31–34] are also obtained. By Noether
symmetries, axially symmetric solutions can be derived from
exact spherically symmetric solutions [35]. In addition, an
interesting correspondence between the solutions in Einstein-
conformally invariant Maxwell theory and the solutions in
f (R) gravity without matter field in arbitrary dimensions
is shown in [36,37]. Furthermore, the spherically symmetric
vacuum solutions in f (R) gravity in higher dimensions were
studied in [24,38].

In this work, considering a spherically symmetric met-
ric ansatz with gtt grr = −1, without specifying the form
of the function f (R), we obtain exact charged black hole
solutions in general D-dimensional f (R) gravity. Constrain-
ing the parameters of the general solution we get poly-
nomial solutions which reveal some interesting properties
when compared with RN black holes. We then focus on
the (3 + 1)-dimensions, where the form of f (R) can be
solved explicitly from the polynomial solution and we dis-
cuss in details the thermodynamics of this solution study-
ing the First-Law, entropy, Hawking temperature and heat
capacity.

The work is organized as follows. In Sect. 2 we discuss
the general D-dimensional solution. In Sect. 3 we show that
for c2 = 0 the general solution can reduce to RN black
hole in D-dimensions in Einstein gravity and to the known
charged black hole solutions with constant curvature in f (R)

gravity. While for c1 = −1 we can obtain new charged
D-dimensional solutions, which can reduce to the spheri-
cally symmetric vacuum solutions discussed in [24,38]. In
Sect. 4 we study the polynomial solution in D-dimensions.
In Sect. 5 we find the corresponding equivalent theories in
scalar–tensor gravity. In Sect. 6 we study the thermodynam-
ics of the black hole solution in (3 + 1)-dimensions. Finally
Sect. 8 are our conclusions.

2 General solution in D-dimensions (D ≥ 3)

We consider a D-dimensional action

I =
∫

dDx
√−g

[
1

2κ
(R + f (R) − 2�) − 1

2
FμνF

μν

]
,

(1)

which, except for the Ricci scalar R, includes a general func-
tion of f (R) that is not specified, a Maxwell field and a
cosmological constant �.

In this paper we use κ = 8πG = 1. By variation of the
above action we obtain the field equations

Iμν ≡ Rμν (1 + fR) − 1

2
gμν (R + f (R) − 2�)

+ (
gμν� − ∇μ∇ν

)
fR − κTμν = 0 , (2)

∇μF
μν = 0, (3)

where

fR ≡ d f (R)

dR
, (4)

Tμν = −1

2
gμνF + 2Fμσ Fν

σ , (5)

Fμν = ∂μAν − ∂ν Aμ , (6)

Aa = h(r)(dt)a . (7)

We consider a metric ansatz with gtt grr = −1 that con-
tains only one unknown function B(r)

ds2 = −B(r)dt2 + 1

B(r)
dr2 + r2d�2

k , (8)

where

d�2
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ2
1 +

D−2∑
i=2

i−1∏
j=1

sin2 θ j dθ2
i k = 1 ,

dθ2
1 + sinh2 θ1dθ2

2 + sinh2 θ1
D−2∑
i=3

i−1∏
j=2

sin2 θ j dθ2
i k = −1 ,

D−2∑
i=1

dθ2
i k = 0 ,

(9)

represents the line element of a (D−2)-dimensional Einstein
manifold with positive (k = 1), negative (k = −1), or zero
(k = 0) curvature.

In GR, with or without the Maxwell field, assuming a
general spherically symmetric metric ansatz, we can get the
RN BH or Schwarzschild BH with the resultant relation
gtt grr = −1. However, in general modified gravity theo-
ries the relation gtt grr = −1 is not a necessary result and
the resulting solutions are expected to be more complicated.
In f (R) theories, it is difficult to get exact solutions for a
general metric ansatz. Therefore, in order to get exact solu-
tions we assume this special form of the metric. Another
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motivation to consider the specific form gtt grr = −1 of the
metric, is to be able to compare the resulting exact solu-
tions with the RN black holes in GR and study what is the
effect of the f (R) function on the known solutions in GR. In
fact as we will discuss in the following content, in (3 + 1)-
dimensions we obtained an exact charged black hole with
the form f (R) = 2α

√
R − 4� of the f (R) function and we

found some interesting properties when we compared them
with RN black holes.

The non-zero components of the Einstein equation under
the metric ansatz (8) are

I tt = 1

4r

[−2r fR(r)B ′′(r) − 2r B ′′(r) − 2(D

−2)B ′(r) (1 + fR(r)) + 2r B ′(r) f ′
R(r)

+4(D − 2)B(r) f ′
R(r) + 4r B(r) f ′′

R(r)

−2r f (r) + rh′(r)2 + 4�r − 2r R(r)
]

= 0 , (10)

I rr = 1

4r

[−2r fR(r)B ′′(r) − 2r B ′′(r) − 2(D

−2)B ′(r) (1 + fR(r)) + 2r B ′(r) f ′
R(r)

+4(D − 2)B(r) f ′
R(r) − 2r f (r) + rh′(r)2

+4�r − 2r R(r)] = 0 , (11)

I θ1
θ1

= − 1

4r2

[−4r
(
r B ′(r) f ′

R(r) + B(r)
(
(D − 2) f ′

R(r)

+r f ′′
R(r)

))+ 2r2( f (r) − 2� + R(r))

+4( fR(r) + 1)
(
r B ′(r) + (D − 3)(B(r) − k)

)
+4r B(r) f ′

R(r) + r2h′(r)2
]

= 0 , (12)

I θi
θi

= I θ1
θ1

, (13)

where f (r) ≡ f (R(r)) and

R(r) = − r2B′′(r) + 2(D − 2)r B′(r) + (D − 3)(D − 2)(B(r) − k)

r2

(14)

is the Ricci scalar expressed by the metric function B(r) and
its derivatives B ′(r) and B ′′(r).

The equation I tt − I rr = 0 can lead to a simple relation

B(r) f ′′
R(r) = 0 , (15)

which gives

fR(r) = c1 + c2r , (16)

where c1 and c2 are integration constants. Since fR = f ′(R)

this relation becomes

f ′(R) = c1 + c2r(R) , (17)

which is solved as

f (R) = c1R + c2

∫ R

r(R)dR . (18)

Now the integration constants c1, c2 in the relation (18) play
the role of parameters of the function f (R) as c1 is a dimen-
sionless coefficient of the linear part of the function, while
the parameter c2 is the coefficient of the nonlinear part of the
function that has dimension [c2] = L−1. The physical mean-
ing of these parameters will be discussed in the following.

Therefore when c1 and c2 are small this theory can be
considered as a small perturbation of the Einstein gravity.
The relation (18) is one of the central relations in our work.

