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Abstract In string theory the closed-string massless NS-
NS sector forms a multiplet ofO(D, D) symmetry. This sug-
gests a specific modification to General Relativity in which
the entire NS-NS sector is promoted to stringy graviton fields.
Imposing off-shell O(D, D) symmetry fixes the correct cou-
plings to other matter fields and the Einstein field equations
are enriched to comprise D2+1 components, dubbed recently
as the Einstein Double Field Equations. Here we explore the
cosmological implications of this framework. We derive the
most general homogeneous and isotropic ansatzes for both
stringy graviton fields and the O(D, D)-covariant energy-
momentum tensor. Crucially, the former admits space-filling
magnetic H -flux. Substituting them into the Einstein Dou-
ble Field Equations, we obtain the O(D, D) completion of
the Friedmann equations along with a generalized continu-
ity equation. We discuss how solutions in this framework
may be characterized by two equation-of-state parameters,
w and λ, where the latter characterizes the relative inten-
sities of scalar and tensor forces. When λ + 3w = 1, the
dilaton remains constant throughout the cosmological evolu-
tion, and one recovers the standard Friedmann equations for
generic matter content (i.e. for any w). We further point out
that, in contrast to General Relativity, neither an O(D, D)-
symmetric cosmological constant nor a scalar field with pos-
itive energy density gives rise to a de Sitter solution.

Jeong-Hyuck Park: On sabbatical leave from 2.

Preprint: YITP-19-40, IPMU19-0074.

a e-mail: sangus@ewha.ac.kr
b e-mail: khcho23@sogang.ac.kr
c e-mail: guilherme.franzmann@mail.mcgill.ca
d e-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp
e e-mail: park@sogang.ac.kr (corresponding author)

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 The O(D, D) paradigm: review of the Einstein Dou-

ble Field Equations . . . . . . . . . . . . . . . . . . 3
3 O(D, D) completion of the Friedmann equations . 4

3.1 Examples of stringy energy-momentum tensors
in cosmology . . . . . . . . . . . . . . . . . . 7

3.2 Energy conditions . . . . . . . . . . . . . . . . 7
4 Solutions . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Generalized perfect fluid . . . . . . . . . . . . 8
4.2 Analytic solutions . . . . . . . . . . . . . . . . 9

5 de Sitter solutions? . . . . . . . . . . . . . . . . . . 13
5.1 String frame . . . . . . . . . . . . . . . . . . . 14
5.2 Einstein frame . . . . . . . . . . . . . . . . . . 14

6 Summary and discussion . . . . . . . . . . . . . . . 15
Appendix . . . . . . . . . . . . . . . . . . . . . . . . 16
A Cosmological principle and stringy energy-momentum

tensor in DFT . . . . . . . . . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . 18

1 Introduction

Despite its many successes, General Relativity (GR) faces
several well-known shortcomings when applied to cosmol-
ogy. In order to explain the large-scale dynamics of the uni-
verse, one needs to introduce dark matter and dark energy.
Furthermore, solving the horizon and flatness problems
requires new dynamics, such as inflation or bouncing cos-
mologies, involving additional degrees of freedom which
may come into play near the strong-coupling regime at which
GR breaks down.

In order to make quantitative predictions about the very
early universe, we need to invoke a consistent theory of quan-
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tum gravity. String theory is currently the best-developed
candidate, and its effects on cosmology may be studied in the
low-energy effective supergravity (SUGRA) limit at weak
coupling [1]. However, string theory does not predict GR
exactly. In GR the spacetime metric, gμν , is the only gravita-
tional field. On the other hand, string theory predicts its own
gravity, or Stringy Gravity, of which the fundamental fields
consist of the massless modes of the closed string (or super-
string NS-NS sector): the metric, gμν , the Kalb–Ramond
(NS-NS) two-form, Bμν , and the dilaton, φ. Traditionally,
in the search for superstring vacua, one treats the dilaton and
B-field as moduli which should be dynamically stabilized
by some mechanism [2].1 Assuming this has been done, one
often then performs a Weyl transformation on the metric,
bringing it from the original ‘string frame’ to the ‘Einstein
frame’: gE

μν = gμν exp(−2φ0), where φ0 is the dilaton vac-
uum expectation value in four-dimensional spacetime.

More generally, one can consider the other closed-string
modes, the scalar dilaton φ and the Kalb–Ramond two-form
potential Bμν , as dynamical degrees of freedom in addition
to the spacetime metric. The inclusion of the dilaton leads
to the well-studied SUGRA cosmology, which has a long
and rich history [1,4–13]. However, it is not clear within the
framework of SUGRA how one should couple the matter
sector to the gravitational sector, especially regarding the
dilaton field and the B-field. Indeed, most prior work on
this topic considers a minimal coupling to the metric and no
coupling to the dilaton (for an exception, see [6,7]2) nor to
the B-field (c.f. dual scalar axion [14]). It would be desirable
to find a principle which can constrain the allowed coupling
on a more fundamental level.

To this end, we recall that symmetry has been the guid-
ing principle of modern physics, dictating which interac-
tions are allowed. In SUGRA the whole set of closed-string
massless NS-NS fields {gμν, Bμν, φ} transform into each
other under O(D, D) rotations, where D is the number of
spacetime dimensions. However, O(D, D) is not a symme-
try in the usual sense, as a particular choice of {gμν, Bμν, φ},
i.e. a particular background, typically preserves at most
only a residual discrete subgroup of O(D, D), known as
T-duality. A well-known example of T-duality is the small-
large duality R ↔ 1/R, which heuristically leads to the
exchange of ‘momentum’ and ‘winding’ modes of the closed
string [15,16]. In recent years O(D, D) has been elevated

1 However, the O(D, D) symmetry fixes the minimal coupling of the
closed-string massless sector to a point particle, which in string frame
results in the usual relativistic particle action prescribing geodesic
motion. Thus, for a point particle the Equivalence Principle is still valid
in string frame, whether the dilaton is frozen or not [3].
2 Note that the authors of [6,7] considered spatialO(d, d) symmetry in
order to fix the matter-dilaton coupling, an on-shell symmetry present
only at the background level, whereas theO(D, D) symmetry of Double
Field Theory is off-shell, valid for any background.

to a manifest symmetry in the formalism of Double Field
Theory (DFT) [17–22] (as well as doubled string world-
sheet actions [23–27]), in which D + D coordinates are
used to describe D-dimensional physics, with actual physi-
cal points identified as gauge orbits in the doubled coordi-
nate system [28,29]. This framework encompasses not only
different SUGRA backgrounds such as Type IIA and IIB
SUGRA, but also includes non-Riemannian gravities such as
Newton–Cartan, ultra-relativistic Carroll, etc., all of which
are unified as different backgrounds of a single theory [30].

It is therefore natural to expectO(D, D), when interpreted
as an exact symmetry of the full non-perturbative string the-
ory, to constrain the form of allowed interactions. With this
in mind, in this work we assume the O(D, D) symmetry as a
first principle. That is to say, although the initial motivation
of DFT was to reformulate SUGRA in an O(D, D) manifest
manner, one may well postulate this ‘O(D, D) Principle’ as
a starting point, a priori independent of supersymmetry. In
this spirit, DFT has recently been extended to also incorporate
matter content — not only conventional string modes such as
the Ramond-Ramond [31–33] or R-NS sectors [34–36], but
also the Standard Model [37] c.f. [38] — in a consistent man-
ner which preserves the O(D, D) symmetry.3 The interac-
tion between DFT and (generic) matter is then described via
the so-called Einstein Double Field Equations (EDFEs) [39]
(see also [40] for a short summary), which accommodate
the gravitational sector together with matter while preserv-
ing invariance under the O(D, D) symmetry. This ‘Stringy
Gravity’ thus represents theO(D, D)-completion of General
Relativity and generalizes SUGRA cosmology. Earlier dis-
cussions on the cosmological implications of the O(D, D)

symmetry include [41–43] while other attempts to incorpo-
rate matter have also been considered in [44–47].

With the EDFEs as our starting point, in this work
we derive the generalized Friedmann equations which fol-
low from this overarching O(D, D)-symmetric framework.
Hereafter, we refer to them as the O(D, D)-complete Fried-
mann Equations (OFEs). As will be shown, imposing the
O(D, D) Principle results in modifications to the conven-
tional SUGRA equations for Riemannian backgrounds. Per-
haps surprisingly, one finds that whenever the dilaton is kept
constant, whether dynamically or through some appropriate
coupling to the matter sector, the standard Friedmann equa-
tions are recovered in the presence of any matter sources, not
just for a radiation-dominated universe as is the case in the
usual string cosmology [4].

3 If the Standard Model is to be realized within string theory, one may
wonder if the O(D, D) symmetry is preserved in Nature. In fact, [37]
shows that the pure Standard Model without any extra physical degrees
of freedom can be coupled to DFT in a manner compatible with the
O(D, D) Principle.
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We stress that by requiring interactions to be consistent
with the underlying off-shell O(D, D) symmetry, we fix
uniquely the couplings of {gμν, Bμν, φ} to matter. Hence,
while this ‘top-down’ approach reproduces many known
results in string cosmology and recasts them into a more
general framework, theO(D, D) Principle may also be inter-
preted as a restricting criterion for model-building.

The organization of the present paper is as follows. In
Sect. 2 we review briefly the Einstein Double Field Equa-
tions [39,40]. In Sect. 3 we derive our main result, the
O(D, D) complete Friedman Equations with D = 4. In
particular, we introduce two equation-of-state parameters,
w (usual) and a new parameter λ which measures the den-
sity ratio between scalar (dilaton) and tensor (metric) grav-
itational forces [6]. In the following subsections we apply
some DFT results from [39] to cosmology: in Sect. 3.1 we
summarize the stringy energy-momentum tensors of various
types of matter; and in Sect. 3.2 we discuss energy conditions.
Appendix A contains a derivation of the most general cosmo-
logical, i.e. homogeneous and isotropic, form of the stringy
energy-momentum tensor within the framework of Double
Field Theory. Section 4 discusses various solutions, such as
a (generalized) perfect fluid, scalar field, and radiation.

