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Abstract We present an explicit momentum space compu-
tation of the four-point function of the energy-momentum
tensor in 4 spacetime dimensions for the free and confor-
mally invariant theory of a scalar field. The result is obtained
by explicit evaluation of the Feynman diagrams by ten-
sor reduction. We work by embedding the scalar field the-
ory in a gravitational background consistently with confor-
mal invariance in order to derive all the terms the correla-
tor consists of and all the Ward identities implied by the
requirements of general covariance and anomalous Weyl
symmetry. We test all these identities numerically in several
kinematic configurations. Mathematica notebooks detailing
the step-by-step computation are made publicly available
through a GitHub repository (https://github.com/mirkos86/
4-EMT-correlation-function-in-a-4d-CFT.). To the best of
our knowledge, this is the first explicit result for the four-
point correlation function of the energy-momentum tensor
in a conformal and non supersymmetric field theory which
is readily numerically evaluable in any kinematic configura-
tion.
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1 Introduction

The energy-momentum tensor is the most universal operator
for conformal field theories (CFTs). Therefore, its correlation
functions are natural objects to study in any CFT.

It has been known for a long time that conformal invari-
ance completely fixes the two-point correlation function of
the energy-momentum tensor, whereas the three-point func-
tion in 4d is fixed up to three scalar coefficients, which can be
inferred by computing the correlator for the field theories of
a scalar, a fermion and an abelian gauge field. This was first
dealt with in coordinate space for three-point correlators of
operators up to spin 2 in [1,2], by solving all the constraints
implied by the full conformal group. An analogous program
in momentum space, based on the solution of all the confor-
mal group Ward identities to constrain the 3 point functions of
scalars, vector currents and energy-momentum tensors mod-
ulo a few constants was carried out much more recently [3–5]
and found to be perfectly consistent with the other approach,
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although mathematically very different. A different approach
in momentum space to the three-point function of the energy-
momentum tensor has been pursued in [6], where an explicit
diagrammatic computation was performed (and published in
a partially on-shell kinematics). The consistency of the two
momentum space approaches was later verified by [7].

Much more involved is the case for four-point functions,
because the conformal group does not uniquely constrain
them. For the case of scalars, Polyakov first showed that the
four-point correlator is fixed up to a function of the coordi-
nates cross ratios [8],

〈O(x1)O(x2)O(x3)O(x4) 〉 = f I (u, v)

(x1 − x2)2� (x3 − x4)2�
,

u = (x1 − x2)
2 (x3 − x4)

2

(x1 − x3)2 (x2 − x4)2 ,

v = (x1 − x4)
2 (x2 − x3)

2

(x1 − x3)2 (x2 − x4)2 . (1)

As for operators with spin, though much is already known
in position space [9], very little is known about four-point
correlation functions in momentum space and the connection
between the two is not trivial, as discussed thoroughly in [6].
One very powerful and popular approach to CFT dynamics
is the so called conformal bootstrap [10–12], which allows
to constrain four-point functions through consistency con-
straints connecting different conformal blocks representa-
tions of the same four-point function. So far, it has been
successfully applied mainly to the case of scalar operators.
One exception is a very recently proposed approach to con-
formal blocks for any spin [13,14], which was applied to two,
three and four-point fucntions [15–17], though not to to the
four-point function of the energy-momentum tensor due to
its sheer complexity.

The number of unrestricted degrees of freedom for the
four-point function of the energy-momentum tensor in gen-
eral dimensions was already determined in [18], where the
number of effectively independent constraints provided by
the Ward identities stemming from the requirements of both
special conformal invariance and energy-momentum conser-
vation was nailed down. There have been works – all of them
in the context of the AdS/CFT correspondence – which have
investigated the four-point function of the energy-momentum
tensor. The first one has explored the structure of some con-
tributions to the four-point function through an OPE analysis
[19] . Later, the most general structure in coordinate space
of the correlator was pinned down in [20,21]. By different
means, analogous structures were conjectured in [22] and
later proven to be correct in [23].1 So far, however, no explicit
result has been presented in momentum space, except for the

1 We are grateful to Evgeny Skvortsov and Johanna Erdmenger for
pointing out these references.

case of superconformal N = 4 [24], let alone any which
lends itself to numerical evaluation.

With these recent advances in mind, in the present paper
we present an explicit perturbative computation of the four-
point function of the energy-momentum tensor in the sim-
plest possible conformal field theory in 4d which admits a
Lagrangian realization and thus a perturbative approach: a
free scalar field. It is paramount to notice that the fact that
the theory is free does not just make calculations simpler;
it is such that the 1 loop results for the four-point function
(or lower and higher point functions as well), which can be
computed using perturbation theory, are also exact, because
no higher order loops are admitted. In this way, the perturba-
tive calculation produces a result equivalent to what would be
produced by non perturbative methods, though unfortunately
way less compact because of redundancies.

We provide our results in a set of ancillary Mathemat-
ica files stored in the public GitHub repository quoted in
the abstract. In these files, the reader is guided step by step
through the computation of the two, three and four-point cor-
relators of the energy-momentum tensor for the theory at
hand, as well as through the tests of the Ward identities stem-
ming from the requirements of energy-momentum conserva-
tion and anomalous Weyl symmetry. The Mathematica note-
books code features plenty of comments which make them
readily usable and (hopefully) understandable. We exploit
the recently developed Package-X [25,26] together with its
CollierLink extension for fast numerical evaluation of tensor
integrals through the COLLIER library [27–30].

We did not attempt to track down the few [18] independent
tensor structures our correlator should ultimately consist of,
by itself a very demanding task given the sheer dimensions of
the four-point function. We leave an attempt in this direction
for possible future work.

The main reason why we undertook this calculation,
beside the fact that we could do it, is the hope that our result
could serve as a benchmark check (most probably numerical,
though the result itself is fully analytical) for computations
carried out with non perturbative methods, e.g. the conformal
bootstrap for fields with spin.

This paper is organized as follows. In Sect. 2 we describe
the setup of our calculation and the diagrammatic expansion
of all the energy-momentum tensor correlators through four
point, in order to make our discussion as self-contained as
possible, beside providing a detailed explanation of the struc-
ture of theMathematicafiles. In Sect. 3 we derive all the Ward
identities stemming from the requirements of general covari-
ance (named transverse Ward identities hereafter) and Weyl
invariance (named trace Ward identities hereafter), the latter
of which feature a well known trace anomaly. In Sect. 4 we
describe the computation of the 1 loop countertems and the
anomaly functional for the energy-momentum tensor corre-
lators through four point and how we can check them against
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each other independently of the Feynman diagram computa-
tions; the countertems are then used for a preliminary check
of the diagrammatic expansion, by comparing them to the
UV pole of the correlators. In Sect. 5 we illustrate in detail
the Mathematica implementation of our calculation and the
procedure followed to analytically test the Ward identities for
the two and three-point correlators and to test them numer-
ically for the four-point correlator. Indeed, the last task is
too massive to be dealt with analytically. In this section we
also give plenty of detail on the implementation of all our
computations in Mathematica through Package-X and Col-
lierLink . Section 6 presents our conclusions and perspectives
for further work.

2 Setting up the computation

This introductory section closely follows Chapter 2 of [31].
For details about the general relation between conformal
invariance in flat space and Weyl invariance in curved space
see [32]; here we assume that Weyl invariance in curved space
is interchangeable with conformal invariance in flat space, as
it is actually the case for the theory we are dealing with.

The standard definition of the energy-momentum tensor
(EMT in the following) in a classical field theory described
by an actionS is given in terms of a functional derivative w.r.t.
the metric tensor gμν(z) once the theory has been embedded
in curved space, i.e.

Tμν(z) = − 2√
gz

δS
δgμν(z)

= gμα(z) gνβ(z)
2√
gz

δS
δgαβ(z)

, (2)

where det gμν(z) ≡ gz .
We introduce the generating functional of the theory in

Euclidean conventions, which we call W ,

W = 1

N
∫

D� e−S , (3)

where N is a normalization constant and � generally indi-
cates the quantum fields of the theory. Given (2), the vacuum
expectation value (vev) of the EMT is

〈
Tμν(z)

〉
s = 2√

gz

δW
δ gμν(z)

, (4)

with the subscript s (which stands for “source”) meaning that
the background fields are not switched off. Dependence on
coordinates will be occasionally dropped if it is not strictly
necessary to the understanding of formulas.