Besides, the t component of the electromagnetic field
equation gives

(D − 2)h′(r) + rh′′(r) = 0 , (19)

from which we can solve

h(r) =
{

− q
(D−3)r D−3 + φ0 D > 3 ,

q ln r + φ0 D = 3 ,
(20)

where q and φ0 are integration constants.
Using the Eq. (20) we can find that the parameter q is

proportional to the charge Q

Q = 1

4π

∫
S

∗Fab = 1

8π

∫
S
Fabεabc1c2...cD−2

= 1

4π

∫
S
h′(r)

√−gdθ1dθ2 . . . dθD−2

= q

4π
ωD−2 , (21)

where ωD−2 is the volume of the unit (D − 2)-dimensional
spherical (k = 1), hyperbolic (k = −1) and flat (k = 0)
horizons. For k = 1, we choose sphere SD−2 topology while
for k = 0 we consider hypertorus T

D−2 = R
D−2/ZD−2

then

ωD−2 =
⎧⎨
⎩

2π
D−1

2

�
(
D−1

2

) k = 1 ,

(2π)D−2 k = 0 .

(22)

However for k = −1 there is a vast set of distinct compact
manifolds that are difficult to calculate even for D = 4 [39].

Substituting the expressions of fR(r) and h(r) into the
Einstein equations, we have two independent equations with
two unknown functions f (r) and B(r),

I tt = c2

[
B ′(r) + (D − 2)B(r)

r

]
− c2

2
B ′(r)

− 1

2r
(c1 + c2r + 1)

[
r B ′′(r) + (D − 2)B ′(r)

]

+ q2

4r2(D−2)
− 1

2
[ f (r) − 2� + R(r)] = 0 , (23)

I θ1
θ1

= − 1

4r2

{
4c1r B

′(r) + 4r B ′(r) + 2(c1 + 1)(D

−3)B(r) − 4(D − 3) (c1 + 1 + c2r) k + q2

r2(D−3)
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+2r2 f (r) − 4�r2 + 2r2R(r)
}

= 0 , (24)

which contain both D > 3 and D = 3 cases. We solve f (r)
from I θ1

θ1
= 0,

f (r) = 2
{
(D − 3) [−(c1 + 1)B(r) + (c1 + c2r + 1) k] − (c1 + 1)r B ′(r)

}
r2

− q2

2r2(D−2)
+ 2� − R(r) , (25)

and put it back into I tt = 0, then a simple second order
differential equation with respect to the metric function B(r)
is obtained

(c1 + c2r + 1)
[
r2B ′′(r) + 2(D − 3)k

]

+r B ′(r) [(c1 + 1)(D − 4) + c2r(D − 3)]

−2B(r) [(c1 + 1)(D − 3) + c2r(D − 2)]

= q2r2(3−D) , (26)

from which we get the general exact solution in D-
dimensions (D > 3) for the metric function B(r)

B(r) = −
{

3Dr6�(D + 2) (c1 + 1)2
[
−q2

(
2D2

−7D + 6) r−2D�(2D − 2)2F
∗
1 (1, 2(D − 1); 2D

−1;−c1 + 1

rc2

)

+c4
2 ln

∣∣∣∣c2r + c1 + 1

c2r

∣∣∣∣ (2(D − 3)k (c2Dr

+c1(D − 2) − 3c2r + D − 2) + q2(D − 2)r6−2D
)

2r−8(3 − 2D)2(D − 3)k�(D + 1) 2

F1

(
1, D + 1; D + 2;−c1 + 1

rc2

)]

−
[
(D − 3)r D

(
2kr D (c2Dr + c1(D − 2)

−3c2r + D − 2) + c4(D − 2)r3
)

+ q2(D − 2)r6
]

3 (c1 + 1) 2D(2D − 3)r−2D�(D + 1) 2

F1

(
1, D + 1; D + 2;−c1 + 1

rc2

)

+rc2

[
D
(

2D2 − 9D + 9
)
k�(D + 2) (

−2 (c1 + 1)2 (D − 2) − 6c2
2r

2 + 3c2 (c1 + 1) r
)

− (c1 + 1) (D + 1)�(D + 1)
[
3c2D

(
2D2

−9D + 9) r
(
(3 − D)k − c3(D − 2)r2

)

+(2 − D)r−2D
((

2D2 − 9D + 9
)
r D (2 (c1

+1) Dkr D + 3c4r
3
)

+ 3q2Dr6
))]

}/ [3 (c1 + 1) c2
2(D − 3)(D − 2)D(D

+1)(2D − 3)r2�(D + 1)
]

, (27)

where c3 and c4 are constants of integration, while 2F1 and

2F∗
1 are the hypergeometric function and the regularized gen-

eralized hypergeometric function respectively.
Note that when we solve Eq. (27), with the dimension D

to be an arbitrary parameter, the domain | − c1+1
rc2

| < 1 of
the hypergeometric functions and the regularized general-
ized hypergeometric functions which appear in the general
solution, is hard to be satisfied. But in fact, the dimension
D > 3 being an integer, the hypergeometric functions reduce
to the logarithmic functions, whose domain | c2r+c1+1

c2r
| > 0

can be satisfied with r > 0 and c2 > 0 avoiding the diver-
gence r = 0 and the zero r = − c1+1

c2
. Note that the condition

|c1| << 1 has been used to ensure the deviation of our theory
from Einstein gravity which is not large. Besides, the solu-
tion contains (1 + c1) and c2 in the denominator, therefore
this general solution is only valid for c1 �= −1 and c2 �= 0.
We will elaborate these special cases in the next section.

In the action (1) the presence of an explicit cosmological
constant � introduces a scale 1/L2 in the theory. However in
(27) this cosmological constant � does not appear explicitly,
though it shows up in the field equations. This is because
the function f (R), rather than R, introduces another length
scale which redefines the original cosmological constant to
an effective cosmological constant �e f f . In the following
parts, we will show that even in higher dimensional cases,
the effective cosmological constant can be defined as the
coefficient of r2 term in the metric function redefining the
length scale of the theory.

For D = 3 we obtain a new exact charged black hole
solution

B(r) = − 1

4 (c1 + 1) 3

{
(c1 + 1)

[
q2 (−4c2r + c1 + 1)

−4 (c1 + 1) 2c3r
2
]

+2 (c1 + 1) q2 (−2c2r + c1 + 1) ln r

+4c2
2q

2r2Li2

(
− rc2

c1 + 1

)

+2c4

[
2c2

2r
2 ln

∣∣∣∣c2r + c1 + 1

r

∣∣∣∣
+ (c1 + 1) (−2c2r + c1 + 1)]

−2c2
2q

2r2 ln2 r

+4c2
2q

2r2 ln r ln

∣∣∣∣c2r + c1 + 1

c1 + 1

∣∣∣∣
}

, (28)

where

Li2(z) = −
∫ z

0

ln (1 − u)

u
du, z ≤ 1 , (29)

is the Spence’s function or dilogarithm, a particular case of
the polylogarithm (here we only consider the field of real
number). To make sure the Spence’s function Li2 is valid
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for all the positive r , the condition c2 > 0 is required when
|c1| << 1.