In standard cosmology there are several key scenarios in
which the evolution of the universe approaches a de Sitter
spacetime. These include the late-time �-dominated expan-
sion and the hypothesized period of inflation in the early
universe. However, in recent years the question of whether
or not de Sitter solutions can be realized in a consistent
theory of quantum gravity, such as string theory, has been
widely debated (see, for example, [48–62]). Hence in Sect.
5 we investigate in detail the possibility of realizing de Sitter
solutions in O(D, D)-symmetric cosmology, and find that it
appears to require solutions with negative energy density, a
violation of the weak energy condition. We conclude with
comments in Sect. 6.

2 The O(D, D) paradigm: review of the Einstein
Double Field Equations

In General Relativity (GR) the metric, which sets the local
geometry, is the only field responsible for gravitational phe-
nomena. All other fields are classified as additional mat-
ter and couple unambiguously to the geometry via a min-
imal coupling, i.e. promoting ordinary derivatives to covari-
ant ones and generalizing volume elements. This procedure
ensures covariance under both diffeomorphisms and, with
the vielbein formalism, local Lorentz symmetry.

The situation is more involved in supergravity, in which
the (bosonic) gravitational sector includes three different
fields: the metric gμν , the B-field Bμν , and the dilaton
φ. Together with the symmetries from GR, SUGRA is

also invariant under gauge transformations of the B-field.
Although both setups are very similar, in SUGRA not all
of the fields responsible for gravity are also geometric: that
role is exclusively reserved for the metric. Only since the
introduction of DFT [17–22] has it been possible to con-
sider all gravitational fields on the same footing, as being
responsible for defining geometry. Note that the DFT geom-
etry is still not fully understood in the mathematical lit-
erature, and although it recovers Riemannian backgrounds
under certain conditions, it is certainly much more gen-
eral, see e.g. [30,63–77]. The geometrical framework of
DFT allows us to define a generalization of the scalar and
Ricci curvatures, S(0) and PA

C P̄B
DSCD [78] (c.f. [79,80]),

respectively, both of which may reduce to the usual defi-
nitions with a trivial dilaton and B-field. The natural next
step is to include matter content into such a framework:
this was accomplished in [37] and the resulting interac-
tions between gravity and matter are described by the
Einstein Double Field Equations (EDFEs) [39,40],

GAB = 8πGTAB , (2.1)

where the above indices are charged under theO(D, D) sym-
metry group. The left-hand side corresponds to the string-
theoretic extension of the Einstein tensor which is conserved
off-shell [81],4

GAB = 4P[AC P̄B]DSCD − 1

2
JAB S(0) , DAGAB = 0 ,

(2.2)

while the right-hand side is the corresponding generaliza-
tion of the energy-momentum tensor, which is conserved on-
shell [39],

T AB = e2d
(

8P̄ [A
C P

B]
D

δLmatter

δHCD
− 1

2
J AB δLmatter

δd

)
,

DAT
AB = 0 .

(2.3)

These objects respect all symmetries of DFT.
Our starting point for this paper is to consider purely

Riemannian backgrounds in the above equation (c.f. non-
Riemannian ones [30]). In such cases, (2.1) reduces to

Rμν + 2�μ(∂νφ) − 1
4 Hμρσ Hν

ρσ = 8πGK(μν) ,

�ρ
(
e−2φHρμν

)
= 16πGe−2φK[μν] ,

R + 4�φ − 4∂μφ∂μφ − 1
12 HλμνHλμν = 8πGT(0) , (2.4)

4 O(D, D) indices are lowered and raised by J AB and its inverse. For
more details on various aspects of DFT, see Appendix A.
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where R and Rμν stand for the usual Ricci scalar and tensor
in string frame, respectively, while Hμνρ is the field strength
of the B-field. The skew-symmetric K[μν] and the symmet-
ric K(μν) can be understood (up to equations of motion) as
the matter sources for the B-field and the traceless part of
the metric, respectively, while T(0) corresponds to the matter
sourcing the trace of the metric and the dilaton,

T(0) := e2d × δLmatter

δd
. (2.5)

The terms on the right-hand side of the latter two equations
in (2.4) are absent in conventional SUGRA (though the dila-
ton coupling has been considered in the context of spatial
O(d, d) in [6,7]), and their inevitable inclusion above charac-
terizes a modification, or conceptual generalization, of stan-
dard SUGRA cosmology in terms of how the matter sources
are coupled to the stringy gravity sector. The inclusion of
these terms puts all gravitational fields on an equal footing,
and crucially is a direct result of imposing thoroughly the
O(D, D) symmetry on the DFT action coupled to matter.

Together with the above equations, there is also an on-shell
conservation law for the stringy energy-momentum tensor,
arising from ‘doubled’ general covariance. This is also con-
sistent with the fact that the stringy Einstein curvature tensor
is, by construction, covariantly conserved off-shell [81]. On
Riemannian backgrounds this conservation law reduces to
the equations

∇μK(μν) − 2∂μφ K(μν) + 1
2 Hν

λμK[λμ] − 1
2∂νT(0) = 0 ,

∇μ
(
e−2φK[μν]

)
= 0 . (2.6)

The above equations may be derived from the spacetime
action∫

d4x
√−ge−2φ

[
1

16πG

(
R + 4�φ − 4∂μφ∂μφ

− 1
12 HλμνHλμν

)+ Lmatter

]
. (2.7)

This differs from the usual SUGRA cosmology action
by the fact that the O(D, D)-invariant measure, e−2d ≡√−ge−2φ , couples to the entire matter Lagrangian as√−ge−2φLmatter ≡ Lmatter (where Lmatter is the Lagrangian
density of (2.3)) and hence matter is coupled not only to the
metric but also to the dilaton and B-field (through the covari-
ant derivatives). Also note that the metric gμν above is the
string (Jordan)-frame metric rather than the Einstein-frame
metric.

3 O(D, D) completion of the Friedmann equations

In this section we obtain the most general ansatz for a D = 4
homogeneous and isotropic cosmological background. This

allows us to write down the resulting O(D, D) completion
of the Friedmann equations.

The DFT-Killing equations for Riemannian backgrounds
are given by [39] (see Appendix A)

Lζa gμν = 0, Lζa Bμν + ∂μζ̃aν − ∂ν ζ̃aμ = 0 , Lζaφ = 0,

(3.1)

where ζa are ordinary GR Killing vectors, while the ζ̃a are
corresponding one-forms required to complete the parametriza-
tion of DFT isometries. In order to study cosmology we
should consider homogeneous and isotropic backgrounds, in
which case these DFT-Killing vectors will correspond to spa-
tial rotations and translations. In such cases the most general
solution is given by5

ds2 = −N 2(t)dt2 + a2(t)

[
1

1 − kr2 dr
2 + r2d�2

]
,

B(2) = hr2

√
1 − kr2

cos ϑ dr ∧ dϕ ,

φ = φ(t) , (3.2)

where d�2 = dϑ2 + sin2 ϑdϕ2, B(2) = 1
2 Bμνdxμ ∧ dxν ,

k corresponds to the spatial curvature, and h is a constant
corresponding to the magnetic H -flux

H(3) = hr2

√
1 − kr2

sin ϑ dr ∧ dϑ ∧ dϕ . (3.3)

We emphasize that non-trivial H -flux is compatible with the
cosmological principle only for D = 4. Note that the lapse
function N (t) simply fixes the t-coordinate gauge, so at lead-
ing order the solutions are fully characterized by the functions
a(t) and φ(t), as well as the parameters h and k. Moreover,
we must impose the same symmetry conditions on the matter
sector, resulting in the Killing equations6

Lζa Kμν = 0 , Lζa T(0) = 0 . (3.4)

The latter implies that T(0)(t) is a time-dependent function,
while the former implies that Kμν is diagonal and spatially
homogeneous,

Kμ
ν =

(
K t

t (t) 0
0 Kr

r (t)δi j

)
, (3.5)

where K t
t (t) and Kr

r (t) are time-dependent functions, and
K 1

1 = K 2
2 = K 3

3 ≡ Kr
r (t).7

5 Here B(2) is defined up to a gauge term; the resulting H -flux (3.3) is
gauge invariant.
6 Note that the equations of motion (2.4) imply that for homogeneous
and isotropic solutions (3.2), the antisymmetric part of Kμν must vanish.
7 Since the above ansatz has been written for D = 4, we are not consid-
ering critical strings. However, it can easily be generalized to arbitrary
dimensions (but note that the possibility of an isotropic 3-form H -flux
(3.3) is unique to three spatial dimensions).
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Applying the ansatz (3.2) and (3.5) to (2.4), we obtain the
O(D, D)-complete Friedmann equations,

8πG(K t
t + 3Kr

r − T(0))N
2 = −h2N 2

a6 + 6Hφ′

− 2N ′φ′

N
− 4(φ′)2 + 2φ′′ ,

8πGK t
t N

2 = −3HN ′

N
+ 2N ′φ′

N
+ 3a′′

a
− 2φ′′ ,

8πGKr
r N

2 = −h2N 2

2a6 + 2kN 2

a2 + 2H2 − HN ′

N

− 2Hφ′ + a′′

a
, (3.6)

where H ≡ a′/(Na) and the prime denotes differentiation
with respect to the time coordinate of (3.2). Furthermore,
applying the ansatz to (2.6) yields one non-trivial conserva-
tion equation,

d

dt

(
K t

t − 1

2
T(0)

)
= 3NH(Kr

r − K t
t ) + 2φ′K t

t . (3.7)

