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Abstract In this work, we study 5-dimensional braneworld
scenarios in the scalar-tensor representation of the general-
ized hybrid metric-Palatini gravitational theory. We start by
considering a model for a brane supported purely by the grav-
itational scalar fields of the theory and then consider other
distinct cases where the models are also supported by an
additional matter scalar field. We investigate the stability of
the gravity sector and show that the models are all robust
against small fluctuations of the metric. In particular, in the
presence of the additional scalar field, we find that the pro-
file of the gravitational zero mode may be controlled by the
parameters of the model, being also capable of developing
internal structure.

1 Introduction

Since its development in 1915, General Relativity (GR) has
been a very successful theory, at least for local tests. How-
ever, the discovery of the late-time cosmic acceleration [1,2]
has spurred research in modified dynamics at large scales.
In this context, the possibility that the Hilbert–Einstein term
is supplemented with more general combinations of curva-
ture invariants has been extensively explored [3–11]. Indeed,
it was soon found that the usual metric formulation, which
considers that the metric is the fundamental field, differs
generically from its Palatini (or metric-affine) counterpart
[12], where here the metric and the connection are assumed
to be the two fundamental fields of the theory. The metric
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approach leads to higher-order derivative equations, contrary
to the field equations in the Palatini formulation, which are
second-order. We do emphasize that the purely f (R) metric
and metric-affine formalisms coincide in GR, however, the
two formalisms lead to different results considering more
generic functions f (R) [12]. For instance, the scalar-tensor
representation of f (R) gravity is useful to illustrate the dif-
ferences between the metric and Palatini approaches. In the
metric formalism, the scalar field behaves as a dynamical
field, which satisfies a modified Klein–Gordon equation with
self-interactions that essentially depend on the form of f (R).
However, the scalar field φ should have a very low mass,
which implies a long interaction range, in order to have an
impact at large scales; nevertheless, light scalars do indeed
have an impact at smaller scales, and are strongly constrained
by local observations, at the laboratory and Solar System
scales, unless screening mechanisms are invoked [13–15]. In
the scalar-tensor representation of the Palatini formalism, the
scalar field satisfies an algebraic function of the trace of the
matter stress-energy tensor, which lead to undesired gradient
instabilities [16–19].

However, these difficulties may be avoided within a
hybrid variation of these theories, in which the purely met-
ric Einstein–Hilbert action is supplemented with a metric-
affine correction term [20–24]. More specifically, an inter-
esting aspect of these theories is the possibility of generat-
ing long-range forces without conflicts with the local tests
and without invoking screening mechanisms. The possibil-
ity of expressing these hybrid f (R) metric-Palatini theories
using a scalar-tensor representation simplifies the analysis
of the field equations and the construction of solutions. It
is interesting to note that this theory, which in the linear
approach takes the form R + f (R), one retains the positive
results through the Einstein–Hilbert term R and the addi-
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tional gravitational corrections are given by the metric-affine
f (R) component, where the Palatini curvature scalar R is
constructed in terms of an independent connection. A wide
variety of applications of this hybrid metric-Palatini theory
has been explored, namely, in considering that dark matter is
a geometric effect of modified gravity [25,26], in exploring
the Cauchy problem [27] and the Noether symmetries [28],
black hole, wormhole and stellar solutions [29–34], the Ein-
stein static Universe [35], string-like configurations [36,37],
and thick branes [38], among others[39].

The linear hybrid metric-Palatini theory can be further
generalized, where the gravitational action depends on a
general function of both the metric and Palatini curvature
scalars [40]. This extension has also received attention with
a plethora of applications, namely, cosmological solutions
[41,42], weak-field phenomenology [43], wormhole [44] and
black hole [45] solutions. In this work, we consider the pos-
sibility to study braneworld structures in the generalized
hybrid metric-Palatini gravity. In this context, as is well-
known, the Randall–Sundrum braneworld model originally
proposed [46] was soon generalized [47–49] to describe thick
braneworld scenarios in the presence of scalar fields, which
are included to source the warped 5-dimensional AdS5 geom-
etry with a single extra spatial dimension of infinite extent.
Soon after, several authors investigated the braneworld sce-
nario with a diversity of motivations; see, e.g., Refs. [50–
75] and references therein for many distinct possibilities to
implement investigations on thick braneworlds, including the
absence of scalar fields, the presence of two scalar fields with
standard dynamics, the case of tachyonic and other general-
ized dynamics, asymmetric thick brane, and also the f (R),
Gauss-Bonnet and several other possibilities of modifications
of GR [5–7,9].