In a conformal field theory the trace of the EMT vanishes
at the classical level upon using the equations of motion,
Tμ

μ = 0. As for the vev of the EMT, this relation is modified
by the well known trace anomaly [33,34]

gμν

〈
Tμν

〉
s ≡ A[g]

=
∑

I= f,s,V

nI

[
βa(I ) F + βb(I )G + βc(I )�R + βd (I ) R

2
]
,

(5)

where g is a short-hand notation for the background metric.
The coefficients κ , βa , βb, βc and βd depend on the field
content of the Lagrangian theory and we have a multiplicity
factor nI for each particle species. Eq. (5) is a reorganization
in terms of the squared Weyl tensor and the Euler character-
istic of 4d spacetime (see Appendix A.2) of the most general
linear combination of the squares of the Riemann tensor and
its contractions. The coefficient of R2 must actually vanish
identically

βd ≡ 0, (6)

since it does not satisfy the Wess-Zumino consistency condi-
tion for conformal anomalies [35,36]. In addition, the value
of βc is regularization dependent, corresponding to the fact
that it can be changed by the addition of an arbitrary local
term in the effective action proportional to the integral of R2

[33]. In particular, the values for the anomaly coefficients
which we will use here for one single scalar field, i.e.

βa = 3

5760 π2 , βb = − 1

5760 π2 (7)

for which one finds the constraint [33,34]

βc = −2

3
βa . (8)

The trace anomaly functional only depends on the metric
tensor, A ≡ A[g],

gμν

〈
Tμν

〉
s = βa

(
F − 2

3
�R

)
+ βb G (9)

The conformally invariant action for a scalar field coupled
to gravity in 4 dimensions is given by

S = 1

2

∫
d4x

√
g

[
gμν ∇μφ ∇νφ − χ R φ2

]
. (10)

Here χ is the parameter corresponding to the term of
improvement obtained by coupling φ2 to the scalar curva-
ture R. In general dimensions d, χ = 1/4 (d − 2)/(d − 1)

gives a CFT, so that χ = 1/6 gives a classically conformal
invariant theory in d = 4, whose EMT is

Tμν
S = ∇μφ ∇νφ − 1

2
gμν gαβ ∇αφ ∇βφ

+χ

[
gμν� − ∇μ ∇ν + 1

2
gμν R − Rμν

]
φ2. (11)

The explicit expressions for the vertices involving one or
more metric tensors, which can be computed by functional
differentiating the action, have been already given in [37]
and are also here collected in Appendix B for completeness,
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beside being explicitly computed in the attached Mathemat-
ica file functional_derivatives.nb. For further details about
our conventions on covariant derivatives, Christoffel sym-
bols and the Riemann tensor, see Appendix A.

One remark is appropriate at this point: if we employed
the d-dimensional value of the improvement parameter χ =
(d − 2)/[4(d − 1)] = 6 − ε/18, there should be some extra
finite terms in the correlators we compute than when employ-
ing directly χ = 1/6, because of the interplay between ε/18
and the UV pole ∝ 1/ε, at least in principle. If these terms
survived in the d → 4 limit, then this result would differ
from the computation performed directly with χ = 1/6.
This actually happens for individual diagrams. Now, if the
limit of a d-dimensional correlators were not the 4d corre-
lators, it would mean that conformal correlators depend on
the regularization technique employed to compute them in
perturbation theory, for this is manifestly an issue specific to
Dimensional Regularization (DR hereafter). This is patently
inconsistent and suggests that a further consitency condition
- beside all the Ward identities we explicitly check - is that
these extra terms must cancel out when all the pieces making
up conformal correlators are put together. This turns out to be
the case and the explicit check is left to the interested reader.

2.1 The structure of the correlators: topologies and
diagrams

Our first step is to exploit the background field method to
build the correlation function of n energy-momentum tensors
and evaluate it diagrammatically at 1 loop. Since the theory
is non interacting, as the scalar field is not coupled to any
other quantum field, there are no higher order perturbative
contributions, as one can easily verify. We work in DR.

Our definition of the n−EMT correlators (also nT below)
is that of a symmetric nth functional derivative of W w.r.t.
the metric tensor,

< Tμ1ν1(x1) . . . Tμnνn (xn) >

=
[

2n√
gx1 . . .

√
gxn

δnW
δgμnνn (xn) . . . δgμ1ν1(x1)

]∣∣∣∣
gμν=δμν

= 2n
δnW

δgμnνn (xn) . . . δgμ1ν1(x1)

∣∣∣∣
gμν=δμν

. (12)

Symmetry comes from leaving factors 2/
√
g outside of

the derivatives. Given that field theory in Minkowski space is
simply given by an analytic continuation from 4d Euclidean
theory we work with through δμν → ημν , we will also refer
to this vertex as to the “n-graviton” vertex. We choose to
denote such correlators, which contain contact terms, with
small angular brackets (< >).

Contact terms are characterized in coordinate space by the
presence of at least two gravitons at the same spacetime point.
Such contact terms are absent by definition in the expression

of correlation functions given by the expectation value of the
product of n EMT’s, which are denoted with large angular
brackets (〈 〉) as in

〈Tμ1ν1(x1) . . . Tμnνn (xn)〉
= 1

N
∫

D� Tμ1ν1(x1) . . . Tμnνn (xn) e
−S

∣∣∣∣
gμν=δμν

. (13)

This distinction will not only apply to the vev of n insertions
of the EMT, but also to contact terms and, in general, to all
the correlation functions appearing in this paper.

It will also be useful to introduce the following notation to
represent the functional derivative with respect to the back-
ground metric evaluated in flat space,

[ f (x)]μ1ν1μ2ν2...μnνn (x1, x2, . . . , xn)

≡ δn f (x)

δgμnνn (xn) . . . δgμ2ν2(x2) δgμ1ν1(x1)

∣∣∣∣
gμν=δμν

. (14)

Since with our conventions all the functional derivatives will
be taken w.r.t. the metric tensor with lower indices, which
thus produces upper indices, possible functional derivatives
with lower indices will mean just

[ f (x)]μ1ν1...μnνn
(x1, x2, . . . , xn)

≡ δμ1α1δν1β1 . . . δμnαnδνnβn

[ f (x)]α1β1α2β2...αnβn (x1, x2, . . . , xn) . (15)

In order to make tensorial expressions more compact, if we
happen to contract two indices with the metric, we will stack
the two contracted indices on top of each other, as in

[S]μ1
μ1

≡ [S]μ1ν1 δμ1ν1 or

[S]μ1μ2
μ1μ2

≡ [S]μ1ν1μ2ν2 δμ1ν1δμ2ν2 . (16)

With these definitions, a single functional derivative of the
action in a correlation function is always equivalent, modulo
a factor, to an insertion of a Tμν in the flat limit, since

[S]μ1ν1 (x1) ≡ δS
δgμ1ν1(x1)

∣∣∣∣
gμν=δμν

= −1

2
Tμ1ν1(x1). (17)

To begin with the easiest correlation functions, the defini-
tion of Eq. (12) implies that the two-point function is

< Tμ1ν1(x1)T
μ2ν2(x2) >

= 4

[
〈[S]μ1ν1 (x1) [S]μ2ν2 (x2)〉 − 〈[S]μ1ν1μ2ν2(x1, x2)〉

]
.

(18)

The last term on the right hand side of the equation above,
which is a massless tadpole, can be set to zero in DR, so that
the 2T correlation function, obtained by differentiation of the
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generating functional, coincides with the quantum average of
two energy-momentum tensors

< Tμ1ν1(x1)T
μ2ν2(x2) >

= 4〈[S]μ1ν1 (x1) [S]μ2ν2 (x2)〉 = 〈Tμ1ν1(x1)T
μ2ν2(x2)〉.

(19)

This will not be true for higher order correlation functions,
where non vanishing contact terms also appear. For the sake
of completeness, the 1 loop contribution to the two-point
correlation function is illustrated in Fig. 2.