In order to make contact with known physics we must
rewrite these equations in terms of standard physical quanti-
ties such as energy density and pressure. Our basic assump-
tion is that standard FLRW cosmology should be recovered
from (3.6) and (3.7) in the case where the dilaton is constant,
φ′ = φ′′ = 0, and the H -flux vanishes, h = 0. One might
also be tempted to set T(0) = 0, however this cannot in gen-
eral be the case, as seen, for example, from the first equation
of (3.6): instead we find T(0) = Kμ

μ in this limit. Thus we
should find a definition of energy density and pressure in
terms of Kμ

ν and T(0). We propose

ρ :=
(

−K t
t + 1

2
T(0)

)
e−2φ ,

p :=
(
Kr

r − 1

2
T(0)

)
e−2φ . (3.8)

As we will see shortly, this definition reduces (3.6) to the
standard Friedmann equations in the limit of constant dila-
ton and vanishing H -flux. It is further justified from writing
the Hamiltonian of (2.7) in a cosmological background, from
which one can easily see that the corresponding energy den-
sity should be given by the above formula. Note that the e−2φ

factors arise as a direct consequence of the same overall factor
appearing in the O(D, D)-invariant matter action (2.7). As
shown below, it is through this identification that the SUGRA
cosmological equations can also be recovered.

Using (3.8) and rearranging (3.6), we obtain our primary
result.

The O(D, D)-complete Friedmann Equations (OFEs)
are

8πG

3
ρe2φ + h2

12a6 (3.9)

= H2 − 2

(
φ′

N

)
H + 2

3

(
φ′

N

)2

+ k

a2 ,

4πG

3
(ρ + 3p)e2φ + h2

6a6 (3.10)

= −H2 − H ′

N
+
(

φ′

N

)
H − 2

3

(
φ′

N

)2

+ 1

N

(
φ′

N

)′
,

8πG

3

(
ρe2φ − 1

2
T(0)

)
(3.11)

= −H2 − H ′

N
+ 2

3N

(
φ′

N

)′
,

which imply the conservation equation (c.f. [5])

ρ′ + 3NH(ρ + p) + φ′T(0)e
−2φ = 0 . (3.12)

Specifically when h = k = 0, the cosmological ansatz and
the OFEs are preserved under the entire spatial T-duality,
given in Table 1 below.8

From (3.9) we may solve for the time derivative of the
dilaton,

2φ′

N
= 3H ±

√
3H2 + 16πGρe2φ − 6k

a2 + h2

2a6 . (3.13)

Substituting this into either (3.10) or (3.11), up to the conser-
vation relation (3.12), we obtain an expression for the time
evolution of H ,

H ′

N
= 8πG

(
pe2φ + 1

2
T(0)

)
− 2k

a2 + h2

2a6

±H

√
3H2 + 16πGρe2φ − 6k

a2 + h2

2a6 . (3.14)

8 Although the T-duality relation in Table 1 holds for the special case
h = k = 0 only, we nevertheless describe (3.9), (3.10), and (3.11) as
‘O(D, D)-complete’ for any h and k, since they are the cosmological
equations of motion for O(D, D)-symmetric Lagrangians. Namely, we
impose the O(D, D) Principle on the underlying Lagrangian descrip-
tion, but do not necessarily require the solutions to be O(D, D)-
symmetric.
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Table 1 Cosmological
T-duality transformations
(h = k = 0)

Before N a H φ ρ p T(0) K t
t K r

r

After N a−1 −H φ − 3 ln a a6ρ −a6
(
p + T(0)e−2φ

)
T(0) K t

t −Kr
r

In fact, the OFEs, (3.9), (3.10), and (3.11), are equivalent to
(3.12), (3.13), and (3.14). It also is worthwhile to rearrange
(3.9) and (3.10) to obtain

4πGpe2φ + h2

8a6

= −3

2
H2 + H ′

N
+ 2

(
φ′

N

)
H −

(
φ′

N

)2

+ 1

N

(
φ′

N

)′
− k

2a2 , (3.15)

4πG(ρ + p)e2φ + h2

4a6

= −H ′

N
−
(

φ′

N

)
H + 1

N

(
φ′

N

)′
+ k

a2 . (3.16)

Then all the terms appearing on the left-hand sides of (3.9),
(3.10), (3.11), (3.15), and (3.16) correspond precisely to the
quantities appearing in various energy conditions, as will be
discussed further in Sect. 3.2.

These OFEs represent conceptually a cosmology derived
first and foremost from the O(D, D) Principle, which may
also extend beyond SUGRA. We also re-emphasize that here
the matter sector is coupled covariantly to the dilaton as well
as the string-frame metric, which is again a direct conse-
quence of extending the O(D, D) symmetry of the DFT
gravitational sector to a generic matter sector. In practice the
origin of matter in D dimensions can be diverse: while it may
arise directly from the massless sectors of ten-dimensional
superstring theories, in lower-dimensional effective field the-
ories (which may break supersymmetry) any coupling which
is not forbidden should in principle appear. The equations
(3.9)–(3.11) may then characterize the cosmological evolu-
tion of any matter contributions which respect the O(D, D)

Principle (but not necessarily supersymmetry).
It is known that in SUGRA, when the dilaton is stabilized

(in the absence of spatial curvature and with trivial B-field)
one recovers a radiation-dominated universe, with a linear
barotropic equation of state given by w = 1/3 in D = 4 [4].
In the present case, for vanishing H -flux and constant dilaton,
for which we choose φ = 0 without loss of generality, the
OFEs reduce to

H2 = 8πG

3
ρ − k

a2 ,

ä

a
= −4πG

3
(ρ + 3p) ,

T(0) = ρ − 3p , (3.17)

where we have chosen cosmic gauge (N = 1), with the
dot ‘˙’ denoting differentiation with respect to cosmic time.
The first two equations are the standard Friedmann equations
for generic matter content, while the final equation fixes T(0)

in terms of density and pressure. Therefore, the low-energy
DFT limit with a stabilized dilaton is consistent with intro-
ducing any type of matter (including extended objects such as
D-branes and NS-branes [82–86]), as opposed to only radi-
ation. This is surprising and hints towards the fact that the
current framework might be the natural extension of GR to
higher energies.

Looking to the last equation above, it is also clear that
in the limit of vanishing T(0) one recovers standard SUGRA
cosmology, for which the equation of state corresponds to
radiation if the dilaton is stabilized. With that in mind, we
may define the ratios:

w := p

ρ
; λ := T(0)e−2φ

ρ
. (3.18)

In general these are not necessarily constant, but may be time-
dependent functions. However, in the case where they are
constant,9 w is the conventional parameter corresponding to
the effective pressure of the generalized fluid, while the new
parameter, λ, measures the density rate at which the matter
is coupled to the dilaton in comparison with the coupling
to the metric [6]. Since the dilaton is now also part of the
gravity sector, naturally one can understand dilaton-induced
interactions as an additional component of the gravitational
interactions of matter. Note that for a general barotropic fluid
the quantity λ should be provided a priori, so one can think of
it as providing a generalized equation of state, in conjunction
with w. In general, we expect that different types of matter
satisfying the O(D, D) Principle will yield various values of
w andλ, since in our frameworkρ, p, andT(0) are independent
a priori (at least conceptually) due to the dilatonic coupling
to matter (for concrete examples, see Sect. 2.2 of [39]). Thus
a perfect fluid with a linear equation of state in an O(D, D)-
covariant cosmological background would be characterized
by two parameters, w and λ. We will discuss this further and
present some examples in Sect. 4.

The appearance of T(0) is the main feature that distin-
guishes the OFEs from the standard SUGRA cosmological
backgrounds studied in the literature (see [1] for a review).
Thus in the next subsection we summarize how the stringy

9 This generalizes a linear barotropic equation of state, with ρ/p =
1/w and T(0)e−2φ/p = λ/w.
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energy-momentum tensor, in particular T(0), is evaluated for
different types of matter content. Note that in all cases where
the dilaton is minimally coupled (i.e. via the DFT volume ele-
ment) to a dilaton-independent spacetime Lagrangian Lmatter,
we find T(0) = −2L matter. Hence in such cases, vanishing T(0)

simply corresponds to the Lagrangian vanishing on-shell.

3.1 Examples of stringy energy-momentum tensors in
cosmology

In [39] many different examples of matter content were con-
sidered, with the stringy energy-momentum tensor compo-
nents Kμν and T(0) computed for each. Here we collect and
summarize these results, and comment on their respective
cosmological implications.

• Cosmological constant: The DFT cosmological con-
stant simply couples minimally to the DFT volume ele-
ment, which crucially includes the dilaton [78]. Vary-
ing such a term in the action gives a non-vanishing con-
tribution only for T(0), such that Kμν = 0 and T(0) =

1
4πG�DFT.

• Scalar field: The canonical Lagrangian for a scalar field
� in DFT also couples minimally to the dilaton, and fur-
ther couples linearly to the (inverse) string-frame metric,
giving Kμν = ∂μ�∂ν� and T(0) = −2L�. In particular,
we will see later in (4.46) that this implies λ = −2w.
The presence of non-zero T(0) in the OFEs should have
intriguing consequences for the general dynamics of a
scalar field in cosmological O(D, D)-symmetric back-
grounds. In particular, inflationary models in the context
of supergravity should be revisited in future work.