In order to deal with the 5-dimensional generalized hybrid
metric-Palatini braneworld scenario, the study developed in
the present work is outlined in the following manner: in Sect.
2 we introduce the model and write the equations of motion.
Furthermore, in Sect. 3 we consider the warped geometry
with a single extra dimension of infinite extent, rewrite the
equations of motion on general grounds and show how to get
to the thick braneworld scenarios in the case of standard GR.
We also describe distinct solutions of current interest, in the
absence and in the presence of an extra field χ . In Sect. 4, we
discuss the robustness of the geometric sector in the gener-
alized hybrid metric-Palatini braneworld theory. Finally, in
Sect. 5, we summarize our results and conclude. Throughout
this work, we implement all the calculations considering a
system of units for which c = 1, using capital latin indexes
{M, N , ...} running from 0 to 4 and greek indexes {μ, ν, ...}
running from 0 to 3.

2 Action and field equations

The generalized hybrid metric-Palatini theory [40,41] in 4+1
dimensional gravity is described by an action functional S of
the form

S = 1

2κ2

∫
�

√−g f (R,R) d5x + Sm (gMN , χ) , (1)

where κ2 ≡ 8πG5, G5 is the 5-dimensional Newtonian con-
stant, � is a 5-dimensional spacetime manifold on which
we define the coordinate set xM , g is the determinant of the
metric gMN , f is an arbitrary function of the Ricci scalar,
R = gMN RMN , where RMN is the Ricci tensor, and the
Palatini scalar curvature R = gMNRMN , where the Pala-
tini Ricci tensor RMN is defined in terms of an independent
connection �̂P

MN as

RMN = ∂P �̂P
MN − ∂N �̂P

MP + �̂P
PQ�̂

Q
MN − �̂P

MQ�̂
Q
PN . (2)

Sm is the matter action defined as Sm = ∫
d5x

√−g Lm

where Lm is the matter Lagrangian density considered mini-
mally coupled to the metric gMN , and χ collectively denotes
the matter fields.

Taking the variation of Eq. (1) with respect to the inde-
pendent connection �̂P

MN yields the equation of motion

∇̂P

(√−g
∂ f

∂RgMN
)

= 0, (3)

where ∇̂ denotes the covariant derivative written in terms of
the independent connection �̂P

MN . Recalling that
√−g repre-

sents a scalar density of weight 1, we have that ∇̂P
√−g = 0,

and thus Eq. (3) implies the existence of a new metric ten-
sor hMN = (∂ f/∂R) gMN , conformally related to the metric
gMN with a conformal factor ∂ f/∂R, for which the connec-
tion �̂P

MN is the Levi-Civita connection, i.e., one can write
�̂P
MN as

�̂P
MN = 1

2
hPQ (

∂MhQN + ∂NhMQ − ∂QhMN
)
, (4)

where ∂M denotes partial derivatives. The conformal relation
between the metrics hMN and gMN implies that the two Ricci
scalars RMN andRMN , assumed a priori as independent, are
in fact related by the expression

RMN = RMN − 1

fR

(
∇M∇N + 1

3
gMN�

)
fR

+ 4

3 f 2
R

∂M fR∂N fR, (5)

where ∇M denotes covariant derivatives written in terms of
the connection �P

MN , � = ∇P∇P is the D’Alembert oper-
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ator, and the subscripted fR denote derivatives of f with
respect to R.

An equivalent scalar-tensor representation of Eq. (1) can
be obtained via the definition of two scalar fields ϕ and ψ

and a scalar potential V (ϕ, ψ) as

ϕ = ∂ f

∂R
, ψ = − ∂ f

∂R , (6)

V (ϕ, ψ) = ϕR − ψR − f (R,R) . (7)

Inserting both Eqs. (6) and (7) in Eq. (1), using the trace
of Eq. (5) to cancel the factor R, writing fR = −ψ and
neglecting the boundary term proportional to �ψ , we arrive
to the scalar-tensor representation of the generalized hybrid
metric-Palatini gravity as

S = 1

2κ2

∫
�

√−g

[
(ϕ − ψ) R − 4

3ψ
∂ Pψ∂Pψ

−V (ϕ, ψ)

]
d5x + Sm (gMN , χ) . (8)

Without further consideration of the matter fields χ , there
are three independent variables in Eq. (8), these are the metric
gMN and the two scalar fields ϕ and ψ . Varying Eq. (8) with
respect to the metric gMN yields the modified field equations

(ϕ − ψ)GMN + 1

2
gMN

[
4

3ψ
∂ Pψ∂Pψ + V (ϕ, ψ)

]

− 4

3ψ
∂Mψ∂Nψ − (∇M∇N − gMN�) (ϕ − ψ)

= κ2TMN , (9)

where GMN is the Einstein’s tensor, and TMN is the stress-
energy tensor defined in the usual manner as

TMN = − 2√−g

δ
(√−gLm

)
δgMN

. (10)

Two equations of motion describing the dynamics of the
scalar fields ϕ and ψ can also be obtained as follows. We
start with a variation of Eq. (8) with respect to ϕ and ψ . The
resultant equations of motion will depend on the Ricci scalar
R. Taking the trace of Eq. (9), we are able to cancel the terms
depending on R but we are left with a system of two coupled
differential equations both depending on �ϕ and �ψ . These
two equations can be algebraically manipulated to isolate the
terms �ϕ and �ψ , so to isolate the dynamics of each scalar
field in its own equation. The resultant equations of motion
for ϕ and ψ are

�ϕ + 1

8

[
5V − 3

(
ϕVϕ + ψVψ

)] = κ2

4
T, (11)

�ψ − 1

2ψ
∂ Pψ∂Pψ − 3

8
ψ

(
Vψ + Vϕ

) = 0, (12)

respectively, where the subscripted potentials Vϕ and Vψ

denote derivatives of the potential V (ϕ, ψ) with respect to

the scalar fields ϕ and ψ , respectively, and T = gMNTMN is
the trace of the stress-energy tensor.