The 3T correlator functional expansion is given instead
by

< Tμ1ν1(x1)T
μ2ν2(x2)T

μ3ν3(x3) >

= 〈Tμ1ν1(x1)T
μ2ν2(x2)T

μ3ν3(x3)〉
− 4

(
〈[S]μ1ν1μ2ν2 (x1, x2) T

μ3ν3(x3)〉 + 2 perm.

)

− 8 〈[S]μ1ν1μ2ν2μ3ν3 (x1, x2, x3)〉 (20)

whose right hand side is expressed in terms of one ordinary
three-point correlator plus extra contact terms. The additional
terms obtained by permutation are such as to render symmet-
ric the right hand side.

The first term on the right hand side of Eq. (20) is an
ordinary three-point function, whose connected component
is given, at 1 loop, by the triangle diagram of Fig. 3, while
the last term is a massless tadpole (see Fig. 1)2, which can
be set to zero

〈[S]μ1ν1μ2ν2μ3ν3 (x1, x2, x3)〉 = 0. (21)

In the 3T case, contact terms have the topology of a bubble
and are generated by correlators containing insertions of the
second functional derivative of the action w.r.t. to the metric.
Their general structure is shown in Fig. 3 and each one of
them is simply obtained by assigning the momenta to the
diagram according to one of the the three possible groupings.

Moving finally to the 4T case, a similar expansion holds
and is given by

< Tμ1ν1 (x1)T
μ2ν2 (x2)T

μ3ν3 (x3)T
μ4ν4 (x4) >

= 〈Tμ1ν1 (x1)T
μ2ν2 (x2)T

μ3ν3 (x3)T
μ4ν4 (x4)〉

− 4

[
〈[S]μ1ν1μ2ν2 (x1, x2)T

μ3ν3 (x3)T
μ4ν4 (x4)〉 + 5 perm.

]

+ 16

[
〈[S]μ1ν1μ2ν2 (x1, x2) [S]μ3ν3μ4ν4 (x3, x4)〉 + 2 perm.

]

− 8

[
〈[S]μ1ν1μ2ν2μ3ν3 (x1, x2, x3)T

μ4ν4 (x4)〉 + 3 perm.

]

− 16 〈[S]μ1ν1μ2ν2μ3ν3μ4ν4 (x1, x2, x3, x4)〉 (22)

with

〈[S]μ1ν1μ2ν2μ3ν3μ4ν4 (x1, x2, x3, x4)〉 = 0, (23)

2 All Feyman diagrams were drawn with feynMF. [38].

l

p1

p2

pn

Fig. 1 The general topology of the vanishing 1-point contributions

l + p

l

pp

Fig. 2 The only 1 loop contribution to the two-point correlation func-
tion

being a massless tadpole contribution. In this case the per-
turbative expansion generates three diagrams of box type,
represented by the Green function with 4 EMT insertions
on the right hand side of (22), plus triangle, bubble and tad-
pole diagrams generated by the contact terms and graphically
represented in Figs. 4 and 5.

The analysis of these contributions is more involved com-
pared to the 3T case. In Figs. 4 and 5 we illustrate the
general structures of the four kinds of diagrams involved.
The momenta running through them in addition to the loop
momentum l must be replaced by the specific assignments
detailed below. Later, when we illustrate the implementation
of the computation in Mathematica , we will refer to these
basic diagrams corresponding to inequivalent topologies as
blueprint diagrams.

For each topology we have a different number of contri-
butions, corresponding to cyclically inequivalent orderings
of the external momenta.

For the square topology, the 3 distinct contributions can
be parametrized, for example, by the following three assign-
ments of momenta (compare to the first diagram in Fig. 4)

(
pi1 , pi2 , pi3 , pi4

) =
⎧⎨
⎩

(p2, p3, p4, p1)

(p3, p4, p2, p1)

(p4, p2, p3, p1)

q1 = pi1, q2 = pi1 + pi2 ,
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l − p2

l

l + p3

p1

p2

p3

l + pi1

l

pi1

pi2

pi3

Fig. 3 The topologies contributing to the < T T T > correlation function. All the external momenta are incoming

l + q1

l + q2

l + q3

l

pi1pi2

pi3 pi4

l + q2

l

l + q1
pi1

pi2

pi3

pi4

Fig. 4 The square and triangle topologies contributing to the < T T T T > correlation function. All the external momenta are incoming

l + q1

l

pi1

pi2

pi3

pi4

l + q1

l

pi1

pi2

pi3

pi4

Fig. 5 The two kinds of bubble topology contributing to the < T T T T > correlation function in a scaleless theory. All the external momenta are
incoming

q3 = pi1 + pi2 + pi3 = −pi4 (24)

For the triangle topology, there are the following 6 distinct
contributions

(
pi1 , pi2 , pi3 , pi4

) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(p1, p2, p3, p4)

(p1, p3, p2, p4)

(p1, p4, p2, p3)

(p2, p3, p1, p4)

(p2, p4, p1, p3)

(p3, p4, p1, p2)

q1 = pi4 , q2 = −pi3 . (25)

As for the two bubble topologies, we choose to distinguish
them through the nomenclature of 22-bubble and 31-bubble,
the figures standing for the numbers of gravitons meeting in
each of their respective vertices.

The 3 contributions for the 22-bubble are

(
pi1 , pi2 , pi3 , pi4

) =
⎧⎨
⎩

(p1, p2, p3, p4)

(p1, p3, p2, p4)

(p1, p4, p2, p3)

q1 = pi1 + pi2 . (26)

The 4 inequivalent contributions for the 31-bubbles are
instead
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(
pi1 , pi2 , pi3 , pi4

) =

⎧⎪⎪⎨
⎪⎪⎩

(p1, p2, p3, p4)

(p2, p1, p3, p4)

(p3, p1, p2, p4)

(p4, p1, p2, p3)

q1 = pi1 . (27)

The task of computing the three-point function in a com-
pletely off-shell configuration and checking at the same time
the transverse and trace Ward identities was already per-
formed in [6], but only the result in a partially on-shell config-
uration was explicitly given. Now we face a more demanding
task, which is the computation of the four-point function in a
completely off-shell kinematics. This was made possible by
the development of Package-X [26], a Mathematica package
for tensor algebra and automatic reduction of 1 loop ten-
sor integrals of any rank in arbitrary even dimensions. We
detail the computation in Sect. 5. For now, we just mention
that also the step-by-step computations of the two and (much
more significanly) the three-point functions are made avail-
able, so as to give the reader a full overview of the automated
procedure in simpler setups, beside the target case of the 4T .

The building blocks of our computation are the scalar-
graviton interaction vertices, which we report in Appendix B.
Although we were completely confident about their calcula-
tion and we tested Package-X extensively by reproducing
all of our previous results of [6] and a few other field the-
ory results, the reduction of rank-8 tensor integrals still was
an uncharted territory. Just as it was the case for the 3T , we
checked all of our computations by testing the transverse and
trace Ward identities our four-point correlator was supposed
to satisfy, which we derive in Sect. 3.

2.2 Organization of the Mathematica files

This is a quick overview of the files developed in order to
perform and test our calculation of the 4-point function. The
same picture is given by the README file stored in our
repository. Some of the calculations can be quite time con-
suming and the numerical checks of the Ward identities for
the four point function requires your computer to have at least
25 GB of memory at its disposal in order not to crush.

Some necessary requirements on the machine: Math-
ematica (version 10.1 or higher); the additional packages
Package-X and CollierLink must be loaded on the machine
where the notebooks are run. Beside, the notebook func-
tional_derivatives.nb must be run once in order to be able
to run the rest of the calculation, particularly correla-
tors_calculation.nb, which must in turn be run in order to
generate the correlation functions which are checked by
ward_identities.nb.

Here follows a concise description of the scope and pur-
pose of each notebook:

• The notebook tensor_bases/tensor_bases_generation.nb
generates the 4 files tensmom#rank##. As the name sug-
gests, the tensors in each of these files span a complete
basis of tensors which are rank-## products of the met-
ric tensor and # independent momenta. They are needed
to check the Ward identities for the three and four-point
correlation functions.