• Fermionic fields: The fermionic Lagrangian is propor-
tional to its equation of motion, thus minimal dilaton cou-
pling implies that T(0) vanishes on-shell. Furthermore, it
turns out that in this case we may change variables to a
spinor density whose Lagrangian decouples completely
from the dilaton, giving T(0) = 0 even off-shell. How-
ever, in general Kμν = − 1

2
√

2
(ψ̄γμ�νψ − �νψ̄γμψ) is

asymmetric.
• Gauge fields: (Heterotic) Yang–Mills fields also cou-

ple minimally to the dilaton in DFT [37,38,87–89] and
consequently have a non-zero dilaton charge, given by
T(0) = −2LYM [39], similarly to the scalar case. This
implies that whenever the dilaton is dynamical, the fine
structure constant may vary, leading to significant obser-
vational constraints [90,91]. We leave a detailed analysis
of these constraints to future work, and for now content
ourselves to look for solutions where the dilaton is either
constant or slowly varying at late times.

• Ramond–Ramondsector:With anO(D, D)-symmetric
unifying formulation [33], T(0) = 0 [39].

• Point Particle sources: It has been shown that T(0) van-
ishes for this case. The point particle follows geodesics
defined with respect to the string-frame metric [3].

• String sources: To zeroth order in α′, strings do not cou-
ple to the dilaton, so their T(0) also vanishes. However, this
should change when we include α′ corrections [92,93].

In particular, in order to study the effects of non-trivial
T(0), we will derive cosmological solutions for the cosmolog-
ical constant, study the scalar case thoroughly, and consider
a generalized perfect fluid. The gauge fields alone shall be
considered in future works.

3.2 Energy conditions

In section 4.3 of [39], various energy conditions were con-
sidered in the context of static, spherically symmetric solu-
tions in Stringy Gravity, which are conjectured to constrain
which solutions are allowed physically. Here we re-present
and extend them for the case of homogeneous and isotropic
backgrounds. Note that the expressions are simply conjec-
tured and constructed in analogy with GR, since a full DFT
description is not currently known and is beyond the scope
of this work.

• The strong energy condition (SEC) is defined such that
it includes magnetic H -flux as well as matter contribu-
tions. On cosmological backgrounds it reduces to the
usual strong energy condition in GR plus a flux term,

ρ + 3p + h2e−2φ

8πGa6 = (1 + 3w)ρ + h2e−2φ

8πGa6 ≥ 0 ,

ρ + p + h2e−2φ

16πGa6 = (1 + w)ρ + h2e−2φ

16πGa6 ≥ 0.

(3.19)

Note that the flux contribution is always positive, so SEC
violations in GR do not necessarily imply violations here.

• The positive mass condition10 depends in general on
electric H -flux and the stringy energy-momentum ten-
sor component K t

t . Since electric H -flux is forbidden
on cosmological backgrounds due to the requirement of
homogeneity, this constraint simply becomes

2ρ − T(0)e
−2φ = (2 − λ)ρ ≥ 0 . (3.20)

10 In [39] this was labelled as the “weak energy condition”, in heuristic
analogy with GR, since it similarly pertains to only the t t-component,
−Kt

t . However, for consistency with our definitions (3.8), we hereby
consider it as another independent condition. Furthermore, the inequal-

ity ρ + p + h2e−2φ

16πGa6 ≥ 0 has been included in (3.19) and (3.21) (here a
strict inequality) in order to be fully consistent with the standard defini-
tions of the energy conditions in GR. Genuine DFT justification remains
to be found, but this is beyond the scope of the present work.
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In [39] it was noted that local violations of this condi-
tion may give rise to a regime where gravity becomes
repulsive.11

• The weak energy condition (WEC) can be defined, in
consistent analogy with GR, as

ρ + h2e−2φ

32πGa6 ≥ 0 , ρ + p + h2e−2φ

16πGa6

= (1 + w)ρ + h2e−2φ

16πGa6 > 0 . (3.21)

For the spherical solution considered in [39]12 (in the
case of vanishing magnetic H -flux), this implies that the
Noether charge associated with time translation invari-
ance should be non-negative.

• The pressure condition depends only on magnetic H -
flux and the spatial components of the stringy energy-
momentum tensor. In a cosmological context it becomes

p + h2e−2φ

32πGa6 ≥ 0 . (3.22)

4 Solutions

Having obtained the generalization of the Friedmann equa-
tions in Stringy Gravity, we turn to the important matter of
finding solutions. We first give an exposition of the general
framework, before investigating examples of analytic solu-
tions for various types of matter.

4.1 Generalized perfect fluid

First of all, let us consider a “generalized perfect fluid” in
which w and λ are constant, corresponding to a linear equa-
tion of state. In cosmic gauge, the conservation equation
(3.12) is

ρ̇ + [3(1 + w)H + λφ̇
]
ρ = 0 . (4.1)

For constant w and λ, this can be integrated to give

ρ = ρ0a
−3(1+w)e−λφ , (4.2)

where, in keeping with usual conventions, we have defined
a0 ≡ 1 and φ0 ≡ 0. Note that the terms in the OFEs which
depend on the spatial curvature k and magnetic H -flux h

11 Technically this required a corresponding density condition, which
was defined without the spatial integral present in the positive mass
condition. However on homogeneous backgrounds the integral simply
yields a constant factor, so these two conditions become identical.
12 See (4.78) therein.

can be interpreted as a particular case of (4.2): specifically,
(w, λ)h = (1, 2) and (w, λ)k = (−1/3, 2). Therefore in
this subsection we absorb them into ρ and consider a single
contribution to the energy density of the form (4.2), which is
equivalent to setting the parameters h = k = 0. We will
reintroduce them in the following (sub)sections when we
examine specific solutions in detail.

It is instructive to consider a power law ansatz

a =
(
t

t0

)n

, eφ =
(
t

t0

)−s

, (4.3)

such that

H = n

t
, φ̇ = − s

t
. (4.4)

Comparing this ansatz with the OFEs, we see that solutions
with non-trivial ρ are possible only if

ρe2φ ∝ t−2 , (4.5)

implying the constraint

−3n(1 + w) − s(2 − λ) = −2 . (4.6)

The OFEs reduce to

2ρ̂0 = n2 + 2ns + 2

3
s2 , (4.7)

(1 + 3w)ρ̂0 = −n2 + n − ns − 2

3
s2 + s , (4.8)

(2 − λ)ρ̂0 = −n2 + n + 2

3
s , (4.9)

where we define a dimensionless quantity

ρ̂0 ≡ 4πG

3
ρ0t

2
0 . (4.10)

Note that (4.7)–(4.9) are valid for any ρ̂0, while (4.6) holds
only for non-vanishing ρ̂0.

Solving for n and s with generic w and λ, we find

n = 2(2w + λ)

2 + 6w2 + 6wλ + λ2 , s = 2(1 − 3w − λ)

2 + 6w2 + 6wλ + λ2 ,

(4.11)

and the (not necessarily non-vanishing) energy density is pro-
portional to

ρ̂0 = 6(1 − w)2 − 2(1 − 3w − λ)2

3(2 + 6w2 + 6wλ + λ2)2 . (4.12)

123



Eur. Phys. J. C (2020) 80 :830 Page 9 of 20 830

To obtain these we have made use of the fact that, from rear-
ranging (4.7)–(4.9),

3(1−3w−λ)ρ̂0 = s(3n+2s−1) , 3(2w+λ)ρ̂0 = n(3n+2s−1) .

(4.13)

In order to make contact with conventional cosmology,
we would like to understand the circumstances in which the
dilaton φ may become constant, i.e. s = 0. From (4.11) we
see that this is only possible on the critical line,

λ = 1 − 3w . (4.14)

This also holds true for more general types of matter, not
just power-law solutions, as we have already seen this result
in the third equation of (3.17). Power-law solutions of this
type exist for any w �= −1, and furthermore reproduce the
standard behaviour seen in cosmology based on General Rel-
ativity: plugging s = 0 into (4.6) and (4.12) gives

n = 2

3(1 + w)
, ρ̂0 = 2

9(1 + w)2 . (4.15)

This reinforces our earlier claim that DFT cosmology encom-
passes all types of matter with stabilized dilaton, not just radi-
ation as in supergravity, and thus may be the correct comple-
tion of GR. Similarly, static solutions (n = 0) can only be
obtained when

λ = −2w , (4.16)

which is also the case for more general solutions (not just
perfect fluids), and which from (4.11) and (4.12) corresponds
to

s = 1

1 + w
, ρ̂0 = 1

3(1 + w)2 . (4.17)

Both (4.14) and (4.16) are satisfied simultaneously when the
lines intersect at (w, λ) = (1,−2). From (4.13), we see that
in addition to the trivial solution with n = s = 0, this special
point admits a family of solutions satisfying

3n + 2s = 1 , ρ̂0 = 1

12
(1 − 3n2) . (4.18)

We will see in the next subsection that this corresponds to
massless scalar field solutions.

We observe from (4.4) and (4.11) that for the power-law
ansatz (4.3), lying on the critical line13 (4.14) is a neces-
sary and sufficient condition for the dilaton to be constant.

13 This applies to solutions on the critical line (4.14), except at w = ±1
where the denominators of (4.11) and (4.12),

2 + 6w2 + 6wλ + λ2 = 3(1 − w)(1 + w) ,

vanish.

Fig. 1 Energy conditions and types of matter depicted in the (w, λ)-
plane. The dotted line corresponds to conventional ‘SUGRA’, in which
the matter Lagrangian does not couple to the dilaton and hence T(0) = 0.
All energy conditions are respected in the white region. The strong
energy condition (3.19) can in fact be preserved for w < −1/3 in the
presence of non-trivial H -flux. We emphasize that the region depicted
as violating the weak energy condition (3.21) is specifically restricted to
the case of the power-law ansatz discussed in Sect. 4. The right-hand part
of the strong (3.19) and weak energy conditions (3.21) is automatically
satisfied in the depicted region, for which w ≥ −1

However, we emphasize that the sufficient condition applies
specifically to power-law behaviour, whereas more general
solutions on the critical line may have a non-trivial dilaton
profile, as will be seen explicitly in some examples below.