3 Static and flat brane models with scalar field matter

In this section, we will consider matter to be described by a
single dynamical scalar field χ with an associated interaction
potential U (χ). The matter action describing this distribu-
tion of matter is thus

Sm = −
∫

�

√−g

[
1

2
∂ Pχ∂Pχ +U (χ)

]
d5x . (13)

The stress-energy tensor TMN associated with this matter
distribution can be computed via a variation of Eq. (13) with
respect to the scalar field χ and the definition of TMN pro-
vided in Eq. (10). We thus obtain

TMN = −gMN

[
1

2
∂ Pχ∂Pχ +U (χ)

]
+ ∂Mχ∂Nχ. (14)

Furthermore, and similarly to the scalar fields ϕ and ψ , an
equation of motion for the field χ can be obtained varying Eq.
(13) with respect to χ . As the field χ is minimally coupled
to the metric gMN , a dynamical equation for χ is immedi-
ately obtained with no need for further manipulations. The
resultant equation is

�χ = Uχ , (15)

where the subscripted potentialUχ denotes a derivative of the
potential U with respect to the scalar field χ . Our complete
system of equations thus consists of Eqs. (9), (11), (12) and
(15), with the stress-energy tensor TMN given by Eq. (14).

For the purpose of this paper, let us consider the static
5-dimensional line element

ds2 = e2A(y)ημνdx
μdxν + dy2, (16)

where A (y) is called the warp function, ημν is the 4-
dimensional Minkowski metric given by ημν = diag
(−1, 1, 1, 1), and y represents the extra 5th dimension of
infinite extent. We shall assume that both the gravitational
scalar fields ϕ = ϕ (y) and ψ = ψ (y) and the matter scalar
field χ = χ (y) are constant throughout the 4-dimensional
spacetime and vary solely across the extra dimension y. Fur-
thermore, given the isotropy of the 4-dimensional part of the
metric, only two independent field equations arise. Insert-
ing these assumptions and the metric from Eq. (16) into the
system of Eqs. (9), (11), (12) and (15) yields

3
(

2A′2 + A′′) (ϕ − ψ) + 3A′ (ϕ′ − ψ ′) + 2ψ ′2

3ψ
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+V

2
+ ϕ′′ − ψ ′′ = −κ2

2

(
χ ′2 + 2U

)
, (17)

6A′2 (ϕ − ψ) + 4A′ (ϕ′ − ψ ′) − 2ψ ′2

3ψ

+V

2
= κ2

2

(
χ ′2 − 2U

)
, (18)

for the two independent field equations,

ϕ′′ + 4A′ϕ′ + 1

8

[
5V − 3

(
ϕVϕ + ψVψ

)]

= −κ2

8

(
3χ ′2 + 10U

)
, (19)

ψ ′′ + 4A′ψ ′ − ψ ′2

2ψ
− 3ψ

8

(
Vψ + Vϕ

) = 0, (20)

for the gravitational scalar fields ϕ and ψ , respectively, and

χ ′′ + 4A′χ ′ −Uχ = 0, (21)

for the matter scalar field χ . One can prove that Eq. (21) is
not an independent equation for the system in the following
manner: take a derivative with respect to y of Eq. (18), use
Eq. (17) to cancel the terms depending on ζ ′′, then use Eqs.
(19) and (20) to cancel the terms depending on ϕ′′ and ψ ′′
respectively, and finally use Eq. (18) itself to cancel the term
depending on V (ϕ, ψ). The result of the stated algebraic
manipulations is Eq. (21), thus proving its dependence on
the remaining equations. Consequently, the system of Eqs.
(17) to (20) fully describes the system in study. The system
consists of four independent equations for the six indepen-
dent variables A, ϕ, ψ , χ , V and U .