The cosmological constant � does not show up in the
solution, but we can know if the space is flat, AdS or dS
by analysing its asymptotic behaviors at spacial infinity and
origin

B (r → ∞) → −Sgn (�eff) ∞ , (30)

B (r → 0) = −2q2 ln(r) + q2 + 2c4

4c1 + 4
→ Sgn (1 + c1)∞ , (31)

where

�eff = −6c3 − c2
2

(c1 + 1) 3

[
q2
(

3 ln2
(

c2

c1 + 1

)
+ π2

)

−6c4 ln (c2)] . (32)

In (2 + 1)-dimensions, near horizon solutions, asymptot-
ically Lifshitz black hole solutions and rotating black holes
with exponential form of f (R) theory have been discussed
in [40]. They first gave the basic field equations as same as
our equations with D = 3, but their solution is different with
our solution.

3 Special solutions

We will first consider solutions with c2 = 0. In this case
f ′(R) = c1 and the Eq. (26) becomes

(c1 + 1)
(
r2B ′′(r) + (D − 4)r B ′(r)

−2(D − 3)B(r) + 2Dk − 6k
)

= q2r6−2D ,

(33)

the solutions of which are

B(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q2

2(c1 + 1)(D − 3)(D − 2)r2(D−3)

+c3r
2 + c4r

3−D + k D > 3 ,

c4 + c3r
2

2
− q2

2(c1 + 1)
ln (2(c1 + 1)r) D = 3 ,

(34)

and then the functions R(r) and f (r) become

R(r) =
⎧⎨
⎩

−c3(D − 1)D − q2(D−4)

2(c1+1)(D−2)r2D−4 D > 3 ,

q2

2(c1+1)r2 − 3c3 D = 3 ,
(35)

f (r) =
⎧⎨
⎩

2� − c3(D − 1)(2c1 − D + 2) − c1q2(D−4)

2(c1+1)(D−2)r2D−4 D > 3 ,

2� − 2c1c3 + c3 + c1q2

2(c1+1)r2 D = 3 .

(36)

For c2 = 0 we have two cases:

3.1 Non-constant R

For non-constant R, using the the solutions (35), (36) we
have for f (R)

f (R) =
⎧⎨
⎩
c1R + c3(c1 + 1)(D − 1)(D − 2) + 2� D > 3 ,

c1R + c3 (1 + c1) + 2� D = 3 ,

(37)

and then to have f (R) = c1R we get for the parameter c3

([c3] = [�] = L−2)

c3 =
{

− 2�
(c1+1)(D−1)(D−2)

D > 3 ,

− 2�
c1+1 D = 3 .

(38)

Then the metric function and the curvature function become

B(r) =
⎧⎨
⎩

q2

2(c1+1)(D−3)(D−2)r2(D−3) − 2�r2

(c1+1)(D−2)(D−1)
+ c4

r D−3 + k D > 3 ,

c4 − �r2

(c1+1)
− q2

2(c1+1)
ln (2(c1 + 1)r) D = 3 ,

(39)

R(r) =
⎧⎨
⎩

2D�
(c1+1)(D−2)

− q2(D−4)

2(c1+1)(D−2)r2D−4 D > 3 ,

q2

2(c1+1)r2 + 6�
c1+1 D = 3 .

(40)

This result implies that it reduces to the Einstein gravity R+
f (R) − 2� = (1 + c1)R − 2� = R − 2� when c1 = 0. In
this case the solutions (39) become

B(r) =

⎧⎪⎪⎨
⎪⎪⎩

q2

2(D−3)(D−2)r2(D−3)

− 2�r2

(D−2)(D−1)
+ c4

r D−3 + k D > 3 ,

c4 − �r2 − q2

2 ln (2r) D = 3 ,

(41)

R(r) =
{

2D�
(D−2)

− q2(D−4)

2(D−2)r2D−4 D > 3 ,

q2

2r2 + 6� D = 3 ,
(42)

which after some parameterization
{
c4 = −m1, q2 = 2(D − 3)(D − 2)q2

1 D > 3 ,

c4 = −m2 + 2q2
2 ln 2�, q2 = 4q2

2 D = 3 ,
(43)

are exactly the standard higher-dimensional charged black
hole solutions [41] and the charged BTZ black hole solution
[42] in Einstein–Maxwell theory

B(r) =
{
k − 2�

(D−1)(D−2)
r2 − m1

r D−3 + q2
1

r2(D−3) D > 3 ,

r2

l2
− m2 − 2q2

2 ln r
�

D = 3 ,

(44)

with dynamic curvatures

R(r) =
⎧⎨
⎩

2D�
D−2 − (D−3)(D−4)q2

1
r2(D−2) D > 3 ,

2q2
2

r2 − 6
�2 D = 3 ,

(45)
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where parameters q1 and m1 are related to the electric charge
and the ADM mass of the BH, and � is the AdS radius � =
− 1

�2 .

3.2 Constant curvature R = R0

For constant curvature R = R0, we can take the trace of the
Einstein equation and obtain

R0
(
1 + f ′(R0)

)− D

2
(R0 + f (R0) − 2�) = κT = 0,

(46)

where Maxwell electromagnetic field is traceless T =
gμνTμν = 0. This relation can lead to

f (R0) = −R0 + 2� + c0R
D/2
0 , (47)

which means R0 + f (R0) − 2� = c0R
D/2
0 .

To see this consider the solutions Eq. (35). We can see that
for constant curvature the parameters must satisfy q = 0 or
D = 4. The former condition q = 0 leads to

B(r) = k − R0r2

(D − 1)D
+ c4

r D−3 , (48)

f (R0) = 2� + (2c1 + 2 − D)R0

D
, (49)

which hold for all dimensions D ≥ 3. Comparing with the
Eq. (47), we can obtain the relation between the parameter
c1 and the constant curvature R0

c1 = c0D

2
R

D−2
2

0 − 1 . (50)

These geometries are exactly the same with the
- c 2 3 2r 2D-4 + 2 Schwarzschild black hole solutions in D-
dimensions and the BTZ black hole solution in 3-dimensions,

B(r) =
{
k − 2�

(D−1)(D−2)
r2 − m

rD−3 D > 3 ,

r2

l2
− m D = 3 .

(51)

Specially in 4-dimensions, the Ricci scalar is always a
constant even with nonzero q,

B(r) = k + q2

4(c1 + 1)r2 − R0

12
r2 + c4

r
, (52)

f (R0) = 2� + (c1 − 1)R0

2
, (53)

where c1 has the same relation as in Eq. (50).
Note that f ′(R0) = c1, after parametrizations we have

B(r) = k − m

r
+ q2

4 ( f ′(R0) + 1) r2 − R0

12
r2, (54)

which has been studied in [26,43]. However this kind of
solutions can not be distinguished with the RN black holes in
Einstein gravity, since we can always adjust the gravitational
constant to make them the same.