As a final remark, note that (4.12) is smooth as ρ̂0 → 0:
in this limit it coincides with the DFT vacuum solution [94]
(i.e. ρ = 0; see (4.34) and (4.35)) with h = k = 0. This is a
power law with

n = ± 1√
3

, s = 1

2
(1 ∓ √

3) , (4.19)

corresponding to the boundaries of the gray regions in Fig. 1,
given by λ = 1 ± √

3 − (3 ± √
3)w.

4.2 Analytic solutions

In order to investigate specific cases in detail, we introduce
a useful gauge choice which we dub ‘Einstein-conformal’
gauge, which is defined by the parametrization

N = a ≡ beφ . (4.20)

While the first equality fixes the time reparametrization sym-
metry, the second simply defines a new time-dependent func-
tion b, which corresponds to the Einstein-frame scale factor.
The OFEs are given in this gauge by
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8πG

3
b2e4φρ =

(
b′

b

)2

− φ′2

3
+ k − h2

12b4 e
−4φ , (4.21)

4πGb2e4φρ (1 − w) = b′′

b
+
(
b′

b

)2

+ 2k , (4.22)

4πGb2e4φρ (3w + λ − 1) = φ′′ + 2b′φ′

b
− h2

2b4 e
−4φ ,

(4.23)

where w and λ were defined in (3.18), and we have taken
suitable linear combinations of (3.9)–(3.11) for later conve-
nience. In addition, the conservation equation becomes

ρ′ + 3

(
b′

b
+ φ′

)
(ρ + p) + φ′e−2φT(0) = 0 . (4.24)

For constant w and λ (i.e. a generalized perfect fluid), this
can be integrated to yield (c.f. (4.2))

ρ = ρ0
e−[3(1+w)+λ]φ

b3(1+w)
= ρ0

e−λφ

a3(1+w)
. (4.25)

Various types of matter will in general occupy different posi-
tions on the (w, λ)-plane, see Fig. 1. However, note that in
general w and λ need not be constant, for example if there are
multiple competing contributions to the total energy density.

One interesting scenario emerges on the critical line, 3w+
λ = 1 (4.14). Here (4.23) can be integrated to give

(b2φ′)2 + h2

4
e−4φ = h2

o

4
, (4.26)

where ho is a real constant. Plugging this back into (4.21)
yields

8πG

3
b6e4φρ = (bb′)2 + kb4 − h2

o

12
. (4.27)

From (4.26) and (4.27), we see that h2
o represents the total

energy shared between the dilaton and H -flux, which is con-
served on the critical line. In the special case where ho =
0, the positive-definiteness of (4.26) forces the H -flux and
variation of the dilaton to vanish, and hence our framework
recovers the standard Friedmann equations in this limit. More
generally, we can solve for φ by casting (4.26) in the form

dφ√
h2

o − h2e−4φ
= ± dη

2b2(η)
. (4.28)

Here b2(η) is obtained explicitly as a function of confor-
mal time η by solving (4.22), which is independent of φ on
the critical line (c.f. (4.25)). We now discuss some explicit
examples.

Pure DFT vacuum

In Stringy Gravity, the metric gμν is supplemented by the
additional fields Bμν and φ. Therefore it is worth consider-
ing purely stringy gravitational solutions, since these may be
non-trivial due to possible interactions within the extended
gravitational sector. This simple scenario, which corresponds
to ρ = p = T(0) = 0, can thus yield some initial insight
into the nature of cosmological evolution in Stringy Gravity.
While these solutions are known in the supergravity litera-
ture (see e.g. [94]), we include them here for completeness
since they provide a foundation for more general solutions
featuring additional matter.

In this scenario, equation (4.22) can be recast as

(b2)′′ + 4kb2 = 0 , (4.29)

which has a general solution given by

b2 = C1τ

1 + kτ 2 =
⎧⎨
⎩

C1
2 sin(2(η − η0)) for k = 1,

C1(η − η0) for k = 0,
C1
2 sinh(2(η − η0)) for k = −1,

(4.30)

where C1 and η0 are integration constants, and we have
defined

τ =
⎧⎨
⎩

tan(η − η0) for k = 1 ,

η − η0 for k = 0 ,

tanh(η − η0) for k = −1 .

(4.31)

Consistency with (4.21) requires that the integration con-
stants are related by

3C2
1 = h2

o . (4.32)

Using the fact that

dτ

dη
= 1 + kτ 2 , (4.33)

and using (4.32), the general solution for the dilaton can be
expressed as [94]

e2φ =
(

τ

τ∗

)±√
3

+ h2

12C2
1

(
τ

τ∗

)∓√
3

, (4.34)

where τ∗ is an integration constant. Note that this has a mini-
mum at e2φ

∣∣
min = |h/(

√
3C1)|. The scale factor of the orig-

inal string-frame metric is thus given by [94]
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a2 = b2e2φ = C1τ

1 + kτ 2

[(
τ

τ∗

)±√
3

+ h2

12C2
1

(
τ

τ∗

)∓√
3
]

.

(4.35)

O(D, D)-symmetric DFT cosmological constant

The action for a DFT cosmological constant in a Riemannian
background is simply given by [78]

S� = − 1

8πG

∫
d4x

√−ge−2φ� , (4.36)

which implies

ρ�e
2φ = �

8πG
, w� = −1 , λ� = 2 . (4.37)

Note that this corresponds to a scalar field (discussed below)
in the limit �′ = 0 and V = V0 ≡ �/8πG.

Choosing cosmic gauge (N = 1), there is a solution for a
static universe (H = 0) with the dilaton evolving as

φ(t) = ±
√(

�

2
− k

a2

)
t + φ0 , k = h2

4a4 . (4.38)

In this case, non-trivial H -flux implies positive spatial cur-
vature, and physical solutions require �a2 ≥ 2k (note that a
must be constant). For h = k = 0 and � > 0 this recovers
the well-known static solution in flat Minkowskian spacetime
with a linear dilaton (see e.g. [95]):

φ(t) = ±m(t − t0) + φ0 , ds2 = −dt2 + dx2 + dy2 + dz2 ,

(4.39)

where m ≡ √
�/2 > 0.

More generally, there are expanding solutions for h =
k = 0 and � > 0 with positive m = √

�/2 [96] given by

e2φ(t) = Cφ

tanh
√

3
(
m(t − t0)

)
sinh

(
2m(t − t0)

) ,

a2(t) = a2
0 tanh

√
4
3
(
m(t − t0)

)
, (4.40)

which is real and positive for t > t0, and

e2φ(t) = Cφ

coth
√

3
(
m(t0 − t)

)
sinh

(
2m(t0 − t)

) ,

a2(t) = a2
0 coth

√
4
3
(
m(t0 − t)

)
, (4.41)

which is similarly defined for t < t0 and can be obtained
from (4.40) by a combined spatial T-duality (Table 1) and
time-reversal transformation. On the other hand, acting with

T-duality or time reversal alone produces collapsing solu-
tions. Note that (4.40) describes a decelerating expansion,
whereas (4.41) is an accelerating solution. The static solu-
tion (4.39) may be derived by taking large-t limits of (4.40)
and (4.41): specifically, (4.40) converges to the negative-sign
case of (4.39) as t → ∞, while (4.41) similarly converges
to the positive-sign case as t → −∞, with Cφ = 1

2e
2φ0 .

For further discussion of linear dilaton solutions in DFT, see
[97].

Scalar field, e.g. massless limit

The action for a spatially homogeneous, canonical scalar field
in a Riemannian DFT background is

S� =
∫

d4x
√−ge−2φ

(
− 1

2
gμν∇μ�∇ν� − V (�)

)
.

(4.42)

In Einstein-conformal gauge, this yields the equation of
motion

�′′ + 2b′�′

b
+ b2e2φ dV

d�
= 0 . (4.43)

For the energy-momentum tensor components, we have

K t
t = − �′2

b2e2φ
, Kr

r = 0 , T(0) = − �′2

b2e2φ
+ 2V (�) ,

(4.44)

and thus the density and pressure of � are given by

ρe2φ = �′2

2b2e2φ
+ V (�) , pe2φ = �′2

2b2e2φ
− V (�) = −T(0)

2
.

(4.45)

We see that the equation of state is confined to the range
−1 ≤ w ≤ 1 along the line

λ = −2w . (4.46)

In the limit of vanishing potential, V (�) = 0, from (4.45)
we find that ρ = p and thus w = 1. In such cases (4.22)
once again reduces to

(b2)′′ + 4kb2 = 0 , (4.47)

yielding again the solution (4.30). Furthermore, from (4.46)
we have λ = −2, which lies on the critical line; see Fig.
1. Hence we can solve for the dilaton by integrating (4.28),
giving [94,98]

e2φ =
(

τ

τ∗

)± ho
C1 + 1

4

h2

h2
o

(
τ

τ∗

)∓ ho
C1

, (4.48)
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where τ is as defined in (4.31). This has a minimum at
e2φ
∣∣
min = |h/ho|. Combining this with (4.30), the scale

factor associated with the string-frame metric is given by
[94,98]

a2 = b2e2φ = C1τ

1 + kτ 2

[(
τ

τ∗

)± ho
C1 + 1

4

h2

h2
o

(
τ

τ∗

)∓ ho
C1

]
.