3.1 The standard GR case

The well-known GR standard case can be obtained from the
system of Eqs. (17) to (21). This particular case corresponds
to a form of the function f (R,R) as

f (R,R) = f (R) = R. (22)

Using the definition of the scalar field provided in Eq. (6),
one verifies that ϕ = 1 and ψ = 0. Also, from Eq. (7), one
verifies that in this case V = 0. Thus, to obtain the standard
case, one takes the limit ϕ → 1, ψ → 0, and V → 0 of the
modified field equations in Eqs. (17) and (18), which become
respectively

A′′ = −κ2

3
χ ′2, (23)

A′2 = κ2

12

(
χ ′2 − 2U

)
, (24)

where we have used Eq. (24) to cancel the dependency of
Eq. (23) in A′. On the other hand, the particular form of the

function f for the standard case given by Eq. (22) does not
allow for an equivalent scalar-tensor representation of the
theory due to the fact that the determinant of its Jacobian
matrix vanishes. This implies that the relationship between
the scalar fields ϕ and ψ with R and R is degenerate. The
equations of motion for the scalar fields, i.e., Eqs. (19) and
(20) are thus effectively removed from the system.

Furthermore, one can prove that the equation of motion
for the scalar field χ given by Eq. (21) is not independent of
the two equations above. To do so, one takes the derivative
of Eq. (24) with respect to y and uses Eq. (23) to cancel the
term depending on A′′, obtaining Eq. (21) as a result.

It is common to encounter Eqs. (23) and (24) in the lit-
erature with κ2 = 2. To ease the comparison between our
results in the upcoming sections and the available literature,
we shall consider κ2 = 2 from this point onward.

3.2 Solution without matter (χ = 0)

For simplicity, let us start by considering a brane model sup-
ported solely by the scalar fields ϕ and ψ , i.e., without the
matter field χ , which results in Eq. (21) being automatically
satisfied. Furthermore, we shall assume that the dependency
of the potential V in the scalar fields ϕ and ψ is of the form
V (ϕ − ψ), as commonly considered in literature [41,44].
This choice is made so that the potential is a function of the
coupling between R and the scalar fields ϕ and ψ in Eq.(8).
In this case, the partial derivatives of V become related by
Vϕ = −Vψ ≡ V̂ . Subtracting Eq. (18) from Eq. (17) and
imposing the assumptions mentioned above leads to

3 (ϕ − ψ) A′′ − (
ϕ′ − ψ ′) A′ + 4ψ ′2

3ψ
+ ϕ′′ − ψ ′′ = 0. (25)

On the other hand, the equations for the scalar fields given in
Eqs. (19) and (20) become

ϕ′′ + 4A′ϕ′ + 1

8

[
5V − 3 (ϕ − ψ) V̂

]
= 0, (26)

ψ ′′ + 4A′ψ ′ − ψ ′2

2ψ
= 0. (27)

Finally, an equation relating V to V̂ arises from a derivative
of V (ϕ (y) , ψ (y)) with respect to y using the chain rule,
which results in

dV

dy
= V̂ (y)

(
ϕ′ − ψ ′) . (28)

The system of Eqs. (25) to (28) consists of a system of
four independent equations to the five unknowns ϕ, ψ , V ,
V̂ , and A. Thus, the system is under-determined and an extra
constraint must be imposed to close the system. We choose
to specify the form of the warp function A to be the usual
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Fig. 1 Numerical solutions for the scalar field ϕ (y) from Sect. 3.2
with ψ0 = 1, V0 = 1, A0 = 1 and k = 1. The scalar field satisfies
the boundary condition ϕ (0) = ϕ0 and approaches an asymptotically
constant value for |y| � 1, as expected

form for a thick-brane solution:

A (y) = A0 ln [sech (ky)] , (29)

where A0 and k are constants and A0 in particular must be
defined positive. Let us focus on even solutions for the scalar
fields ϕ and ψ (and consequently V ). These solutions must
satisfy the boundary conditions ϕ′ (0) = ψ ′ (0) = 0. Fur-
thermore, let us denote ϕ (0) = ϕ0 and ψ (0) = ψ0 their val-
ues at the origin. In the same way, we will have V ′ (0) = 0
and V (0) = V0. Inserting these boundary conditions into
Eq. (25) yields

ϕ′′ − ψ ′′ = 3A0k
2 (ϕ0 − ψ0) . (30)

In order to preserve the positivity of the factor ϕ − ψ in Eq.
(8), we should impose ϕ0 > ψ0. This ensures that at y = 0 we
have ϕ′′ (0) > ψ ′′ (0). We shall look for solutions for which
the positiveness of this factor is maintained throughout the
entire range of y.

As can be seen from Eq. (27), imposing a boundary con-
dition ψ ′ (0) = 0 will also set ψ ′′ (0) = 0, and thus the only
possible even solution for ψ is the constant solution ψ = ψ0.
We shall thus consider the constant ψ0 as a free parameter
and do not provide plots for the function ψ (y). On the other
hand, the numerical solutions for ϕ (y) are plotted in Fig. 1.
These solutions satisfy the boundary condition ϕ (0) = 0,
grow outwards from y = 0 as expected from the positive-
ness of ϕ′′ arising from Eq. (30) with ψ ′′ = 0, and approach
a constant value for |y| � 1. The shape of these solutions is
independent of the boundary conditions imposed for V and
ψ , but they should only be considered as long as ϕ0 > ψ0.