It is worth noticing that this charged solution with
constant curvature only exists in 4-dimensions while the
Schwarzschild solution can be present in any higher dimen-
sions.

3.3 New charged D-dimensional solutions for c1 = −1

We consider the special solutions for c1 = −1. In this case
the linear term (1 + c1)R in the action will disappear and the
nonlinear term dominates. The Eq. (26) becomes

c2r
(
r2B ′′(r) + (D − 3)r B ′(r) − 2(D − 2)B(r)

+2Dk − 6k) = q2r6−2D , (55)

the solutions of which are

B(r) =

⎧⎪⎪⎨
⎪⎪⎩

(D−3)k
D−2 + q2

c2(2D2−9D+9)r2D−5

+ c4
r D−2 + c3r2 D > 3 ,

c3r2 + c4
r − q2

9c2r
(3 ln(r) + 1) D = 3 ,

(56)

and then the functions R(r) and f (r) become

R(r) =
⎧⎨
⎩

− (D−2)q2

c2(2D−3)r2D−3 − c3(D − 1)D + (D−3)k
r2 D > 3 ,

− q2

3c2r3 − 6c3 D = 3 ,
(57)

f (r) =
⎧⎨
⎩

(D−3)k(2c2r−1)

r2 + (D−2)q2

c2(2D−3)r2D−3 + c3(D − 1)D − c2
3

2r2D−4 + 2� D > 3 ,

q2

3c2r3 − c2
3

2r2 + 6c3 + 2� D = 3 .

(58)

When q = 0, these solutions are reduced to the solutions
discussed in [24,38].

4 Explicit solutions in various dimensions

In this Section we will discuss the forms and the properties
of the general solution (27) in various dimensions. First we
discuss the simplest solution in 3-dimensions.

4.1 The solution in (2+1)-dimensions (D = 3)

We have found the solution for D = 3 Eq. (28), to compare
with the BTZ black hole we set q = 0 and then the metric
function becomes

B(r) = c3r
2 − c4 (−2c2r + c1 + 1)

2 (c1 + 1) 2

− c2
2c4r2

(c1 + 1) 3 ln

∣∣∣∣c2r + c1 + 1

r

∣∣∣∣ . (59)

From
∣∣∣ c2r+c1+1

r

∣∣∣ > 0 we can get c2(1 + c1) > 0.

The asymptotic behaviors of the metric function are

B (r → 0) = − c4

2(1 + c1)
≡ B0 , (60)
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B (r → ∞) =
(
c3 − c2

2c4

(1 + c1)
3 ln c2

)
r2 + o

(
r2
)

, (61)

where the leading order at r → ∞ is r2 term, so we define
its coefficient as the effective cosmological constant

�eff = c2
2c4

(1 + c1)
3 ln c2 − c3 , (62)

the sign of which can determine the property of spacetime to
be AdS or dS or if �eff = 0 to be flat.

To check the possibility of flat and dS black hole, we
introduce a root function

Root (r) = (c1 + 1)

2c2
2

(
2 (c1 + 1) 2c3

c4
− −2c2r + c1 + 1

r2

)

− ln

∣∣∣∣c2r + c1 + 1

r

∣∣∣∣ , (63)

the roots of which are also the roots of the metric function
B(r). The derivative of Root (r) is always positive under the
condition c2(1 + c1) > 0

Root ′(r) = (c1 + 1) 3

c2
2r

3 (c2r + c1 + 1)
> 0 always, (64)

and the asymptotic behaviors of root function at r → 0 and
r → ∞ are respectively

Root (r → 0) = − (1 + c1)
2

2c2
2r

2
→ −∞, (65)

Root (r → ∞) = (c1 + 1) 3c3 − c2
2c4 ln (c2)

c2
2c4

= (1 + c1)
2 �eff

2c2
2B0

, (66)

where �eff
B0

> 0 indicates one horizon and �eff
B0

≤ 0 indicates
no horizon. If we want a dS black hole, there at least two
horizons exist, while if we want an AdS black hole, one
horizon is required. It is clear that the solution we obtained
can only represent AdS black hole spacetimes (� < 0 and
B0 < 0) or pure dS spacetimes (� > 0 and B0 > 0).

4.2 Solutions in D-dimensions (D > 3)

The general solution (27) contains some special functions
that are not easy to analyse. However, when we solve the Eq.
(26) in each dimension, the solutions become much simpler,
only containing polynomials and logarithmic terms. In the
Appendix A we give the solutions for D = 4, 5, 6 dimen-
sions. The solution (A1) for D = 4 has been discussed in
[32] while the solutions in higher dimensions are new and
they have not been studied before.

To compare with the RN black holes and understand the
physical meaning of the constants of integration, we set the

coefficients of the logarithmic terms to be zero and then the
solutions are just polynomials. Then from the solutions (A1),
(A2) and (A3) we obtain the general constraint for the param-
eters

c4(−1)D(D − 3)(D − 2)(c1 + 1)D−3cD−3
2

+2(D − 3)k(c1 + 1)2D−5

+q2(D − 2)c2(D−3)
2 = 0 , (67)

under which the solutions (A1), (A2) and (A3) can be reduced
to simpler polynomial solutions in D-dimensions

B(r) = (D − 3)k

D − 2
+
[
c3 + 2c2

2(2D − 5)k

(c1 + 1)2(D − 2)2(D − 3)

]
r2

+
D−3∑
n=1

2k(−1)n+1(c1 + 1)n

(D − 2)(n + 2)cn2r
n

+
2(D−3)∑
n=D−2

q2(−1)nc2D−n−6
2

(D − 3)(n + 2)rn(c1 + 1)2D−n−5
. (68)

Compared with RN black hole, our solution (68) has more
terms from 1/r to 1/r2(D−3) while RN black hole only has
two terms 1/r and 1/r2(D−3) as mass term and charge term
respectively. Another interesting difference is that the con-
stant term in our solution is a fraction (D−3)k

D−2 depending on
dimension D, and this fraction can not be rescaled. More-
over, the dynamic curvature R(r) and the nonzero gravita-
tional action f (r) can not be simplified by the transformation
of coordinates.

Firstly, the constant term of the solution is D−2
D−3 , indicat-

ing that it is non-asymptotic flat with a deficit angle. This
deficit angle will disappear at large D limit, i.e. the constant
term becomes 1. Secondly, since the spacetime remains non-
zero curvature even with zero mass, it can be interpreted as
the global monopole solution in proper limits. Thirdly, there
do exist some entanglements of mass and charge terms in
the metric function. These entanglements become more and
more complicated with the increase of the dimension, never-
theless we figure out the rules with any dimensions D.