(4.49)

Note that for consistency with (4.21) we now require

4πGb4�′2 = 3C2
1 − h2

o

4
. (4.50)

For real solutions, this constrains |ho/C1| ≤ √
3. The equa-

tion of motion (4.43) gives simply (b2�′)′ = 0, consistent
with (4.50). Thus the scalar field evolution is determined by
the conformal Einstein scale factor b, with the explicit solu-
tion

� = �0 ±
√√√√ 1

16πG

(
3 − h2

o

C2
1

)
ln τ , (4.51)

where we have used (4.30) and (4.33).
Finally, note that for h = k = 0 we have a power-law solu-

tion. This corresponds to the family of solutions satisfying
(4.18), with

n = C1 ± ho

3C1 ± ho
, s = ∓ho

3C1 ± ho
, (4.52)

as can be verified explicitly by converting to cosmic time.

Radiation solution: with H-flux and dynamically frozen dila-
ton

For w = 1/3, λ = 0, we can construct a generalization
of the known radiation solution in SUGRA. In such a case
the energy density evolves as ρ = ρ0b−4e−4φ = ρ0a−4, as
expected for radiation. From this we can write (4.22) as

(
b2
)′′ + 4kb2 = 16πGρ0

3
, (4.53)

which can be solved to give

b2(η) = τ(C1 + E0τ)

1 + kτ 2

=
⎧⎨
⎩

C1
2 sin (2(η − η0)) + E0 sin2 (η − η0) for k = 1 ,

C1(η − η0) + E0(η − η0)
2 for k = 0 ,

C1
2 sinh (2(η − η0)) + E0 sinh2 (η − η0) for k = −1 ,

(4.54)

where C1 is an integration constant, E0 ≡ 8πGρ0/3, and τ

is as defined in (4.31).
Since we are on the critical line we can integrate (4.23),

giving (4.26). Applying this to (4.21) and using the solution
(4.54) for the conformal scale factor, one can verify explicitly
that

h2
o = 3C2

1 , (4.55)

as in the vacuum solution. Integrating (4.26) using the new
scale factor (4.54) yields14

e2φ = Cr

(
τ

C1 + E0τ

)±√
3

+ 1

12

h2

C2
1Cr

(
τ

C1 + E0τ

)∓√
3

,

(4.56)

whereCr is another integration constant. Note that for E0 = 0
we should recover the vacuum solution, which implies that

τ∗ = C1C
∓1/

√
3

r . Thus we can express the resulting scale
factor as

a2 = b2e2φ = τ(C1 + E0τ)

1 + kτ 2

⎡
⎢⎣
⎛
⎝ τ

τ∗
(

1 + E0
C1

τ
)
⎞
⎠

±√
3

+ 1

12

h2

C2
1

⎛
⎝ τ

τ∗
(

1 + E0
C1

τ
)
⎞
⎠

∓√
3
⎤
⎥⎦ . (4.57)

As a bonus, we can generalize this solution to the case
of radiation plus a scalar with vanishing potential (ignoring
interactions). The inhomogeneous piece of equation (4.22)
depends only on the energy density in radiation, since the
equivalent contribution from the scalar field vanishes, as
w� = 1. Therefore b2 must take the form (4.54). Further-
more, being on the critical line, both solutions satisfy (4.26)
such that the OFE (4.21) will split into a linear sum of terms
for the massless scalar and radiation, respectively. Similarly,
in the non-interacting limit, the scalar field and radiation
must independently satisfy the conservation equation (4.24)
(which is guaranteed by their respective equations of motion).
In all, the combined exact solution amounts to a relaxation
of (4.55), giving

e2φ =
⎛
⎝ τ

τ∗
(

1 + E0
C1

τ
)
⎞
⎠

± ho
C1

+1

4

h2

h2
o

⎛
⎝ τ

τ∗
(

1 + E0
C1

τ
)
⎞
⎠

∓ ho
C1

,

(4.58)

14 See [94] for a different approach: in particular, our (4.56) and (4.57)
with h = 0 correspond to (3.26) and (3.27) therein.
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where τ is again defined by (4.31), and

a2 = b2e2φ = τ(C1 + E0τ)

1 + kτ 2

⎡
⎢⎣
⎛
⎝ τ

τ∗
(

1 + E0
C1

τ
)
⎞
⎠

± ho
C1

+1

4

h2

h2
o

⎛
⎝ τ

τ∗
(

1 + E0
C1

τ
)
⎞
⎠

∓ ho
C1

⎤
⎥⎦ . (4.59)

Here we observe that setting E0 = 0 recovers the solution for
a scalar field given in (4.48) and (4.49), while setting h2

o =
3C2

1 gives the radiation solution of (4.56) and (4.57). Taking
both conditions simultaneously, we recover (4.34) and (4.35),
the pure vacuum solution. The scalar field evolution is again
determined by (4.50), however the solution to this equation
now takes the form

� = ±
√√√√ 1

16πG

(
3 − h2

o

C2
1

)
ln

(
τ

C1 + E0τ

)
+ �̃0 . (4.60)

Note that in the absence of radiation, E0 = 0, this reduces to
(4.51) as expected.

Consider a flat or hyperbolic universe, k ∈ {0,−1}, in
which we may study the asymptotic behaviour at large η.
In the presence of radiation, we can see from both (4.56)
and (4.58) that the dilaton tends towards a constant value
and is thus dynamically frozen. Hence at late times this sce-
nario recovers the standard Friedmann equations with a radi-
ation equation of state. Similarly, the scalar field (4.60) also
becomes frozen at late times. In fact, for k = −1, τ itself
tends towards a constant at late times (c.f. (4.31)), so for neg-
ative spatial curvature any purely τ -dependent dilaton, such
as occurs in the DFT vacuum (4.34) or massless scalar (4.48)
cases, also freezes out.

5 de Sitter solutions?

In the absence of external guidance, there lies an inevitable
ambiguity in how any modified gravity sector should couple
to matter — point particles, Maxwell fields, spinor fields,
any scalar fields, etc. — in the conventional Riemannian
framework. In a bottom-up approach, one is in principle
free to choose a matter Lagrangian that is minimally coupled
with respect to e.g. the string-frame or Einstein-frame met-
ric. However, the stringent experimental constraints support-
ing the Equivalence Principle and against any “fifth force”
require that a particle (or a planet) should follow a pure
geodesic,

e d
dτ

(
e−1 ẋλ

)+ γ λ
μν ẋ

μ ẋν = 0 . (5.1)

Furthermore, if the additional gravitational degrees of free-
dom are not stabilized, the metric appearing in the Christoffel
connection, γ λ

μν , is typically expected to be that of the Ein-
stein frame (or any sufficiently close frame). Thus the cou-
pling between gravity and matter should be chosen accord-
ingly.

From a top-down perspective, the situation is much more
constrained. The O(D, D) symmetry principle fixes all the
couplings of the closed-string massless sector to any matter.
In particular, the O(D, D)-symmetric doubled formulation
of a point particle action dictates that the particle follows a
geodesic with respect to the string-frame metric [3]. On the
other hand, the O(D, D)-symmetric action of a canonical
scalar field χ reads, with the string-frame metric,

Iχ =
∫

d4x
√−ge−2φ

[
−1

2
gμν∂μχ∂νχ − V (χ)

]
, (5.2)

which can be rewritten in terms of the Einstein-frame metric,
gE
μν = gμν exp (−2φ), as

Iχ =
∫

d4x
√−gE

[
−1

2
gμν

E ∂μχ∂νχ − e2φV (χ)

]
. (5.3)

Thus, in particular for a massless field, V (χ) = 0, the dila-
ton completely drops out of the massless scalar action in
the Einstein frame. In accordance with [99], in order to gen-
erate almost scale-invariant cosmological perturbations of
χ , it might be necessary for the Einstein-frame metric gE

μν

to follow either an inflationary or bouncing-type evolution.
However, this is somewhat in contrast to the case of Maxwell
fields,

IMaxwell =
∫

d4x
√−ge−2φ

[
−1

4
gμνgρσ FμρFνσ

]

=
∫

d4x
√−gEe

−2φ

[
−1

4
gμν

E gρσ
E FμρFνσ

]
,

(5.4)

where, due to the presence of a (classical) Weyl symmetry, the
change of frames does not remove the dilaton. Note that all
observations are based on ordinary electromagnetic radiation
and hence would be subject to the Maxwell theory of the form
(5.4).

In this section, we simply test whether de Sitter solutions
are natural in O(D, D)-symmetric cosmology, both in string
and Einstein frames separately. In order to make contact with
concrete examples, here we will focus in particular on DFT
coupled to a (spatially homogeneous) scalar field with arbi-
trary potential, which also includes the limiting case of a DFT
cosmological constant. From (4.44), these solutions satisfy

Kr
r = pe2φ + 1

2
T(0) ≡ 0 �⇒ λ ≡ −2w . (5.5)
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We will show that de Sitter solutions for such models would
require exotic matter with negative energy density, violating
the weak energy condition (3.21). Hence we may conclude
that, from an O(D, D) perspective, de Sitter is unnatural.
However, it could be interesting to investigate whether an
O(D, D) description of non-perturbative objects, such as D-
branes and orientifolds [82–86], can resolve this issue.

5.1 String frame

First of all we wish to investigate whether de Sitter solutions
are allowed for the string-frame metric. To this end, we set
k = 0 and consider the ansatz

a(t) = eHt . (5.6)

Here t is cosmic time in string frame, which is defined by
setting N = 1. Imposing (5.5) and applying (5.6), solving
the OFEs (3.9)–(3.11) for φ̇ gives

φ̇

H
= 3

2
− h2

4H2 e
−6Ht . (5.7)

Inserting this into (3.9) yields a general expression for the
energy density,

8πG

H2 ρe2φ = −3

2
− h2

4H2 e
−6Ht + h4

8H4 e
−12Ht . (5.8)

Further plugging (5.7) and (5.8) into either (3.10) or (3.11)
gives a similar expression for the pressure,

8πG

H2 pe2φ = −3

2
+ 13h2

4H2 e
−6Ht − h4

8H4 e
−12Ht . (5.9)

From these we can see that as t → ∞ the energy density
and pressure become negative, and hence the weak energy
condition (3.21) and the pressure condition (3.22) are both
violated.