Numerical solutions for the potential V (y) are provided
in Fig. 2. We see in the left panel that for V0 � 1 the potential
has a positive concavity at the origin but eventually turns over
and approaches asymptotically a negative constant. On the
other hand, for V0 � 5 the potential is always increasing and

approaches asymptotically a positive constant. The transition
between these two behaviors occurs at V0 ∼ 3.5. A more
detailed view of this transition is provided in the right panel.

The solutions provided in this section are consistent with
the required localization of gravity; see Sect. 4 for further
details.

3.3 Solution with matter 1: Ansatz for the matter field χ

and the matter potential U

In this section, we shall obtain a solution for a thick brain
in the presence of the matter field χ . In order to close the
system of Eqs. (17) to (20) one has to impose two constraints
into the system. We choose to set the forms of the potential
U (χ) and the scalar field χ as

U (χ) = 1

2
W 2

χ − 4

3
W (χ)2 , (31)

χ (y) = tanh y, (32)

respectively, where W (χ) is called the super-potential of χ

and takes the form

W (χ) = χ − 1

3
χ3. (33)

The motivation behind the forms of the mater field χ , the
potential U and the super-potential W selected in Eqs. (31)
to (33) is their close connection to the standard GR case,
which have motivated these forms to be widely used in the
literature. Inserting Eqs. (31) to (33) into Eq. (21) provides
a differential equation for the warp function A which can be
solved immediately to yield a solution of the form

A (y) = A0 − 4

9
ln (cosh y) + 1

9
sech2 y, (34)

where A0 is a dimensionless constant which is usually set in
such a way that the warp function has a value at the origin
A (0) = 0. For this purpose, we set A0 = −1/9.

Similarly to the previous case, we assume that the depen-
dency of the potential V in ϕ and ψ is of the form V (ϕ − ψ)

in such a way that its derivatives become Vϕ = −Vψ = V̂ .
Subtracting Eq. (18) from Eq. (17) and imposing the assump-
tions mentioned above leads to

ϕ′′ − ψ ′′ + 4ψ ′

3ψ
− 2 sech4y (φ − ψ − 1)

+2

9

(
ϕ′ − ψ ′) tanh y

(
2 + sech2y

)
= 0. (35)

The equations for the scalar fields given in Eqs. (19) and (20)
become then

ϕ′′ − 24

27
ϕ′ (2 + sech2y

)
tanh y + 1

8

[
5V − 3V̂ (ϕ − ψ)

]

= 2

27

(
5 sech6y + 42 sech4y − 20

)
, (36)
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Fig. 2 Numerical solutions for the potential V (y) from Sect. 3.2 with
ϕ0 = 2, ψ0 = 1, A0 = 1 and k = 1. In the left panel we provide solu-
tions for the boundary conditions V0 = 1.2, V0 = 3.7 and V0 = 5.0. It

is visible that there is a transition in the behavior of V (y) depending on
V0. In the right panel, we provide the solutions with V0 = 3.0, V0 = 3.4
and V0 = 3.9 for a more detailed view of this transition

and

ψ ′′ − 8

9
[2 + cosh (2y)] sech2y tanh y ψ ′ − ψ ′2

2ψ
= 0, (37)

respectively. Note that the previous relationship between V
and V̂ given in Eq. (28) still hold, as in this section we have
imposed the same constraint on V and defined V̂ in the same
way.

The set of Eqs. (35) to (37), along with the relationship pro-
vided in Eq. (28) constitute a system of four equations to the
four unknowns ϕ, ψ , V and V̂ , and thus the system is deter-
mined. Again, we focus on even solutions for ϕ and ψ (and
consequently V ). To do so, we impose the same boundary
conditions at the origin, i.e., ϕ′ (0) = ψ ′ (0) = 0, ϕ (0) = ϕ0,
and ψ (0) = ψ0. As a consequence, we have also V ′ (0) = 0.
Inserting these boundary conditions into Eq. (35) leads to

ϕ′′ − ψ ′′ = 2 (ϕ0 − ψ0 − 1) . (38)

As we have already mentioned, in order to preserve the pos-
itivity of the factor ϕ −ψ we should impose ϕ0 > ψ0. How-
ever, to ensure that ϕ′′ (0) > ψ ′′ (0), we must also guarantee
that ϕ−ψ > 1, thus preserving the positiveness of the factor
ϕ − ψ throughout the whole range of y.

Similarly to the case without matter, imposing a bound-
ary condition ψ ′ (0) = 0 in Eq. (37) will consequently set
ψ ′′ (0) = 0, and thus the only possible even solution for ψ

is the constant solution ψ = ψ0. Therefore, ψ0 takes again
the role of a free parameter in the problem. The numeri-
cal solutions for the scalar field ϕ are plotted in Fig. 3. These
solutions satisfy the boundary condition ϕ′ (0) = 0 and grow
outwards from the origin, approaching a constant asymptotic
value for |y| � 1. The shape of these solutions is indepen-
dent of the boundary conditions for V and ψ but should only
be considered for ϕ0 − ψ0 > 1.