Using relations (14) and (25) we can obtain the expres-
sions of R(r) and f (r)

R(r) = (D − 3)k

r2 − (D − 1)D

[
c3 + 2c2

2(2D − 5)k

(c1 + 1)2(D − 3)(D − 2)2

]

+
D−3∑
n=1

2k(−1)n(c1 + 1)n
(
D2 − D(2n + 5) + n2 + 5n + 6

)
(D − 2)(n + 2)cn2r

n+2

−
2(D−3)∑
n=D−2

q2(−1)n
(
D2 − D(2n + 5) + n2 + 5n + 6

)
(D − 3)(n + 2)(c1 + 1)2D−n−5cn+6−2D

2 rn+2
, (69)

f (r) = (D − 1)(D − 2 − 2c1)

[
c3 + 2c2

2(2D − 5)k

(c1 + 1)2(D − 3)(D − 2)2

]

+ 2c2(D − 3)k

r
− q2

2r2D−4 + (D − 3)k(2c1 − D + 4)

(D − 2)r2
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−
D−3∑
n=1

2k(−1)n(c1 + 1)n(−D + n + 3)(2c1 − D + n + 4)

(D − 2)(n + 2)cn2r
n+2

+
2(D−3)∑
n=D−2

q2(−1)n(−D + n + 3)(2c1 − D + n + 4)

(D − 3)(n + 2)(c1 + 1)2D−n−5cn+6−2D
2 rn+2

+ 2� ,

(70)

and using the relation (16) we can get the exact expression
of f (R),

f (R) = (D − 1)(D − 2 − 2c1)

[
c3 + 2c2

2(2D − 5)k

(c1 + 1)2(D − 3)(D − 2)2

]

+ 2c2
2(D − 3)k

f ′(R) − c1
− q2c2D−4

2

2
(
f ′(R) − c1

)2D−4

+ (D − 3)k(2c1 − D + 4)c2
2

(D − 2)
(
f ′(R) − c1

)2

−
D−3∑
n=1

2k(−1)n(c1 + 1)nc2
2(−D + n + 3)(2c1 − D + n + 4)

(D − 2)(n + 2)
(
f ′(R) − c1

)n+2

+
2(D−3)∑
n=D−2

q2(−1)nc2D−4
2 (−D + n + 3)(2c1 − D + n + 4)

(D − 3)(n + 2)(c1 + 1)2D−n−5
(
f ′(R) − c1

)n+2 + 2� .

(71)

Defining an effective cosmological constant

�eff = − (D − 1)(D − 2)

2
(c1 + 1)

[
c3 + 2c2

2(2D − 5)k

(c1 + 1)2(D − 2)2(D − 3)

]
, (72)

we rewrite the functions B(r), R(r), f (r), and f (R) in the
Appendix B.

5 Equivalence to scalar–tensor theory

5.1 From f (R) gravity to scalar–tensor theory

For general f (R) theory,

Smet = 1

2κ

∫
dDx

√−g f (R) + SM
(
gμν, ψ

)
, (73)

one can introduce a new field χ and write the dynamically
equivalent action

Smet = 1

2κ

∫
dDx

√−g
[
f (χ) + f ′(χ) (R − χ)

]

+SM
(
gμν, ψ

)
. (74)

Variation with respect to χ leads to the equation

f ′′(χ) (R − χ) = 0. (75)

Therefore, χ = R if f ′′(χ) �= 0, which reproduces the action
(73). Redefining the field χ by φ = f ′(χ) and setting

V (φ) = χ(φ)φ − f (χ(φ)) , (76)

the action takes the form

Smet = 1

2κ

∫
dDx

√−g [φR − V (φ)]+SM
(
gμν, ψ

)
. (77)

This is the Jordan frame representation of the action of a
Brans-Dicke theory with Brans-Dicke parameter ω0 = 0.
It should be stressed that the scalar degree of freedom
φ = f ′(χ) is quite different from a matter field, like all non-
minimally coupled scalars, it can violate all of the energy
conditions.

For the solutions in 4.2, using

φ(r) = fR(r) = c1 + c2r, (78)

V (r) = φ(r)R(r) − f (r), (79)

we can obtain the potential as a function of φ

V (φ) = V0 + V1φ + q2c2D−4
2

2(φ − c1)2D−4

+c2
2(D − 3)k(−2c1 + (D − 2)φ + D − 4)

(D − 2)(φ − c1)2 − 2c2
2(D − 3)k

φ − c1
− 2�

−
2(D−3)∑
n=D−2

q2(−1)nc2D−4
2 (−D + n + 3)(c1 + 1)−2D+n+5(−2c1 + φ(−D + n + 2) + D − n − 4)

(D − 3)(n + 2)(φ − c1)n+2

+
D−3∑
n=1

2c2
2k(−1)n(c1 + 1)n(−D + n + 3)(2c1 + φ(−D + n + 2) − D + n + 4)

(D − 2)(n + 2)(φ − c1)n+2 . (80)

Note that there are (φ − c1) terms in the denominators,
indicating the divergence of the potential at φ = c1. This
divergent point φ = c1 only appears at origin r = 0, where
a physical singularity exists. Also, the constant term of a
scalar field φ that comes from the transformation of f (R)

gravity can always be rescaled. Besides, considering that the
coefficient of the Einstein–Hilbert term in the action (1+c1)

can be absorbed into the Newton’s constant, we can always
set c1 = 0. Then the divergent point becomes φ = 0, which
can be controlled in a potential.
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Therefore though the f (R) form is still unknown, but the
equivalent scalar–tensor theory is clear.

6 Explicit solution in (3 + 1)-dimensions

In (3+1)-dimensions the form of f (R) can be solved explic-
itly so we will discuss this solution in details and also study
its thermodynamics.

The solution (68) in (3 + 1)-dimensions writes

B(r) = k

2
+ (c1 + 1) k

3c2r
+ q2

4 (c1 + 1) r2

+3c2
2k + 2c3 (c1 + 1) 2

2 (c1 + 1) 2 r2 , (81)

R(r) = − 18c2
2k

(c1 + 1)2 − 12c3 + k

r2 , (82)

f (r) = c1k

r2 + 2c2k

r
− 9 (c1 − 1) c2

2k

(c1 + 1) 2

−6 (c1 − 1) c3 + 2� , (83)

from which we can have an explicit form of f (R)

f (R) = 2c2
2k

c1
+ c1 (c5 + R) ± 2

√
c2

2kW (R)

c2
1 (c1 + 1) 2

, (84)

W (R) = −c1

(
5c2

2k + 6c3 + 2�
)

+c2
1

(
11c2

2k − 6c3 + c5 − 4� + R
)

+ 2c2
2k

+c3
1 (6c3 + 2c5 − 2� + 2R)

+c4
1 (6c3 + c5 + R) , (85)

where the constant of integration c5 should be set to

c5 = −2c2
2k

c2
1

, (86)

to ensure that the only constant in the action is −2�. After
this constraint the f (R) becomes

f (R) = c1R

±2

√
c2

2k
(
9 (c1 − 1) c2

2k + (c1 + 1) 2 (c1R − 2�) + 6 (c1 − 1) c3 (c1 + 1) 2
)

c1 (c1 + 1) 2 .