Moreover, neither a DFT cosmological constant nor a
scalar field is compatible with the full behaviour of (5.8)
and (5.9). For a non-trivial DFT cosmological constant,
w = −1 (4.37) at all times, whereas here w is varying and
converges to +1 as t → ∞. If on the other hand we consider
a more general (canonical) scalar field, we know from (4.45)
that when w → 1 the scalar-field kinetic energy dominates.
However the energy density being negative implies that this
scalar should have a wrong-sign kinetic term.

Alternatively, one might relax (5.5) and simply consider
the special point (w, λ) = (−1, 4) on the critical line. This
indeed admits a de Sitter solution with constant dilaton,
akin to the cosmological constant solution in GR. How-
ever, note that the O(D, D)-symmetric DFT cosmologi-
cal constant does not correspond to λ = 4, and such a

requirement does not correspond to any known O(D, D)-
covariant Lagrangian. In fact, in terms of the stringy energy-
momentum tensor, such a solution would have Kt

t = Kr
r =

4T(0), and thus in particular,

ρ = Kt
t e−2φ . (5.10)

Since Kt
t corresponds to minus the kinetic energy for any

known type of matter, positive kinetic energy implies ρ < 0,
so here also we expect the WEC to be violated.

5.2 Einstein frame

To construct the Einstein frame metric, gE
μν = gμν exp(−2φ),

it is sufficient to consider the general ansatz (3.2) in the gauge

N = eφ , a = eφb . (5.11)

We also define the energy density and pressure in Einstein
frame as

ρE = e4φρ , pE = e4φ p , (5.12)

such that the Hamiltonian density is frame-independent:√−gρ = √−gEρE. The O(D, D) Friedmann Equations
then take the form

8πGρE = 3H2
E − φ̇2 − h2

4b6 e
−4φ ,

(5.13)

4πG (ρE − pE) = ḢE + 3H2
E , (5.14)

4πG
(

3pE − ρE + T(0)e
2φ
)

= φ̈ + 3φ̇HE − h2

2b6 e
−4φ ,

(5.15)

where we have set k = 0 and defined the Hubble parameter
in Einstein frame,

HE ≡ ḃ

b
= eφH − φ̇ . (5.16)

Note that we have here expressed the OFEs in terms of cos-
mic time, t , in Einstein frame (5.11): if we change to confor-
mal time, dt = b dη, we simply recover Einstein-conformal
gauge, (4.21)–(4.23). The energy density and pressure in Ein-
stein frame satisfy the conservation equation

ρ̇E + 3
ḃ

b
(ρE + pE) + φ̇

(
3pE − ρE + T(0)e

2φ
)

= 0 . (5.17)

We now impose the de Sitter ansatz in Einstein frame,

b = eHEt . (5.18)
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Taking the difference of (5.13) and (5.14) yields

−4πG (ρE + pE) = φ̇2 + h2

4
e−6HEt−4φ , (5.19)

for which the right-hand side is positive-definite, implying
that ρE+ pE = ρE(1+w) ≤ 0, violating the strong and weak
energy conditions, (3.19) and (3.21), respectively. This is the
case either for ρE < 0 and w ≥ −1, suggesting negative-
energy-density solutions as before, or ρE ≥ 0 and w ≤ −1.
Here w = −1 is obtained only for φ̇ = h = 0, which in turn
implies, from (5.13) and (5.15), that

ρE = 3H2
E

8πG
, λ = T(0)e2φ

ρE
= 4 . (5.20)

This is again the GR cosmological-constant-like solution at
(w, λ) = (−1, 4), for which the energy density is constant
and dilaton-independent in Einstein frame. However, we reit-
erate that there is no known O(D, D)-invariant Lagrangian
corresponding to this solution, c.f. (5.10).

6 Summary and discussion

If string theory is the correct underlying description of the
universe, its symmetries should constrain the types of inter-
actions which are possible in nature. Assuming a stringy
off-shell O(D, D) symmetry in D spacetime dimensions,
the interactions between stringy gravitons (massless NS-NS
sector) and matter obey the Einstein Double Field Equations
[39]. In this paper we studied these equations in a cosmolog-
ical setting: choosing a homogeneous and isotropic ansatz
for the stringy gravitons and stringy energy-momentum ten-
sor, we obtained the O(D, D)-completion of the Friedmann
equations (3.9)–(3.11) in the case of D = 4.

The O(D, D) Principle generates a non-minimal cou-
pling between matter and both the dilaton and the B-field,
encoded in the stringy energy-momentum tensor as an addi-
tional scalar component T(0) and a skew-symmetric compo-
nent K[μν], respectively (2.4). In particular, the presence of
T(0) justifies earlier attempts at including a dilatonic source in
the SUGRA equations of motion which were based primarily
on the (spatial) O(d, d) symmetry group present in SUGRA
cosmology. In the perfect-fluid description, this leads to an
equation of state determined by an extra parameter λ, in addi-
tion to the usual parameter w denoting the ratio of pressure
to energy density in a linear barotropic fluid. The resulting
two-dimensional parameter space (Fig. 1) contains a critical
line on which GR-like solutions with constant dilaton are
admitted, which coincides with conventional SUGRA only
at w = 1/3, corresponding to radiation. This suggests that
O(D, D) cosmology may be the correct completion of both

GR and SUGRA. We also identified various solutions beyond
the power-law limit, including a radiation solution with non-
trivial H -flux and a dynamically evolving dilaton that tends
towards a constant at late times. Finally, we considered var-
ious energy conditions and found that, whether defined with
respect to a string-frame or Einstein-frame metric, de Sitter
solutions require negative energy density and hence violate
the weak energy condition. Thus de Sitter solutions appear
unnatural in the O(D, D) paradigm. It may then be worth-
while to look for other types of solution to (3.9)–(3.11) as
alternatives to de Sitter, which must nevertheless be consis-
tent with the observed accelerating expansion of the universe.
Indeed, for some parameter ranges (e.g. τ < 0, C1 < 0,
E0 > 0), our analytic solution (4.59) describes a bouncing
universe featuring an infinite past before the bounce (hence
avoiding the horizon problem) and an accelerating expan-
sion after the bounce in cosmic time. This seems to deserve
further study.

O(D, D) cosmology provides a new and rich framework
for studying the early universe. In this work we have only
begun to scratch the surface, with many important issues
remaining to be addressed. First of all, in order to make con-
tact with observations, it is crucial to establish how astro-
physical and cosmological data should be interpreted in the
O(D, D) framework. Point particles coupled to stringy grav-
ity travel along geodesics defined with respect to a string-
frame metric, however the subtle issue of whether string-
frame or Einstein-frame descriptions are appropriate for
observations remains to be resolved. Furthermore, since most
data in astrophysics and cosmology are obtained from elec-
tromagnetic signals, and O(D, D) Maxwell fields couple
non-minimally to the dilaton (c.f. (5.4)), the propagation of
photons on non-trivial dilaton backgrounds should be studied
carefully.

In order to match observations of the Cosmic Microwave
Background, the spectrum of curvature perturbations should
be almost scale-invariant. It would be interesting to inves-
tigate how this may be obtained from models of the early
universe based on O(D, D) cosmology. Moreover, since the
variation of the fine structure constant is strongly constrained
by observations, models of the early universe in which the
dilaton is dynamical should nevertheless yield a stabilized
dilaton at late times. Solutions such as (4.57) may be useful
in realizing a dynamical mechanism of dilaton stabilization,
say, in the context of flux compactification. To this end, it
may be interesting to investigate, for example, whether or
not the critical line of GR-like solutions can behave as an
attractor at late times.

Finally, it is crucial to investigate whether O(D, D) is
truly a symmetry of our universe at early times, and whether
or not it is broken at late times. Only further exploration will
reveal the answer.
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Appendix

A Cosmological principle and stringy
energy-momentum tensor in DFT

In this Appendix we apply the cosmological principle within
the D = 4 Double Field Theory framework and derive the
most general form of the stringy energy-momentum tensor
which is homogeneous and isotropic.

In Double Field Theory as Stringy Gravity, we describe
D-dimensional physics using (D + D) coordinates which
are gauged under an O(D, D) symmetry (corresponding to
T-duality). Ordinary undoubled physics is recovered upon
taking a D-dimensional section of this total space. Up to
O(D, D) rotations we are free to write the DFT coordi-
nates as x A = (x̃ν, xμ), where A, B, . . . = 1, . . . , D + D
are O(D, D) indices which are raised and lowered by the
O(D, D)-invariant metric

JAB =
(

0 1
1 0

)
. (A.1)

In this parametrization, the section condition can be expressed
simply as ∂̃ν ≡ 0, where the partial derivative is understood
to act on or contract with all DFT fields.15

The gravitational sector consists of a DFT dilaton, d, and a
dynamical DFT metric,HAB , which can be decomposed into
a pair of projectors, PAB = 1

2 (J +H)AB and P̄AB = 1
2 (J −

H)AB . Furthermore the corresponding local frame has sym-
metry group Spin(1, D− 1)×Spin(D− 1, 1), under which
the projectors can be decomposed into vielbeins {VAp, V̄A p̄}
as PAB = VApVB

p and P̄AB = V̄ApV̄B
p, where the local

Lorentz indices are raised and lowered using the metrics
ηpq = diag(− + + · · · +) and η̄ p̄q̄ = diag(+ − − · · · −),
respectively.