Fig. 3 Numerical solutions for the scalar field ϕ (y) from Sect. 3.3 with
ψ0 = 1 and V0 = 1. The scalar field satisfies the boundary condition
ϕ (0) = ϕ0 and approaches an asymptotically constant value for |y| �
1, as expected

Finally, numerical solutions for the potential V (y) are
given in Fig. 4. Similarly to the case without matter, the
potential always presents a positive concavity at the origin
but, depending on the boundary conditions V0 and ϕ0, its
behavior might eventually turn over and approach negative
values (for V0 � 5 with ϕ0 = 10) or grow throughout the
whole range of y (for V0 � 15 with ϕ0 = 10). The turning
point between the two behaviors occurs at roughly V0 ∼ 10.

The solutions provided in this section are consistent with
the required localization of gravity, as we further describe in
Sect. 4.

3.4 Solution with matter 2: Ansatz for the warp function A
and the scalar field ϕ

To complete the analysis, in this section we will derive
another solution for a thick brane in the presence of a matter
field χ , thus still having the freedom to impose two con-
straints to close the system of Eqs. (17) to (20). In this case,
we shall leave both the matter field χ and its potential U as
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Fig. 4 Numerical solutions for the potential V (y) from Sect. 3.3 with
ϕ0 = 10, and ψ0 = 1. Similarly to the case without matter, the behavior
of the potential is strongly dependent on the boundary conditions V0
and ϕ0

free functions and provide the following ansatze for the warp
function A and the scalar field ϕ:

A (y) = A0 ln [sech (ky)] , (39)

ϕ (y) = ϕ0 tanh2 (ky) , (40)

where A0 and ϕ0 are constants defined positive and k is an
arbitrary constant.

Following the same reasoning as in previous cases, we
assume that the dependency of the potential V in ϕ and ψ

is of the form V (ϕ − ψ) in such a way that its derivatives
become Vϕ = −Vψ = V̂ . Subtracting Eq. (18) from Eq. (17)
and inserting Eqs. (39) and (40) yields

ψ ′′ + A0k tanh (ky) ψ ′ − 4ψ ′2

3ψ

−3A0k
2 sech2 (ky) ψ = 2χ ′2 − ϕ0k

2sech2 ×
× (ky)

[
4 + A0 − (6 + A0) sech2 (ky)

]
. (41)

Inserting the same Eqs. (39) and (40) into the Eqs. (19) to
(21) yields the equations for the scalar fields

1

8

[
5V − 3V̂

(
ϕ0 tanh2 (ky) − ψ

)]
+ 5

2
U + 3

4
χ ′2

= 16ϕ0k
2 [(1+2A0) cosh (2ky)−2 (1+A0)] ×

×sech4 (ky), (42)

ψ ′′ − 4A0k tanh (ky) ψ ′ − ψ ′2

2ψ
= 0, (43)

χ ′′ − 4A0k tanh (ky) χ ′ +Uχ = 0, (44)

respectively. Note that the previous relationship between V
and V̂ given in Eq. (28) still hold, as in this section we have
imposed the same constraint on V and defined V̂ in the same
way. The system of Eqs. (41) to (44), along with Eq. (28) is
a system of five equations to the five unknowns U , V , V̂ , ψ ,
and χ , and thus it is determined. A complete analytic solution
for this system can be found through the following reasoning.
We will not write explicitly the forms of the solutions due to

Fig. 5 Solutions for the matter field χ (y) from Sect. 3.4 with ϕ0 = 1,
A0 = 1 and k = 1. The solutions cross the origin y = 0 and approach
asymptotically constant values for |y| � 1

their lengthy character. Instead we will provide the respective
plots.

Focusing on even solutions for the scalar field ψ , we have
to impose the boundary condition ψ (0) = 0 into Eq. (43). As
a consequence, we obtain as before that ψ ′′ (0) = 0 and thus
the only possible even solution for ψ is the constant solution
ψ = ψ0, that we take to be a free parameter of the system.
Now, inserting this result into Eq. (41) yields a decoupled
differential equation for χ which can be solved immediatly.
The solutions of this equation will be real functions if the
parameters satisfy the following relation:

ψ0 < − 2ϕ0

3A0
= ψc, (45)

where ψc is the critical value. The solution obtained for χ

is analytic and can be written in terms of elliptic functions.
We provide a plot of this solution for different combinations
of parameters in Fig. 5. For values of ψ0 close to the critical
value ψc given in Eq. (45), the matter field χ has a triple step
shape, which becomes less evident with a decrease in ψ0.