• functional_derivatives.nbgenerates the fileall_functional
_derivatives. As detailed in the paper, our computation
requires heavy use of tensor strutures: rank-2, 4 and 6
trace anomalies for the two, three and four-point func-
tions, rank-4, 6 and 8 countertems for the very same cor-
relators. All of them are obtained by functionally differ-
entiating scalars consisting of algebraic combinations of
the Riemann tensor, the Ricci tensor and the Ricci scalar.
The notebook starts by explaining the simplest functional
derivatives of the metric tensor and goes on all the way
up to anomalies, counterterms and interaction vertices of
the scalar with the background gravitational field, intro-
ducing gradually more complex structures. The second
part of the notebook checks that the counterterms and the
anomalies, which are computed non perturbatively, obey
all the constraints they are supposed to. This is needed
to make us more confident about our explicit calcula-
tions of the Green functions, provided that their divergent
parts match the counterterms (they do indeed) and that
they pass the check of the trace Ward identities with the
anomalies (they do as well).

• correlators_calculation.nb explicitly computes the two,
three and four-point functions, checks that they match
the counterterms computed in functional_derivatives.nb
and stores them in 3 files: T2_scalar, T3_scalar and
T4_scalar.

• The .jpg files in the “figures” folder are simply graph-
ical representations of the diagrams computed in cor-
relators_calculation.nb and of the vertices computed in
functional_derivatives.nb, which are loaded in the same
notebooks just above the line of code computing each of
them.

• The notebook ward_identities.nb checks the Ward iden-
tities for all of our correlation functions; analytically for
two and three-point, numerically for four-point.

• The notebook vanishing_euler_ct.nb proves that the
Euler counterterm for the 4-point function actually van-
ishes in 4d (see Sect. 4).

3 Derivation of the transverse and trace Ward identities

In this section, we derive the Ward identities stemming form
the requirements of invariance of the generating functional
under general diffeomorphisms and Weyl transformations.
We call them transverse and trace Ward identities respec-
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tively. We proceed with a derivation of the relevant Ward
identities satisfied by the two, three and four-point functions
of the EMT.

Invariance under diffeomorphisms is defined by the condi-
tion of general covariance of the generating functionalW[g],
which translates into

∇ν1 < Tμ1ν1 (x1) >g = ∇ν1

(
2√
gx1

δW[g]
δgμ1ν1 (x1)

)

= ∂ν1 < Tμ1ν1 (x1) >g

−�μ1
κν1

< T κν1 (x1) >g −�ν1
ν1κ < Tμ1κ (x1) >g

⇒ 2 ∂ν1 <
δW

δgμ1ν1 (x)
>g −�μ1

κν1

<
δW

δgκν1 (x1)
>g= 0, (28)

where in the last step, crucially for the symmetry of the corre-
lators in the derived Ward identities below, we have exploited
the cancellation of the last term on the rhs of the second line
with the derivative of 1/

√
gx1 .

The Ward identities for symmetric correlators we are after
are obtained by functional differentiation of Eq. (28) as many
times as it takes to get the correlator we are interested in,
followed by taking the flat limit.

For the 2T we have the well known transverse condition,

∂ν1 < Tμ1ν1(x1)T
μ2ν2(x2) > = 0. (29)

For the 3T we see an already non trivial rhs showing up

∂ν1 < Tμ1ν1(x1)T
μ2ν2(x2)T

μ3ν3(x3) >

= −2
[
�μ1

κν1
(x1)

]μ2ν2 (x2)〈T κν1(x1)T
μ3ν3(x3)〉

−2
[
�μ1

κν1
(x1)

]μ3ν3 (x3)〈T κν1(x1)T
μ2ν2(x2)〉. (30)

Much more involved is the case for the 4T , whose trans-
verse Ward identity in coordinate space is given by

∂ν1 < Tμ1ν1 (x1)T
μ2ν2 (x2)T

μ3ν3 (x3)T
μ4ν4 (x4) >

= −2

[ [
�μ1

κν1
(x1)

]μ2ν2 (x2) < T κν1 (x1)T
μ3ν3 (x3)T

μ4ν4 (x4) >

+2
[
�μ1

κν1
(x1)

]μ3ν3μ4ν4 (x3, x4)〈T κν1 (x1)T
μ2ν2 (x2)〉

+(
2 ↔ 3, 2 ↔ 4

)]
. (31)

The functional derivatives of the Christoffel symbol, obtained
from the expansion of the covariant derivatives which appear
in previous equations, are explicitly given in Appendix B.

Before moving to momentum space, we point out that the
Fourier transform formula is defined by (54), where all the
momenta are incoming. We keep this convention throughout
the paper and in all the momentum space computations in
our code.

By applying (54) and some integrations by parts to our
Ward identities, we get the momentum space transverse Ward
identities, which are a set of algebraic contraints.

The momentum space 2T satisfies

pν1〈Tμ1ν1(p)Tμ2ν2(−p)〉 = 0. (32)

For the three and four-point functions, the transverse
Ward identities are quite cumbersome to write down fully
expanded.

We present an expanded version of the first transverse
Ward identity for the thee-point function for illustration,
whereas we keep the full sets given below implicit and refer
the reader to Appendix A for a list of the explicit momentum
space forms of the constituting elements

p1 ν1 < Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(p3) >

= −pμ1
3 〈Tμ3ν3(p2)T

μ2ν2(−p2)〉
−pμ1

2 〈Tμ2ν2(p3)T
μ3ν3(−p3)〉

+p3 ν1

[
δμ1ν3〈T ν1μ3(p2)T

μ2ν2(−p2)〉

+δμ1μ3〈T ν1ν3(p2)T
μ2ν2(−p2)〉

]

+p2 ν1

[
δμ1ν2〈T ν1μ2(p3)T

μ3ν3(−p3)〉

+δμ1μ2〈T ν1ν2(p3)T
μ3ν3(−p3)〉

]
. (33)

For every nT , there is of course one such Ward identity
for each EMT. We present the full set here below for the
three-point function in compact form,

p1 ν1 < Tμ1ν1(p1)Tμ2ν2 (p2)Tμ3ν3(p3) >

= −2 i
[
�

μ1
κν1

]μ2ν2 (p2)〈T κν1(p3)Tμ3ν3(−p3)〉 + (2 ↔ 3)

p2 ν2 < Tμ1ν1(p1)Tμ2ν2 (p2)Tμ3ν3(p3) >

= −2 i
[
�

μ2
κν2

]μ1ν1 (p1)〈T κν2 (p3)Tμ3ν3(−p3)〉 + (1 ↔ 3)

p3 ν3 < Tμ1ν1(p1)Tμ2ν2 (p2)Tμ3ν3(p3) >

= −2 i
[
�

μ3
κν3

]μ1ν1 (p1)〈T κν3(p2)Tμ2ν2 (−p2)〉 + (1 ↔ 2).

(34)

Finally, for the four-point correlator we have 4 transverse
Ward identities (this is the last set for which we report all
channels; in what follows only one channel for every Ward
identity will be explicitly written, though all of them were
tested),

p1 ν1 < Tμ1ν1 (p1)T
μ2ν2 (p2)T

μ3ν3 (p3)T
μ4ν4 (p4) >

= 2 i

[ [
�μ1

κν1

]μ2ν2 (p2) < T κν1 (−p3 − p4)T
μ3ν3 (p3)T

μ4ν4 (p4) >

−2
[
�μ1

κν1

]μ3ν3μ4ν4 (p3, p4)〈T κν1 (−p2)T
μ2ν2 (p2)〉 + (

2 ↔ 3, 2 ↔ 4
)]

,

p2 ν2 < Tμ1ν1 (p1)T
μ2ν2 (p2)T

μ3ν3 (p3)T
μ4ν4 (p4) >

= 2 i

[ [
�μ2

κν2

]μ1ν1 (p1) < T κν2 (−p3 − p4)T
μ3ν3 (p3)T

μ4ν4 (p4) >
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−2
[
�μ2

κν2

]μ3ν3μ4ν4 (p3, p4)〈T κν2 (−p1)T
μ1ν1 (p1)〉 + (

1 ↔ 3, 1 ↔ 4
)]

,

p3 ν3 < Tμ1ν1 (p1)T
μ2ν2 (p2)T

μ3ν3 (p3)T
μ4ν4 (p4) >

= 2 i

[ [
�μ3

κν3

]μ1ν1 (p1) < T κν3 (−p2 − p4)T
μ2ν2 (p2)T

μ4ν4 (p4) >

−2
[
�μ3

κν3

]μ2ν2μ4ν4 (p2, p4)〈T κν3 (−p1)T
μ1ν1 (p1)〉 + (

1 ↔ 2, 1 ↔ 4
)]

,

p4 ν4 < Tμ1ν1 (p1)T
μ2ν2 (p2)T

μ3ν3 (p3)T
μ4ν4 (p4) >

= 2 i

[ [
�μ4

κν4

]μ1ν1 (p1) < T κν4 (−p2 − p3)T
μ2ν2 (p2)T

μ3ν3 (p3) >

−2
[
�μ4

κν4

]μ2ν2μ3ν3 (p2, p3)〈T κν4 (−p1)T
μ1ν1 (p1)〉 + (

1 ↔ 2, 1 ↔ 3
)]

.