(87)

Substituting R(r) into this expression and comparing with
f (r), we finally get

c3 = −2c1� − 9c2
2k − 2�

6(c1 + 1)2 , (88)

then the solution becomes

B(r) = k

2
+ (c1 + 1)k

3c2r
+ q2

4(c1 + 1)r2 − �r2

3(c1 + 1)
, (89)

R(r) = 4�

c1 + 1
+ k

r2 , (90)

f (r) = 2kc2

r
+ c1k

r2 + 4c1�

c1 + 1
, (91)

with

f (R) = c1R ± 2c2

√
k

(
R − 4�

1 + c1

)
. (92)

We define the action of gravitational part as F(R) = R +
f (R) − 2�, then after a rescale we get,

1

2κ
F(R) ≡ 1

2κ
(R + f (R) − 2�)

= 1

2κ

(
(1 + c1)R ± c2

√
k

(
R − 4�

1 + c1

)
− 2�

)

= (1 + c1)

2κ

(
R ± c2

1 + c1

√
k

(
R − 4�

1 + c1

)

− 2�

1 + c1

)

= 1

2κ ′

(
R ± c2

1 + c1

√
k (R − 4�′) − 2�′

)
,

(93)

where �′ = �
1+c1

is an effective cosmological constant and
κ ′ = κ

1+c1
. Then we can obtain the other equivalent form

F̃(R)

F̃(R) = R ± c2

1 + c1

√
k (R − 4�′) − 2�′ . (94)

In fact we can always rescale to make 1 + c1 = 1, then
then we can adjust the parameter c2 to change the relation
between Einstein action term R and the nonlinear action term√
k
(
R − 4�

1+c1

)
.

Note that when c1 = 0 and c2 = 0 the action (92) and
the general solution will reduce to the Einstein gravity and
RN black hole, but for this brunch with c2 �= 0, the solution
can never reduce to the standard RN black hole solution even
when c1 = 0 and c2 approaches to 0. Here we give the solu-
tions B0(r), R0(r), f0(r) and F0(r) to represent the solutions
B(r) , R(r), f (r) and F(r) with c1 = 0,

B0(r) = k

2
+ k

3c2r
+ q2

4r2 − �r2

3
, (95)

R0(r) = 4� + k

r2 , (96)

f0(r) = 2kc2

r
, (97)

F0(r) = 2� + k

r2 + 2kc2

r
. (98)

In the following figures we depict the plots of B0(r) to
show the influence of parameter c2. In Fig. 3, the figures are
plotted with positive c2. It is clear that there can not exist
any black holes for k = 1, since all the terms in the metric
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function B0(r) are positive (Here we choose the asymptotic
anti-de Sitter spacetimes). While for k = −1 black hole
solutions exist and the black hole with larger c2 has smaller
radius of event horizon, which means that larger nonlinear
gravitational action gives smaller black hole.

In Fig. 1, the figures are plotted with negative c2. It shows
that for k = 1 the black hole with larger absolute value of c2

has smaller radius of event horizon, which means that larger
proportion of the nonlinear action part gives smaller black
holes. While for k = −1 the black hole with larger absolute
value of c2 corresponds to larger radius of event horizon,
indicating that larger proportion of the nonlinear action part
gives larger black holes.

The above two figures are giving us some typical examples
of the formation of black holes in (3+1)-dimensions due to
the presence of the nonlinear term of the curvature.

Compared with RN black hole in (3 + 1)-dimensions,

BRN(r) = k − m1

r
+ q2

1

r2 − �

3
r2 , (99)

RRN(r) = 2� , (100)

FRN(r) = 0 , (101)

our solution has two terms related to the parameter k, which
means the topology has more influence on the geometry.
Besides, our solution also contains a dynamic curvature R(r)
and non-zero gravitational action F(r), while the RN black
hole has a constant curvature and zero gravitational action.
Except the difference of the constant terms, we can rescale
the parameters

q = 2q1, c2 = − k

3m1
, (102)

to make their metric functions very similar

B0(r) = k

2
− m1

r
+ q2

1

r2 − �r2

3
, (103)

BRN(r) = k − m1

r
+ q2

1

r2 − �

3
r2 . (104)

In Fig. 2, we depict the plots of the metric functions
BRN(r) and B0(r) with different parameters m1 to observe
the changes when the nonlinear term is present. Note that, no
matter how we change the parameters, the metric functions
BRN(r) and B0(r) always differ with a constant k

2 , so we
mainly plot the figures for B0(r). For black holes with the
same charge and the cosmological constant, with the increase
of m1 (the nonlinear action part alleviates), the black holes
have larger radius of event horizons and deeper depressions
of geometry inside the event horizons.

Similar solution has been obtained in a recent paper [44]
with an action of the form F(R) = R − 2α

√
R − 8� − �.

7 Thermodynamics

In this section we will study the thermodynamics of the black
hole solution in (2+1)-dimensions, including the First Law,
Hawking temperature, entropy and heat capacity. Before we
study the thermodynamics of our solution in f (R) gravity,
we first review the First Law for RN black hole in Einstein
gravity to compare.

7.1 RN black hole in Einstein gravity

The metric of RN black hole in D-dimensions is

B(r) = 1 − m

rD−3 + q2

r2(D−3)
, (105)

which gives the relation of the event horizon

m = q2r3−D+ + r D−3+ . (106)

Then the Hawking temperature and the entropy can be
expressed by r+

T (r+) = 1

4π
B ′(r+) = (D − 3)r−2D−1+

(
r2D+ − q2r6+

)
4π

,

(107)

S(r+) = A(r+)

4G
= 2π A(r+) = 4π

D+1
2 r D−2+

�
( D−1

2

) . (108)

For constant charge Q, the First Law dM = TdS + �edQ
gives

M =
∫

T (r+)dS(r+) =
(D − 2)π

D−1
2

(
q2r3−D+ + r D−3+

)

�
( D−1

2

)

= (D − 2)π
D−1

2 m

�
( D−1

2

) . (109)

Note that the expression of r+ can be replaced bym, therefore
the thermodynamic mass of the black hole can be described
only by the parameter m.