Inserting the previous solution for χ into Eq. (44) allows
us to solve for U ′ (χ), which can then be transformed into
U ′ (y) via the chain rule and integrated to obtain a solutions
for U (y) as

U (y) = k2

4
sech2 (ky) [(1 + 4A0) (4ϕ0 + A0ϕ0 − 3A0ψ0)

− ϕ0 (6 + A0) (1 + 2A0) sech2 (ky)
]

. (46)

We plot this solution for different combinations of param-
eters in Fig. 6. The shape of the potential does not change
dramatically, but it gets steeper with a decrease in ψ0.

Finally, Eq. (41) can be solved with respect to V̂ and
the corresponding solution can be inserted in Eq. (28) and
directly integrated to obtain solutions for the potential V ,
which are
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Fig. 6 Solutions for the matter potential U (y) from Sect. 3.4 with
ϕ0 = 1, A0 = 1 and k = 1. The potential gets steeper with a decrease
in ψ0

Fig. 7 Solutions for the potential V (y) from Sect. 3.4 with ϕ0 = 1,
ψ0 = − 2

3 and k = 1. Unlike previous cases, the general shape of the
potential is always the same for the allowed range of parameters

V (y) = −2A0k
2 [6A0 (ϕ0 − ψ0)

+ϕ0 (2 − 5A0cosh (2ky)) sech4 (ky)
]

. (47)

These solutions are plotted in Fig. 7. Unlike the previous
cases studied where a change in the parameters of the problem
could change the shape of the potential drastically, in this case
the general shape of the potential remains the same because
we are restricted by the inequality in Eq. (45).

The solutions provided in this section are consistent with
the required localization of gravity; see Sect. 4 for further
details.

4 Metric perturbations

In this section, we will consider small perturbations of the
metric in the form

ds2 = e2A(y) (
ημν + Hμν(x, y)

)
dxμdxν + dy2. (48)

In addition, we will assume small perturbations on the scalar
field χ such that χ → χ + χ̃ (x, y). In this case, one can

shown that the (μν) components of the linearized field equa-
tions are

(ϕ − ψ)

{
− e2A

[
1

2
H ′′

μν + 2A′H ′
μν + 1

2
(ln(ϕ − ψ))′ H ′

μν

]

−1

2
�(4)Hμν − 1

2
ηαβ

(
∂μ∂νHαβ − ∂μ∂αHνβ − ∂ν∂αHμβ

)

+1

2
e2AημνH

′ [(ln(ϕ − ψ))′ − A′] }

= 2κ2

3
e2AημνUχ χ̃ , (49)

where �(4) = ημν∂μ∂ν . By using the transverse and traceless
gauge (∂μHμν = 0 and ημνHμν = H = 0), the metric per-
turbation decouples from the scalar and the above equation
reduces to

H ′′
μν+[

4A′ + (ln(ϕ − ψ))′
]
H ′

μν+e−2A�(4)Hμν = 0. (50)

In order to better understand how this equation relates to
stability, we will transform it into a Schrödinger-like equa-
tion. First, we make a coordinate transformation dy = eAdz
which makes the metric (16) conformally flat. In the new
variable z, the Eq. (50) can be written as

∂2
z Hμν + (3∂z A + ∂z ln(ϕ − ψ)) ∂z Hμν + �(4)Hμν = 0.

(51)

Now, we remove the term with first order derivative in Eq.
(51) by the following redefinition of the tensor perturbation:

Hμν(x, z) = e−3A(z)/2

√
ϕ(z) − ψ(z)

Ĥμν(x, z). (52)

Thus, Eq. (51) takes the form

−∂2
z Ĥμν +

(
α2(z) − ∂zα(z)

)
Ĥμν − �(4) Ĥμν = 0, (53)

where we have defined

α(z) ≡ −3

2
∂z A − 1

2
∂z ln(ϕ − ψ). (54)

Finally, we perform the decomposition Ĥμν(x, z) =
ξμν(x)H(z) to obtain the Klein–Gordon equation
�(4)ξμν(x) = m2ξμν(x) and the Schrödinger-like equation

[
−∂2

z + u(z)
]
H(z) = m2H(z), (55)

where

u(z) = α2 − ∂zα. (56)
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Fig. 8 Potential u (y) (left panel) and graviton zero mode H0 (y) (right panel) for the solutions described in Sect. 3.2 with ϕ0 = 2, ψ0 = 1,
A0 = 1 and V0 = 1. The shape of the potential U is always a double well. The finiteness of the integral of H0 implies that the zero graviton mode
is localized on the brane

Fig. 9 Potential u (y) (left panel) and graviton zero mode H0 (y) (right panel) for the solutions described in Sect. 3.3 with V0 = 1 and ψ0 = 1.
Depending on the choice of ϕ0, the potential U might be a single or a double well. The finiteness of the integral of H0 implies that the zero graviton
mode is localized

Note that in Eq. (55) the zero mode (m2 = 0) represents the
massless graviton, while the Kaluza–Klein modes (m2 > 0)
represent massive excitations. Note also that Eq. (55) can be
factorized as

Q†QH(z) = m2H(z), (57)

with operators Q and Q† given by

Q = ∂z + α(z) and Q† = −∂z + α(z). (58)

This factorization shows that the Schrödinger-like equation
cannot support states with negative eigenvalues, i.e.,m2 ≥ 0.
Thus, the system is stable against small perturbations of the
metric.