Isometries in DFT are best studied using a further-
generalized Lie derivative L̃, which acts on O(D, D) vector
indices as well as local Spin(1, D − 1) × Spin(D − 1, 1)

indices, as defined in [39]. For isometries parametrized by
some set of N DFT vectors, {ζa}, a = 1, . . . , N , the further-
generalized Lie derivatives of each gravitational field with
respect to these DFT-Killing vectors should vanish,

L̃ζa VAp = 0 , L̃ζa V̄A p̄ = 0 ,

L̃ζa PAB = 0 , L̃ζa P̄AB = 0 , L̃ζa d = 0 .
(A.2)

This in turn implies that the DFT-Killing equations, which
read

PA
C P̄B

D(∇CζaD − ∇DζaC ) = 0 , ∇Aζ A
a = 0 , (A.3)

should be satisfied.
In the case of spatial homogeneity and isotropy in D = 4,

we identify six ‘doubled’ Killing vectors, ξM
a (rotational,

a = 1, 2, 3) and χN
a (translational, a = 1, 2, 3), which form

an algebra through the C-bracket,

[ξa, ξb]C =
∑
c

εabcξc , [χa, χb]C �
∑
c

k εabcξc ,

[ξa, χb]C �
∑
c

εabcχc ,
(A.4)

where, for the latter two, � means equal up to an exact term
which is a kernel of the generalized Lie derivative. With the
choice of section ∂̃μ ≡ 0, the doubled Killing vectors, ξM

a =

15 Note that for Yang–Mills fields we must generalize this to a covariant
derivative, (∂A − iAA), such that when we write AA = (Ãν ,Aμ), the
section condition also implies Ãν = 0.
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(ξ̃aμ, ξν
a ), χN

a = (χ̃aμ, χν
a ), are given, with the notation ξ̃a =

ξ̃aμdxμ, ξa = ξν
a ∂ν , χ̃a = χ̃aμdxμ, χa = χν

a ∂ν , by [3]

ξ̃1 = cos ϕ

sin ϑ

[
hr2

√
1 − kr2

dr

]
, ξ1 = sin ϕ∂ϑ + cot ϑ cos ϕ∂ϕ ,

ξ̃2 = sin ϕ

sin ϑ

[
hr2

√
1 − kr2

dr

]
, ξ2 = − cos ϕ∂ϑ + cot ϑ sin ϕ∂ϕ ,

ξ̃3 = 0 , ξ3 = −∂ϕ (A.5)

for rotations, where h is constant, and

χ̃1 = hr2

2

[
−cos2 ϑ

sin2 ϑ
sin ϕdϑ + cos3 ϑ

sin ϑ
cos ϕdϕ

]
,

χ1 =
√

1 − kr2

[
sin ϑ cos ϕ∂r + cos ϑ cos ϕ

r
∂ϑ − sin ϕ

r sin ϑ
∂ϕ

]
,

χ̃2 = hr2

2

[
cos2 ϑ

sin2 ϑ
cos ϕdϑ + cos3 ϑ

sin ϑ
sin ϕdϕ

]
,

χ2 =
√

1 − kr2

[
sin ϑ sin ϕ∂r + cos ϑ sin ϕ

r
∂ϑ + cos ϕ

r sin ϑ
∂ϕ

]
,

χ̃3 = −hr2

2

[
1 + cos2 ϑ

]
dϕ ,

χ3 =
√

1 − kr2

[
cos ϑ∂r − sin ϑ

r
∂ϑ

]
(A.6)

for translations.16

On Riemannian backgrounds, the DFT-gravitational fields
reduce to the closed-string (NS-NS) massless sector, {gμν,

Bμν, φ}. Explicitly, the DFT-vielbeins separate into compo-
nents as

VMp = 1√
2

(
epμ

eν
qηqp + Bνσ epσ

)
,

V̄M p̄ = 1√
2

(
ē p̄μ

ēν
q̄ η̄q̄ p̄ + Bνσ ē p̄σ

)
,

(A.7)

where eμ
peνp = −ēμ

p̄ ēν p̄ = gμν , while the DFT-dilaton is
expanded as

e−2d = √−g e−2φ . (A.8)

The above DFT-Killing equations then reduce to

Lξa gμν = 0 , Lξa Bμν + ∂μξ̃aν − ∂ν ξ̃aμ = 0 ,

Lξaφ = 0 ,

Lχa gμν = 0 , Lχa Bμν + ∂μχ̃aν − ∂νχ̃aμ = 0 ,

Lχaφ = 0 ,

(A.9)

where L is the ordinary (Riemannian) Lie derivative.

16 Note that in terms of “Cartesian” coordinates, (x1, x2, x3) =
(r sin ϑ cos ϕ, r sin ϑ sin ϕ, cos ϑ), we have simply χi =√

1 − kx j x j∂i .

Solving (A.9) for the DFT-Killing vectors (A.5) and (A.6)
in D = 4 yields an expression for the most general (Rieman-
nian) metric and B-field,

ds2 = −N 2(t)dt2 + a2(t)
[

1
1−kr2 dr

2 + r2d�2
]

,

B(2) = hr2√
1−kr2 cos ϑ dr ∧ dϕ , φ = φ(t) ,

(A.10)

where ds2 = gμνdxμdxν , d�2 = dϑ2 + sin2 ϑdϕ2, B(2) =
1
2 Bμνdxμ ∧ dxν , and h is the same constant as in (A.5). The
corresponding H -flux,

H(3) = dB(2) = hr2

√
1 − kr2

sin(ϑ)dr ∧ dϑ ∧ dϕ , (A.11)

is homogeneous and isotropic,

Lξa H(3) = 0 , Lχa H(3) = 0 . (A.12)

It is worthwhile to express (A.10) in terms of cartesian
coordinates,

ds2 = −N 2(t)dt2 + a2(t)

[
dx2 + k

(x · dx)2

1 − kx · x
]

,

B(2) = h√
1 − kx · x

[
zdx ∧ dy + 1

3

(
ydx − xdy

x2 + y2

)
∧ d(z3)

]

= h√
1 − kx · x

[
zdx ∧ dy − 1

3
d tan−1

( y
x

)
∧ d(z3)

]
.

(A.13)

For h = 0 and k = 0 only, this cosmological ansatz is pre-
served and the OFEs are invariant under the entire spatial
T-duality rotation given in Table 1, c.f. [33]. In such cases the
stringy energy-momentum tensor assumes a simple form:

TAB =
(

0 Kμ
τ − 1

2T(0)δ
μ

τ

− Kσ
ν − 1

2T(0)δσ
ν 0

)
.

(A.14)

Note that as the metric and the corresponding vielbein are
diagonal, we have eaμ = (ēμ

ā)−1 in the diagonal gauge
fixing of Spin(1, 3) × Spin(3, 1), and

Kμ
μ = eaμēμ

ā K a
ā = Ka

ā (no μ nor a , ā sum) ,

(A.15)

where a, ā are the local Lorentz vector indices which corre-
spond to the same curved index μ.

In order to couple Stringy Gravity to matter, we must
introduce a non-trivial energy-momentum tensor TAB , which
appears on the right-hand side of the Einstein Double Field
Equations (2.1) and can be derived case-by-case from the
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gravitational variation of an appropriate O(D, D)-invariant
matter Lagrangian [39]. On homogeneous and isotropic
backgrounds, we similarly require that this stringy energy-
momentum tensor satisfies

L̃ξa TAB = 0 , L̃χa TAB = 0 . (A.16)

The stringy energy-momentum tensor includes the indepen-
dent components Kpq̄ and T(0), where

TAB := 4V[A pV̄B]q̄ K pq̄ − 1
2JABT(0) . (A.17)

With (A.2) and (A.17), (A.16) decomposes into

L̃ξa K pq̄ = 0 , L̃ξa T(0) = 0 , L̃χa K pq̄ = 0 , L̃χa T(0) = 0 .

(A.18)

The latter two equations imply that T(0)(t) must be at most
time-dependent, while the former equations reduce to

Lξa Kμν = 0 , Lχa Kμν = 0 , (A.19)

where we have used the convention Kpq̄ = 1
2ep

μēq̄νKμν .
This follows from the generic expression of the further-
generalized Lie derivative acting on Kpq̄ ,

L̃ξ Kpq̄ = 1
4 ep

μēq̄
ν
[
2Lξ Kμν +

{
2∂[μξ̃ρ] + Lξ (B − g)μρ

}

gρσ Kσν −
{

2∂[ν ξ̃ρ] + Lξ (B + g)νρ
}
gρσ Kμσ

]
,

L̃χ Kpq̄ = 1
4 ep

μēq̄
ν
[
2Lχ Kμν + {2∂[μχ̃ρ] + Lχ (B − g)μρ

}
gρσ Kσν − {2∂[ν χ̃ρ] + Lχ (B + g)νρ

}
gρσ Kμσ

]
,

(A.20)

together with the isometry conditions (A.9) and (A.18).
Combining these results and solving, we find that the most

general form of Kμν in a homogeneous and isotropic universe
is diagonal,

Kμ
ν =

⎛
⎜⎜⎝

K t
t (t) 0 0 0
0 Kr

r (t) 0 0
0 0 Kr

r (t) 0
0 0 0 Kr

r (t)

⎞
⎟⎟⎠ , (A.21)

where K t
t (t) and Kr

r (t) are time-dependent functions. Note
in particular that the antisymmetric part K[μν] = 0, which in
three spatial dimensions is consistent with homogeneous and
isotropic H -flux (A.12) under the second Einstein Double
Field Equation (2.4).
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