7.2 f (R) black hole in (3 + 1)-dimensions

In (3 + 1)-dimensions, the metric is

B(r) = 1

2
+ 1

3c2r
+ q2

4r2 , (110)

to compare with the RN black hole which can be written as

B(r) = 1

2
− m

r
+ q2

r2 , (111)

where m = −1/(3c2) and q → 2q.
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(a) (b)

Fig. 1 Metric functions B0(r) with k = ±1. The black curve, black dashed curve, cyan curve, cyan dashed curve, pink curve and pink dashed
curve correspond to metric functions B0(r) with c2 = −1,−2,−3,−4,−5,−6 respectively. Other parameters are set as q = 0.4 and � = −0.1

(a) (b)

Fig. 2 The black curve represents BRN (r) with m1 = 2. While black dashed curve, cyan curve, cyan dashed curve, pink curve and pink dashed
curve correspond to B0(r) with m1 = 2, 2.5, 3, 3.5, 4 respectively. Other parameters are set as q1 = 0.5 and � = −1

(a) (b)

Fig. 3 Metric functions B0(r) with k = ±1. The black curve, black dashed curve, cyan curve, cyan dashed curve, pink curve and pink dashed
curve correspond to metric functions B0(r) with c2 = 1, 2, 3, 4, 5, 6 respectively. Other parameters are set as q = 0.4 and � = −0.1
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(a) (b)

(c) (d)

Fig. 4 The black curves represent RN black hole in Einstein gravity while the cyan curves represent our black hole in f (R) gravity in (3 + 1)-
dimensions. In addition, the full lines, the dashed lines and the dotdashed lines correspond to q = 0, 1, 2 respectively

With the relation between m, q and the event horizon r+

m = q2

r+
+ r+

2
, (112)

the Hawking temperature and Bekenstein–Hawking entropy
in f (R) gravity [45,46] become

T (r+) = r2+ − 2q2

8πr3+
, (113)

S(r+) = 8π2r2+
(
6q2 + r2+

)
3
(
2q2 + r2+

) . (114)

For constant charge Q, the First Law and heat capacity lead
to

M = 2πr+
3

+ 8πq2r+
3
(
2q2 + r2+

) + 4πq2

r+

+8

3
π

√
2q arctan

(
r+√
2q

)
, (115)

CQ = −16π2r2+
(
r2+ − 2q2

) (
12q4 + 4q2r2+ + r4+

)
3
(
r2+ − 6q2

) (
2q2 + r2+

)2 , (116)

where

r+ = m +
√
m2 − 2q2. (117)

For neutral case, we have

M = 2π

3
r+ = 4πm

3
, CQ = −16π2r2+

3
= −64π2m2

3
.

(118)

Although the metric function looks similar with RN black
hole, however the mass M of the black hole can not be
described only by the model parameter m. In other words,
the real mass of the black hole is contributed by both model
parameter m and charge parameter q due to the nonlinearity
of f (R). The expression (116) clearly shows that the heat
capacity becomes zero at the extremal case q = r+/

√
2 and
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divergent with a smaller charge q = r+/
√

6, similar with the
RN case in Einstein gravity. To compare with the RN black
holes in Einstein gravity, we plot the thermodynamic quanti-
ties of both RN black hole in Einstein gravity and our black
hole in f (R) gravity in (3 + 1)-dimensions in Fig. 4.

The Hawking temperature always decreases with the
increase of the radius of the event horizon for the neutral case,
indicating that neutral large black holes have lower Hawking
temperature. While for the charged case the Hawking tem-
perature goes up from zero (extremal case) to a maximum
value then falls down to zero at infinity, where the electric
charge can protect the black holes from the violent Hawking
evaporation for small black holes. For black holes carrying
the same charge, the black holes in f (R) gravity always have
lower temperatures than their Einstein cousins.

The Bekenstein–Hawking entropy in Einstein gravity is
proportional to area, while in f (R) gravity this relation is
modified and leads to much lower entropy though charge
can increase the entropy.

On the other side, the mass of RN black hole in Einstein
gravity can be described linearly by a single parameter m,
however in f (R) gravity the real thermodynamic mass of
the black hole are decided by both charge parameter q and
model parameter m or c2. In other words, this kind of f (R)

black hole can carry the information the model parameters.
From the figure we can see that for fixed charge, the relation
between M and parameter m is still asymptotically linear.
We can check the derivative of M(m)

lim
q→0

M ′(m) = 4π

3
, lim

m→∞ M ′(m) = 4π

3
. (119)

Finally the heat capacity is always negative in neutral
case for both Schwarzschild black hole and f (R) black hole,
which indicates that the absorption of energy cools the black
hole while the emission of energy heats up the black hole
and makes it unstable through Hawking radiation. In addi-
tion, the presence of charge makes heat capacity divergent at
some critical points as we have shown and positive branches
of heat capacity appear in front of the divergent points, mean-
ing small black hole (small radius of the event horizon) has
positive heat capacity like ordinary objects. For the f (R)

black hole, the divergence of heat capacity happens at black
hole with larger radius of event horizon, and its heat capacity
has smaller absolute value, which means that its ability to
absorb and emit energy are both weaker than RN black hole.

8 Conclusions

In this work we obtained an exact charged black hole solu-
tion with dynamic curvature in D-dimensions in Maxwell-
f (R) gravity. Without specifying the form of f (R) we solved

the Einstein–Maxwell equations under a metric ansatz with
gtt grr = −1. The general black hole solution we found,
depending on the choices of the parameters, can reduce to the
Reissner–Nordström black hole in D-dimensions in Einstein
gravity and to the known charged black hole solution with
constant curvature in f (R) gravity. We also obtained new
charged D-dimensional solutions in the case of c1 = −1.
All of our general solutions in various dimensions consist of
only polynomials and logarithmic terms, and with the con-
straints they reveal interesting properties when compared to
RN black holes.

In (3 + 1)-dimensions the form of f (R) can be solved
explicitly and the found polynomial solution with dynamic
curvature was compared with the usual (3 + 1)-dimensions
RN black hole in the Einstein gravity. The main characteris-
tics of our solutions are the presence of a dynamic curvature
R(r) and a non-zero gravitational action F(r), while the RN
black hole has a constant curvature and zero gravitational
action. This fact gives a rich spectrum of thermodynamical
properties of our charge black hole solution.

We studied analytically the thermodynamics of the charge
black hole in (3 + 1)-dimensions and compared with the RN
black holes in Einstein gravity, calculating the thermody-
namical mass, Hawking temperature, Bekenstein–Hawking
entropy and heat capacity. Firstly, the thermodynamical mass
of the black hole we obtained via the First Law reveals the
entanglement of the parameter m and q when they contribute
to the black hole mass. In Einstein gravity, the parameter m
and q represent the mass and charge respectively, while in
the black hole solution in f (R) gravity, the real mass is a
complicated combination of parameter m and charge q due
to the nonlinear of the f (R) gravity. Then for the other ther-
modynamical quantities the behaviors of the black holes in
f (R) gravity are similar with the RN black holes in Ein-
stein gravity in general, but the former ones possess lower
Hawking temperature, lower Bekenstein–Hawking entropy
and lower absolute value of the heat capacity.
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Appendix A: Explicit solutions in D = 4, 5, 6 dimensions

In this Appendix we list the solutions for the metric function
in D = 4, 5, 6 dimensions.