The zero mode is obtained by performing QH0(z) = 0.
The result is

H0(z) = N
√

ϕ − ψ e3A/2, (59)

where N is a normalization constant. To ensure that 4-
dimensional gravity can be recovered on the brane, the zero

mode must be normalizable. The normalization constant can
thus be obtained from

∫
H2

0 dz = N 2
∫

(ϕ − ψ)e2Ady = 1. (60)

For the model without matter from Sect. 3.2, it can be show
that the integral in Eq. (60) is finite and the normalization
constant N can be computed for different combinations of
parameters. It can also be shown that the shape of the poten-
tial u (y) given in Eq. (56) is independent of the boundary
conditions considered for ϕ, ψ and V , being only affected
by changes in the warp function A. Thus, in Fig. 8 we dis-
play both the potential u (y) and the zero modes H0 (y) for
different values of k, keeping the remaining free parameters
constant. Similarly to what happens in the non-generalized
version of the hybrid metric-Palatini gravity, the shape of the
potential u is always a double well. Given the finiteness of
the integral of the zero mode H0, the graviton zero mode can
thus be localized on the brane.

For the models featuring a matter field χ in Sect. 3.3 and
Sect. 3.4, the integral in Eq. (60) is again finite and the nor-
malization constant N can be computed for different combi-

123



20 Page 10 of 12 Eur. Phys. J. C (2021) 81 :20

Fig. 10 Potential u (y) (left panel) and graviton zero mode H0 (y)
(right panel) for the solutions described in Sect. 3.4 with A0 = 1,
ψ0 = − 2

3 , and k = 1. Depending on the choice of ϕ0, the potential

U might be a single or a double well, potentially leading to the gravi-
ton mode to be split in two peaks. The finiteness of the integral of H0
implies that the zero graviton mode is localized

nations of parameters. The main difference between the case
without matter and the teo studied cases in the presence of a
matter field χ is that the shape of potential u (y) can be either
a single or a double well depending on the choice of param-
eters, unlike the case without matter where the potential was
always a double well, see Figs. 9, and 10. For the model in
Sect. 3.3, a change of the global shape of the potential u does
not imply a dramatic change in the graviton zero mode. How-
ever, for the model in Sect. 3.4, under an appropriate choice
of parameters, this change of shape in the potential implies
that the graviton zero mode H0 is localized in a wider region
around the origin, suggesting that the braneworld seems to
support internal structure. Given the finiteness of the inte-
gral of H0 over y, one concludes that for both the cases with
matter the generalized hybrid metric-Palatini braneworld is
stable against fluctuations in the metric.

5 Summary and discussion

As is well-known, in the standard braneworld scenario, the
presence of braneworld configurations with internal structure
appeared, in the presence of two scalar fields, in the form of
a Bloch brane [56]. This suggests that one could investigate
braneworld scenarios within the scalar-tensor representation
of the generalized hybrid-Palatini gravity, which consists of
two distinct scalar fields, and was in fact explored in the
present work. Indeed, an interesting possibility would be to
consider two extra fields with standard dynamics, as consid-
ered in [56]. Another possibility would be to consider the
two extra fields with modified dynamics, as recently consid-
ered in [75]. The third model investigated in Ref. [75], in
particular, was shown to engender an interesting mechanism
to induce internal structure into the brane, so it can also be
used in the present context to show its efficiency concerning
the induction of internal structure in the brane.

More specifically, in this work, we studied several 5-
dimensional braneworld scenarios within the context of the
generalized hybrid metric-Palatini gravity. We investigated
two distinct cases, namely, the presence and the absence of
the extra scalar field, χ . In the absence of the field χ , we found
an interesting solution, and in the presence of χ , we studied
two distinct possibilities. One of the models in the presence
of a matter field χ showed that variations of parameters do
not add new qualitative effects in the profile of the braneworld
solutions. However, the third case studied in Sect. 3.4 showed
an interesting effect which was also found in [38], concern-
ing the spreading of the zero mode. Although this new effect
is different, it suggests the possibility to study braneworld
configurations that engender internal structure.

The presence of internal structure has also appeared
before, in the context of modified theories of gravity with
non-constant curvature [60,65,67], so this can also be con-
sidered in the present context of generalized metric-Palatini
gravity. Moreover, is would be of interest to understand how
the mechanism used in [62,75] to make the brane asymmetric
can be extended to the novel scenario described in the present
work. Another issue of current interest concerns the entrap-
ment of fermions and gauge fields inside the brane within
the generalized metric-Palatini gravity context explored in
the present work. The above issues deserve further investiga-
tions, and we are now considering some possibilities, hoping
to report on them in the near future.
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