(35)

Deriving the trace Ward identities is simpler. Rewriting
(5) with nI = 1 as

gμ1ν1

δW
δgμ1ν1(x1)

=
√
g

2
A[g], (36)

we can functionally differentiate up to three more times and
obtain, after Fourier-transforming to momentum space with
(54),

δμ1ν1 < Tμ1ν1(−p1)T
μ2ν2(p1) >

= [√
g,A[g]]μ2ν2 (p1), (37)

δμ1ν1 < Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(p3) >

= [√
gA[g]]μ2ν2μ3ν3 (p2, p3),

− < Tμ2ν2(−p2)T
μ3ν3(p2) >

− < Tμ2ν2(−p3)T
μ3ν3(p3) > (38)

δμ1ν1 < Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(p3)T
μ4ν4(p4) >

= [√
gA[g]]μ2ν2μ3ν3μ4ν4 (p2, p3, p4),

− < Tμ2ν2(−p3 − p4)T
μ3ν3(p3)T

μ4ν4(p4) >

− < Tμ3ν3(−p2 − p4)T
μ2ν2(p2)T

μ4ν4(p4) >

− < Tμ4ν4(−p2 − p3)T
μ2ν2(p2)T

μ3ν3(p3) > . (39)

The structure of the anomalies for our correlators is implicitly
given by

[
A[g]

]μ2ν2

(p2) = −2

3
βa [�R]μ2ν2 (p2),

[
A[g]

]μ2ν2μ3ν3

(p2, p3)

= βa

(
[F]μ2ν2μ3ν3 (p2, p3) − 2

3

[√
g�R

]μ2ν2μ3ν3 (p2, p3)

)

+βb [G]μ2ν2μ3ν3 (p2, p3),[
A[g]

]μ2ν2μ3ν3μ4ν4

(p2, p3, p4)

= βa

( [√
g F

]μ2ν2μ3ν3μ4ν4 (p2, p3, p4)

−2

3

[√
g�R

]μ2ν2μ3ν3μ4ν4 (p2, p3, p4)

)

+βb
[√

g G
]μ2ν2μ3ν3μ4ν4 (p2, p3, p4), (40)

whereas the explicit construction is available in the notebook
functional_derivatives.nb. In the next section we discuss in
detail their connection with 1 loop counterterms and how we
can use the two for a preliminary test of our calculation of
the four-point correlator with Package-X .

One comment about the anomaly is in order: since the
term ∝ �R can be removed by either adding an integral
∝ ∫

dd x R2 [39] or by promoting the numerical coefficients
in the Weyl counterterm to be functions of the spacetime
dimension d [1], many an author choose to do so. Elsewhere
we have discussed these issues in detail too [6], but we will
not linger over it here. In this paper, we just perform the
calculation in DR with no supplemental local counterterm,
so that (9) is the correct generating functional for the trace
anomaly of our correlators.

Finally, there are the Ward identities implied by special
conformal transformations, but we will not deal with them in
the present work. For a detailed discussion of the derivation
and the solution of these identities for two and three-point
functions, see [4].

4 Counterterms, anomalies and a preliminary test of
the 4T correlator

In this section we review the derivation of the 1 loop coutert-
erms for EMT correlators and we derive the Ward identi-
ties which they must satisfy and which connect them with
the respective trace anomalies. We explicitly compute these
counterterms and check all of the mentioned Ward identi-
ties. Since both the counterterms and the anomalies for the
4T correlator are highly non trivial structures, the success-
ful check of these tests is a very strong indicator that their
calculation is correct.

Therefore, if it is possible to evaluate only the ultravio-
let pole of our four-point function, after putting together the
tensor integrals corresponding to the diagrams of Sect. 2,
we can compare it to the independently tested counterterm.
If the two expressions match, we have a strong preliminary
hint that the diagrams have been assembled correctly. We
actually performed this test, as the LoopIntegrate routine of
Package-X , which substitutes explicit expressions of scalar
coefficients into tensor integrals, has an option for extracting
only the ultraviolet pole of each scalar coefficient. Summing
up the poles of all diagrams, we did match the rank-8 coun-
terterm for the our correlator.

In order to be as self-contained as possible, we provide
here the general formulas for the Passarino-Veltman coeffi-
cient functions we employ [40], so as to clarify the meaning
of the symbols PV B, PVC and PV D that the reader will
encounter in the snippets of code to follow and in the note-
books. In the following formula, the symbol r stands for the
number of times the metric tensor enters in the symmetric
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tensor multiplying the coefficient function, whereas n1, n2

and n3 stand for the number of times each of the external
momenta enters in it,

PV B[r, n1, s,m0,m1]
≡ B0 . . . 0︸ ︷︷ ︸

2r

1 . . . 1︸ ︷︷ ︸
n1

, coefficient of
{
[p1]n1 [g]r

}μ1...μ2r+n1 ,

PVC[r, n1, n2, s1, s12, s2,m0,m1,m2]
≡ C0 . . . 0︸ ︷︷ ︸

2r

1 . . . 1︸ ︷︷ ︸
n1

2 . . . 2︸ ︷︷ ︸
n2

,

coefficient of
{
[p1]n1 [p2]n2 [g]r

}μ1...μ2r+n1+n2 ,

PV D[r, n1, n2, n3, s1, s2, s3, s4, s12, s23,m0,m1,m2,m3]
≡ D0 . . . 0︸ ︷︷ ︸

2r

1 . . . 1︸ ︷︷ ︸
n1

2 . . . 2︸ ︷︷ ︸
n2

3 . . . 3︸ ︷︷ ︸
n3

,

coefficient of
{
[p1]n1 [p2]n2 [p3]n3 [g]r

}μ1...μ2r+n1+n2+n3 .

(41)

The notebook correlators_calculation.nb presents the
procedure for all of the EMT correlators through four-point,
giving also plenty of details about the calculation of the whole
correlators.3

The syntax of the routines employed in the code is the
following (see Fig. 6):

• LoopIntegrate is the central routine of the package and
performs the reduction of the tensor integrals. Its first
argument is the numerator of the tensor integral, the sec-
ond is the loop momentum, the following pair given as
arguments have the structure (mom,mass) where mom
is the momentum and m is the mass of the propagating
particle for each propagator in the loops. The mass is
always 0 for us. Various options can be given, for which
we refer the reader to the Package-X guide, included in
the Mathematica interactive documentation upon suc-
cessful installation of the package.

• LoopRefine converts the Passarino-Veltman coefficient
functions to analytic expressions which can be read-
ily evaluated numerically, extracting the ultraviolet pole
from the scalar two-point function. Various options can
be given, among which is Part → UVdivergent, which
makes the routine extract only the ultraviolet pole of the
expression; for other options we refer the reader to the
Package-X guide.

In the following, we discuss in detail the 1 loop coun-
terterms and the Ward identities they are subjected to. We
refer the reader to the public repository for further details.
This is actually not the first time that the four-point function

3 In the conventions of Package-X , one works in the MS scheme and
must think of 1/ε as of 1/ε−γ +log(4π), γ being the Euler-Mascheroni
constant.