B(r) = 1

12 (c1 + 1) 5r2

{
12c2

2r
4
[
(c1 + 1) 3k

+c2c4 (c1 + 1) + c2
2q

2
]

ln

∣∣∣∣ c2r + c1 + 1

r

∣∣∣∣
+ (c1 + 1) [2 (c1 + 1) r (3 (c1 + 1) kr(

3c2
2r

2 + c1 (4 − 2c2r) − 2c2r + 2c2
1 + 2

)

+6c3 (c1 + 1) 3r3 − 6c2
2c4r

2

+3c2c4 (c1 + 1) r − 2c4 (c1 + 1) 2
)

+q2
(
−12c3

2r
3 + c1

(
6c2

2r
2 − 8c2r + 9

)
+ 6c2

2r
2

+c2
1 (9 − 4c2r) − 4c2r + 3c3

1 + 3
)]}

D = 4 , (A1)

B(r) = 1

360 (c1 + 1) 7r4

{
60c2

2r
6
(

4 (c1 + 1) 5k

−6c2
2c4 (c1 + 1) 2 + 3c4

2q
2
)

ln

∣∣∣∣c2r + c1 + 1

r

∣∣∣∣
+ (c1 + 1)

(
40 (c1 + 1) 4kr4

(
5c2

2r
2 − 6c1 (c2r

−3) − 6c2r + 9c2
1 + 9

)
+ 30 (c1 + 1) 2r2

(
12c3 (c1 + 1) 4r4 + 12c3

2c4r
3 − 6c2

2c4 (c1 + 1) r2

+4c2c4 (c1 + 1) 2r − 3c4 (c1 + 1) 3
)

+3q2
(
−60c5

2r
5 + 30c4

2r
4 − 20c3

2r
3

+c3
1

(
15c2

2r
2 − 48c2r + 100

)
+ 15c2

2r
2

+c2
1

(
−20c3

2r
3 + 45c2

2r
2 − 72c2r + 100

)

+c1

(
30c4

2r
4 − 40c3

2r
3 + 45c2

2r
2 − 48c2r + 50

)

+c4
1 (50 − 12c2r) − 12c2r + 10c5

1 + 10
))}

D = 5 , (A2)

B(r) = 1

2520 (c1 + 1) 9r6

{
420c2

2r
8
(

3 (c1 + 1) 7k

+6c3
2c4 (c1 + 1) 3 + 2c6

2q
2
)

ln

∣∣∣∣c2r + c1 + 1

r

∣∣∣∣
+420c2r

7
(
−3 (c1 + 1) 6k − 3c1 (c1 + 1) 6k

−6c3
2c4 (c1 + 1) 3 − 2c6

2q
2
)

+420r6
(

6c2
1 (c1 + 1) 6k + 6 (c1 + 1) 6k

+12c1 (c1 + 1) 6k + 3c3
2c4 (c1 + 1) 4

+c1c
6
2q

2 + c6
2q

2
)

+ (c1 + 1)
[
r8
(

735c2
2 (c1

+1) 6k + 2520c3 (c1 + 1) 8
)

−120 (c1 + 1) 6c2q
2r + 105 (c1 + 1) 7q2

−280 (c1 + 1) 2c2
2

(
3c4 (c1 + 1) 3 + c3

2q
2
)
r5

+210 (c1 + 1) 3c2

(
3c4 (c1 + 1) 3 + c3

2q
2
)
r4

−168 (c1 + 1) 4
(

3c4 (c1 + 1) 3 + c3
2q

2
)
r3

+140 (c1 + 1) 5c2
2q

2r2
]}

D = 6 , (A3)

here c3 and c4 are new constants of integration, not the same
with the constants of integration c3 and c4 of the general
solution (27). This is because if we set D = 4, 5, 6..., the
general solution (27) will reduce to different solutions given
by (A1), (A2) and (A3) with different integration constants.

AppendixB: Solutionswith an effective cosmological con-
stant

In this Appendix we give the solutions with an effective cos-
mological constant,

B(r) = (D − 3)k

D − 2
− 2�eff

(D − 1)(D − 2)(c1 + 1)
r2

+
D−3∑
n=1

2k(−1)n+1(c1 + 1)n

(D − 2)(n + 2)cn2r
n

+
2(D−3)∑
n=D−2

q2(−1)nc2D−n−6
2

(D − 3)(n + 2)rn(c1 + 1)2D−n−5
, (B1)

R(r) = (D − 3)k

r2 + 2D

(D − 2)(c1 + 1)
�eff

+
D−3∑
n=1

2k(−1)n(c1 + 1)n
(
D2 − D(2n + 5) + n2 + 5n + 6

)
(D − 2)(n + 2)cn2r

n+2

−
2(D−3)∑
n=D−2

q2(−1)n
(
D2 − D(2n + 5) + n2 + 5n + 6

)
(D − 3)(n + 2)(c1 + 1)2D−n−5cn+6−2D

2 rn+2
,

(B2)

f (r) = − 2(D − 2 − 2c1)

(D − 2)(c1 + 1)
�eff + 2� + 2c2(D − 3)k

r

+ (D − 3)k(2c1 − D + 4)

(D − 2)r2 − q2

2r2D−4

−
D−3∑
n=1

2k(−1)n(c1 + 1)n(−D + n + 3)(2c1 − D + n + 4)

(D − 2)(n + 2)cn2r
n+2

+
2(D−3)∑
n=D−2

q2(−1)n(−D + n + 3)(2c1 − D + n + 4)

(D − 3)(n + 2)(c1 + 1)2D−n−5cn+6−2D
2 rn+2

,

(B3)
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and the equation of f (R) also becomes simpler

f (R) = − 2(D − 2 − 2c1)

(D − 2)
�eff + 2� + 2c2

2(D − 3)k

f ′(R) − c1

+ (D − 3)k(2c1 − D + 4)c2
2

(D − 2)
(
f ′(R) − c1

)2 − q2c2D−4
2

2
(
f ′(R) − c1

)2D−4

−
D−3∑
n=1

2k(−1)n(c1 + 1)nc2
2(−D + n + 3)(2c1 − D + n + 4)

(D − 2)(n + 2)
(
f ′(R) − c1

)n+2

+
2(D−3)∑
n=D−2

q2(−1)nc2D−4
2 (−D + n + 3)(2c1 − D + n + 4)

(D − 3)(n + 2)(c1 + 1)2D−n−5
(
f ′(R) − c1

)n+2 .

(B4)

Then the full gravity action becomes

R(r) + f (r) − 2�

= 4�eff

(D − 2)
+ 2c2(D − 3)k

r

+2(c1 + 1)(D − 3)k

(D − 2)r2 − q2

2r2D−4

−
D−3∑
n=1

4k(−1)n(c1 + 1)n+1(−D + n + 3)

(D − 2)(n + 2)cn2r
n+2

+
2(D−3)∑
n=D−2

2q2(−1)n(−D + n + 3)(c1 + 1)−2D+n+6

(D − 3)(n + 2)cn+6−2D
2 rn+2

.

(B5)
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