Fig. 6 LoadingPackage-X inMathematica and extracting the UV pole
of the scalar two-point function

counterterms were computed, as they were already worked
out in [41], where their relation to the trace anomaly - to be
discussed shortly - was exploited to explore dilaton interac-
tions in the conformal limit of the Standard Model. Another
application was explored in [42], where a recursive relation
allowing to compute fully traced correlators of the energy-
momentum tensor was discovered.

The term we add to the action in our generating functional
W in order to renormalize our (unrenormalizable) theory in
(3) is the following,

Scounter = −μ−2ε

ε

∫
dd x

√
g

(
βa F + βb G

)
, (42)

with d = 4 − 2ε, containing the squared Weyl tensor F and
the Euler density G, defined in Appendix A. Since the inte-
gral of the Euler density is a topological invariant for d = 4,
it can be proven that the Euler part of the three and four-point
counterterms derived from (42) are actually finite, because
the functional derivatives of the integral of the Euler density
in d = 4 − 2ε dimensions are ∝ ε. This means that the con-
tribution subtracted through the term ∝ βb in (42) is finite
and, thus, this amounts to a choice of the renormalization
scheme. To the best of our knowledge, this was first argued
and shown to be true for d = 2 in [43], while a very detailed
technical derivation in momentum space recently appeared
in [5], to which we refer the interested reader, particularly
for the case of the Euler counterterm of the three-point EMT
correlation function in d = 4. The latter is studied in great
detail on the grounds of an elegant form factor decomposi-
tion of the three-point correlator, which unveils the hidden
dimension-dependent degeneracy underpinning the vanish-
ing of the functional variations of the integrated Euler density
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in 4 dimensions. On our side, since we do not have such a gen-
eral decomposition of our four-point function at our disposal
yet, we do not attempt the generalization of this procedure
for the four-point function, but we employ another approach,
discussed in Appendix A.2 of [4], to explicitly show the
vanishing of the Euler counterterm for both the three and
four-point functions in the notebook vanishing_euler_ct.nb,
discussing the procedure in Appendix A.3. This explicitly
proves that, also for the four-point function, the Euler contri-
bution to the counterterm serves as a finite renormalization
which has the ultimate purpose of yielding a correlator whose
trace anomaly has the expected form (40).

The counterterm (42) could be further supplemented by
additional and explicitly finite terms ∝ βa , but we chose not
to include such a discussion, which can be found in many
papers on EMT correlators [1,6,31].

For the general nT correlator, the counterterm action (42)
generates the n-point vertex

− μ−2ε

ε

(
βa D

μ1ν1...μnνn
F (x1, . . . , xn) + βb D

μ1ν1...μnνn
G (x1, . . . , xn)

)
,

(43)

where

Dμ1ν1...μnνn
F (x1, . . . , xn)

= 2n
δn

δgμ1ν1(x1) . . . gμnνn (xn)

∫
dd x

√
g F, (44)

Dμ1ν1...μnνn
G (x1, . . . , xn)

= 2n
δn

δgμ1ν1(x1) . . . gμnνn (xn)

∫
dd x

√
g G. (45)

The momentum space couterterms are defined via the same
Fourier transform defining the momentum space correlation
functions (54).

We have derived in detail the first functional variation of
the integral of a general expression which is quadratic in
the Riemann tensor in a shared appendix of [6,31]. Here we
provide only the final result.

Let K = (
a Rαβγ δRαβγ δ + b Rαβ Rαβ + c R2

)
, with a, b

and carbitrary real numbers; then

δ

δgμ1ν1(x)

∫
dd x

√
g K

= √
g

{
1

2
gμ1ν1K − 2a Rμαβγ Rν

αβγ

+4a Rμ1αRν
1 α − (4a + 2b) Rμ1αν1β Rαβ − 2c RRμ1ν1

+ (4a + b)�Rμ1ν1 + (4c + b) gμ1ν1 Rαβ ;α;β

− (4a + 2b + 4c)Rν1β ;β
;μ1

}
. (46)

From the equation above, the counterterm action (42) and
taking traces in d dimensions, since we are working in DR,

one can derive the trace anomaly observing that

g(d)
μ1ν1

δ

δgμ1ν1(x)

∫
dd x

√
g F = −√

g
ε

2

(
F − 2

3
�R

)
,

g(d)
μ1ν1

δ

δgμ1ν1(x)

∫
dd x

√
g G = −√

g
ε

2
G, (47)

where we have distinguished the d-dimensional trace with a
superscript on the metric tensor.

Using these expressions, the renormalized two, three and
four-point correlators in momentum space can be written as

< Tμ1ν1(−p2)T
μ2ν2(p2) >ren

=< Tμ1ν1(−p2)T
μ2ν2(p2) >bare

−1

ε
βa D

μ1ν1μ2ν2
F (−p2, p2),

< Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(p3) >ren

=< Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(p3) >bare

− 1

ε

(
βa D

μ1ν1μ2ν2μ3ν3
F (p1, p2, p3)

+βb D
μ1ν1μ2ν2μ3ν3
G (p1, p2, p3)

)
,

< Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(p3)T
μ4ν4(p4) >ren

=< Tμ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(p3)T
μ4ν4(p4) >bare

− 1

ε

(
βa D

μ1ν1μ2ν2μ3ν3μ4ν4
F (p1, p2, p3, p4)

+βb D
μ1ν1μ2ν2μ3ν3μ4ν4
G (p1 p2, p3, p4)

)
. (48)

From these relations and from (32) to (35) it is apparent
that the counterterms are related to each other by the same
transverse Ward identities relating the EMT correlators. One
can also separately check these identites for Weyl and Euler
counterterms just by writing them down and equating the
coefficients of βa and βb. This is done in the second part of
the file functional_derivatives.nb.

Anomalous Ward identities for our counterterms can be
derived through up to three more functional derivatives of
Eqs. (47), so that identities which are completely analo-
gous to (37)–(39) emerge, the only difference being that now
traces are taken in d dimensions. We report them separately
for the Weyl and Euler counterterms in the first channel: of
course analogous identities -obtained by proper permutations
of indices and momenta- hold in all channels.

δ(d)
μ1ν1

Dμ1ν1μ2ν2
F (−p2, p2) = −ε

2

2

3
[�R]μ2ν2 (p2),

δ(d)
μ1ν1

Dμ1ν1μ2ν2
G (−p2, p2) = 0, (49)

δ(d)
μ1ν1

Dμ1ν1μ2ν2μ3ν3
F (p1, p2, p3)

= −Dμ2ν2μ3ν3
F (−p2, p2) − Dμ2ν2μ3ν3

F (−p3, p3)

−ε

2

[(
F − 2

3
√
g�R

)]μ2ν2μ3ν3

(p2, p3),
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δ(d)
μ1ν1

Dμ1ν1μ2ν2μ3ν3
G (p1, p2, p3)

= −Dμ2ν2μ3ν3
G (−p2, p2) − Dμ2ν2μ3ν3

G (−p3, p3)

−ε

2

[
G

]μ2ν2μ3ν3

(p2, p3), (50)

δ(d)
μ1ν1

Dμ1ν1μ2ν2μ3ν3μ4ν4
F (p1, p2, p3, p4)

= − 2 Dμ2ν2μ3ν3μ4ν4
F (−p3 − p4, p3, p4)

−2 Dμ2ν2μ3ν3μ4ν4
F (−p2 − p4, p2, p4)

−2 Dμ2ν2μ3ν3μ4ν4
F (−p2 − p3, p2, p3),

− ε

2

( [√
g F

]μ2ν2μ3ν3μ4ν4 (p2, p3, p4)

− 2

3

[√
g�R

]μ2ν2μ3ν3μ4ν4 (p2, p3, p4)

)

δ(d)
μ1ν1

Dμ1ν1μ2ν2μ3ν3μ4ν4
G (p1, p2, p3, p4)

= − 2 Dμ2ν2μ3ν3μ4ν4
G (−p3 − p4, p3, p4)

−2 Dμ2ν2μ3ν3μ4ν4
G (−p2 − p4, p2, p4)

−2 Dμ2ν2μ3ν3μ4ν4
G (−p2 − p3, p2, p3)

− ε

2

[√
g G

]μ2ν2μ3ν3μ4ν4 (p2, p3, p4). (51)

It is apparent that all these constraints are not trivial to satisfy.
We checked all of them for all anomalies and counterterms
and, thus, ensured that these were correctly computed.

As mentioned before, the ultraviolet pole of our four-point
function is found to coincide with the overall counterterm for
the scalar field 4T .

The reason why we perform this preliminary check is
twofold.

• The ultraviolet pole of our four-point function is highly
non trivial, since there are 16 diagrams contributing to
it, so that getting it right is a solid first check of the dia-
grammatic expansion. Beside, being a polynomial in the
external momenta, the ultraviolet pole of our four-point
function is much more manageable than the whole corre-
lator, which requires much more memory and computing
time. This makes it an ideal tool to quickly scan for poten-
tial mistakes in the Feynman expansion.

• The trace Ward identities connect the counterterms to the
trace anomalies and, so, are a test for the latter as well.
The trace anomalies are present also in turn in the trace
Ward identities for the correlation functions (37)–(39),
which we must test in order to ensure the correctness
of the four-point function. Thus, having them tested in
advance reassures us about the correctness of the trace
identities, so that any mismatch emerging from them can
be quite surely traced back to the four-point function.

One last comment is in order. The Euler characteristic -the
integral over all space of the Euler density- is topologically
invariant, i.e. it does not depend on the specific metric tensor

used in the integrand, so its derivatives w.r.t. the metric vanish
identically for d = 4, meaning they are ∝ ε in d = 4 − 2 ε,
as already discussed below Eq. (42). Thus, checking that its
functional derivatives correctly contribute to our countert-
erms because they remove terms ∝ 1/ε in our regularized
correlator effectively amounts to testing that two finite sets
of terms, one in the regularized correlator and the other in
the counterterm, exactly match. Though our computer alge-
bra stays “unaware” of the finiteness of these contributions,
since the proportionality to ε is hidden, this is clearly a sen-
sible test.

Once all these preliminary tests have been successful, we
can be reasonably confident about the diagrammatic expan-
sion. What is left it the computation of the whole four-point
function and the test of the transverse and trace Ward iden-
tities. Plenty of details are available in the files correla-
tors_calculation.nb and ward_identities.nb.

The purpose of the following section is to go into the
necessary technical details about the calculation.

5 Into the full calculation

It is time to illustrate in detail how we employ our tools to nail
down the whole four-point function. In the first part of this
section we review the Feynman diagram computation, in the
next two we give a survey of the checks of the Ward identities.
A few snippets of code are provided in this section, but we
encourage the interested reader to explore the notebooks,
which are documented in great and hopefully sufficient detail.

5.1 The calculation of the four-point correlator

The calculation is performed by the file correlators_
calculation.nb. The code employs Package-X to automate
the Passarino-Veltman reduction of the many tensor integrals
one encounters.

The notebook starts by loading the vertices and countert-
erms stored in the all_functional_derivativesfile, which must
be generated beforehand by running functional_derivatives.
nb. After that, the notebook is divided into three parts, one
for each of the three computed correlators. The structure of
these three parts is similar and unfolds as follows.

• The numerators of the contributing Feynman diagrams
are constructed. As detailed in Sect. 2, there is only 1
for the 2T , while there are 4 for the 3T and 16 for the
4T . An image of each computed diagram is loaded in the
notebook right before the line computing its numerator.
In the case of the two-point function, the known result for
general values of the improvement parameter (see Eq. 10)
is presented and rederived for the reader’s convenience.
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The case with χ = 1/6 corresponds to the conformally
invariant case and is eventually selected.4

• The LoopIntegrate routine is invoked to perform the ten-
sor reduction of the diagrams. For the three bubbles in the
three-point function and for all the diagrams contributing
to the four-point function, only blueprint diagrams with
generic momenta are computed. The actual diagrams are
obtained by replacing the generic momenta with the sets
classified in Sect. 2. This is topical for the four-point
function, due to the memory it requires (see next point).

• TheLoopRefine routine is employed to extract the ultravi-
olet poles from each diagram and to sum them up in order
to identify the ultraviolet divergence of the correlator.
This is then compared to the corresponding counterterm
and exact matching is found, so the whole correlators are
stored in the files T2_scalar, T3_scalar and T4_scalar.
The first two contain just the full two and three-point cor-
relators, whereasT4_scalar stores only the four blueprint
diagrams, because of the amount of memory the full result
would otherwise require: the blueprint for the square dia-
gram takes roughly 2.3 GB of memory by itself. This
is before substituting an explicit set of momenta, which
makes it even lengthier because some of them are the sum
of more momenta and before exploiting the momentum
conservation constraint p1 → −(p2 + p3 + p4).

The results presented in this section were relatively
straightforward to get, although one of them requires quite
some time: the extraction of the ultraviolet pole of the square
diagram contributing to the four-point function takes roughly
20 mins even when parallelized among 8 kernels, each one
running on a different core of a 2,4 GHz Intel Core i9 CPU.
Nevertheless, despite the time required, the amount of mem-
ory used to accomplish any of the tasks in this notebook never
exceeds 4GB, which makes it easy to execute on any modern
laptop.

Unfortunately, this is not the case for the tests of the
Ward identities for the 4T correlator, as we will explain in a
while. The next two sections deal with the content of the file
ward_identities.nb.

5.2 Analytical checks of the Ward identities for the 2T and
3T

Checking the transverse and trace Ward identities for the two-
point function, Eqs. (32) and (37), is trivial. The first two
lines in Fig. 7 should be self explanatory, once the reader has
understood the essential purpose of the LoopRefine routine
explained in Sect. 4 and that theA2 object is just the anomaly
on the rhs of (37).

4 See also the paragraph just before Sect. 2.1 about the choice χ = 1/6
vs the general case χ = 1/4(d − 2)/(d − 1).

It is time to explain how to check the naive scaling dimen-
sion of the correlators. The underpinning idea is very sim-
ple. This dimension is called naive because proper scaling
accounts for the effect of logarithms dependent on the ultra-
violet scale ∝ log(p2/μ2), which come from the two-point
scalar integrals. Since every term in our EMT correlators
must be of dimension (momentum)4, we can replace it with
its dimension, which we choose to denote with λ in the code.
So, for instance, pμ → λ, gμν → λ0. Once all the replace-
ments have gone through, we expect to get just a real number
times λ4, which is what is shown in the last input line of the
snippet below and what is found for the higher-point func-
tions as well.

One might ask why we do not undertake a check of the
full dilatation identity, which would be, in d = 4, something
like

(
4 −

n∑
i=1

pλ
i

∂

∂pλ
i

)
< Tμ1ν1(p1) . . . Tμn ,νn (pn) >

= anomalous terms. (52)

The reason is that checking the trace identities (37)–(39)
already implies satisfying the scale invariance requirement.
Indeed, the trace anomaly equation (5) is obtained by study-
ing the transformation of the generating functional of a field
theory embedded in curved space under a local rescaling
of the metric tensor, which is called a Weyl transformation.
This is a more general transformation than a global rescal-
ing of coordinates and, for Lagrangian field theories which
are at most quadratic in their fields derivatives, is effectively
equivalent to full-fledged conformal invariance [32]. This
means in turn that, since this symmetry is broken only by
the trace anomaly, which can be seen as a by-product of
the ultraviolet renormalization of the EMT, it follows that,
if an EMT correlator satisfies its anomalous trace identity,
the correlator must also be scale invariant in the sense of
(52). In particular this implies that, if its momenta are uni-
formly rescaled by a global factor p → λp, it must change
by an overall factor λ4 plus additional contributions due
to the logarithms associated to the regularization scale μ2,
introduced to consistently regularize ultraviolet divergencies
∝ log(p2/μ2) → log(p2/μ2) + log λ2. These are the con-
tributions that, acted upon by the differential operators in Eq.
(52), would render the anomalous term on the rhs. The fact
that in Fig. 7 we are just cheking the naive scale dimension
is due to the replacement of the two-point scalar integrals
with λ0, which does not take into account the logarithmic
contribution.

Now, the reason why we are discussing the naive scale
identity is that its check can be done analytically also for the
complicated four-point correlator and, as such, will prove
very useful in the last part of this section, when numerical
stability of our results is discussed.
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Fig. 7 Check of the transverse and trace Ward identities as well as of the naive scaling dimension for the two-point function

Next we come to the tests of the Ward identities for the
three-point function, which is more involved but was already
done in [6] in pretty much the same way, which we reproduce
here. The idea behind the procedure for both transverse and
trace identities is the same and quite simple.

• Load the tensor basis which spans the space of rank-5 or
rank-4 tensors dependent on 2 independent momenta to
which belongs the correlator contracted with the momen-
tum in (34) or with the metric tensor in (38); assign to
them the correct indices (those which survive after con-
traction).

• Build the lhs and rhs for each Ward identity separately.
• Isolate the coefficients of each tensor in the basis for

both the lhs and the rhs, subtract them from each other
and check that for all of them the result is zero.

We have checked all three transverse identities (34) and trace
identities (38). For further details, the reader is encouraged to
look at the code, where she will also encounter theKallenEx-
pand routine, which plugs the explicit expression for the Käl-
lén polynomial λ(a, b, c) = a2 +b2 +c2 −2ab−2ac−2bc
in place of its symbolic representation.

5.3 Numerical checks of the Ward identities for the 4T
correlator

This is the most slippery and time consuming part of our
project, because the whole 4T correlator is just too big to be
dealt with analytically within reasonble time with an ordi-
nary computer, even one with a 64GB RAM like the one at
our disposal. As we mentioned above, the blueprint of the
square diagrams contributing to the 4T are the culprits, each
one of them occupying alone almost 4GB of memory space
after the proper momenta assignments. These assigments are
such that the second argument of each diagram is the sum of
two external momenta (see the notebook and the diagrams of

Sect. 2) which, considering the amount of terms it consists
of, significantly increases the necessary memory. The first
feature which is required from the needed computer is quite
some RAM: at least 40 available GB, in order for the com-
putation not to crush. The second crucial feature is to have
more than one available CPU core to perform calculations,
in order to reduce the required time to a reasonable window
through parallelization. In our case, we had 8 kernels and a
64GB RAM at our disposal on our machine, which allowed
us to complete the test of all the 9 Ward identities for the 4T
correlator in slightly less than 1 h.5

In order to speed up our numerical effort, we resorted to
theCollierLink package, which connectsPackage-X with the
COLLIER library (written in C language) in order to provide
fast numerical evaluation of the scalar integrals. A funda-
mental component of the numerical evaluation procedure is
to isolate the ultraviolet poles from the rest of the correlators.

The steps of the testing procedure explained for the 3T
Ward identities hold here as well, with two caveats. First,
the tensor bases to be used are now much bigger, due to the
increased number of indices from 5 to 7 for transverse Ward
identities and from 4 to 6 for trace Ward identities, beside the
fact that we have one more independent momentum in our
correlator w.r.t. the three-point case; second, the matching of
the coefficients must now be checked numerically in order to
guarantee sufficient speed and, for most common computers,
not to crush.

On the ground of what was explained so far, one might
think that subtracting the counterterm for the 4T after apply-
ing the LoopRefine routine to the computed correlator -even
parallelizing it- would do the job: it would indeed, but that
would be much too slow.

5 We are perfectly aware that state-of-the-art numerical calculations,
e.g. for multiloop LHC phenomenology, require tens of thousands of
CPU hours to complete, dwarfing our case. The spirit of our endeavor
is different though: we are ultimately after some clever way to handle
these results on even less powerful devices than ours in a near future.
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What one can do, instead, is to resort toCollierLink , which
can perform direct numerical evaluation of the Passarino-
Veltman coefficient functions bypassing the analytic expan-
sion. The task is parallelized in the notebook through the
ParallelMapMathematica routine, which distributes the task
among the various available kernels. The parallelized task is
in turn a sequence of two steps.

• The SeparateUV routine of CollierLink isolates the UV
pole in each coefficient function.

• The numrep set of rules, defined above in the notebook,
replaces all the scalar products of momenta with the
corresponding numerical values obtained after choos-
ing a completely off-shell configuration which respects
p1+ p2+ p3+ p4 = 0. The input of numerical values into
the scalar integrals automatically triggers CollierLink to
invoke the COLLIER library and to evaluate the scalar
coefficients numerically. We must specify a few things
in order to have CollierLink run as we need, such as the
accuracy required in the evaluation of scalar integrals,
which we set to 10−10 6, and the maximum tensor rank
of our integrals, 8. The ultraviolet regularization scale μ

is set by default to 1, but this value can be changed (see
the next part of this section).

This step is the real bottleneck of the whole procedure, for
it takes � 40 min to complete for most of the momenta
configurations we have tested, which are

[p1, p2, p3, p4] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[(5,−3, 0, 3), (−1, 1, 0, 1), (−2, 1, 0,−1), (−2, 1, 0,−1)]
[(−2,−3, 9, 1), (1, 2, 4, 1), (3,−6,−2, 0), (−2, 7,−11,−2)][
(1, 1, 1, 1), (1,−1,−1,−1), (−1, 1

2 , 1
2 , 1

2 ), (−1,− 1
2 ,− 1

2 ,− 1
2 )
]

(
1√
2

− 1√
3

)
× [

(1, 1, 1, 1), (1,−1,−1,−1), (−1, 1
2 , 1

2 , 1
2 ), (−1,− 1

2 ,− 1
2 ,− 1

2 )
] (53)

Please notice that the fourth configuration is given by the
momenta in the third one rescaled by the prefactor in round
brackets. This will be topical for the upcoming discussion of
the numerical precision and stability of the tests.

Once the numerical evaluation of the scalar coefficients
has been performed, what is left in order to test the Ward
identities is to contract the listed diagrams with either one
of the momenta or the metric tensor, perform the few more
numerical replacements on the scalar products this produces,
perform the same operations on the corresponding rhs (see
Eqs. 35 and 39) and compare the scalar coefficients one by
one. Then, if all the differences are acceptably small, we
can declare the test successful. The corresponding snippet of
code is given in Fig. 8, which we comment below

6 This is 2 orders of magnitude smaller than the precision required for
the numerical test, 10−8.

• lhscov1 is the lhs of (35) and the set of rules in the curly
brackets are the (faster) equivalent of the contraction with
the p1 momentum. When momentum conservation is
employed at the end, it can affect only tensor structures,
as it must in order not to miss any terms, since the tensor
basis tens371 depends only on 3 independent momenta.

• rhscov1 is the rhs of Eq. (35), the �1 and �2 symbols
being defined in Appendix B, whereas the T 2 and the T 3
functions are obviously the two and three-point correla-
tors.

• checkcov1 is a table, evaluated in parallel, made up by
the differences of all scalar coefficients of the lhs and the
rhs over the basis of rank 7 tensors with 3 independent
momenta. The additional function Labeled just marks
every difference with the number of the tensor in the list,
which could be needed after an unsuccessful test to track
down the tensors whose coefficients on the lhs and rhs of
the identity do not match.

• The final line simply removes from the list all those num-
bers which were set equal to 0 through the Chop routine,
because both their real and imaginary parts were under
the prec threshold, which we set to 10−8 for the first three
momentum configurations listed in (53). A dedicated dis-
cussion of the fourth momentum configuration, for which
the precision threshold we manage to reach is not even
close, being just 10−1, aims at proving that this is defi-
nitely an expected issue of numerical instability. To this

end, the fact that we can easily check analytically naive
scaling dimension is useful.

5.4 Discussion about numerical stability

The last point we wish to discuss before coming to our con-
clusions is the issue of numerical stability, which is raised
when one tries to check the four-point functions Ward iden-
tities for momenta configurations like the last one in (53),
which was purportedly chosen to be a rescaled version of the
back-to-back third configuration, for which the test is precise
through 8 decimal figures, just as for the former 3 as well.

This is when the test of the naive scale invariance of our
correlators comes in handy, as we finally explain, reassur-
ing us that the problem is only due to numerical instability.
Now, the naive scaling dimension of every EMT correlator
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Fig. 8 Parallelized numerical comparison of the scalar coefficients
over all the tensors in the base tens371 (3 momenta, rank 7, indices
assignments for the 1st identity) of the lhs and rhs of the first transverse

Ward identity in (35). If smaller than the threshold prec= 10−8 param-
eter, the result is subsequently chopped out of the list. The final result
is an empty list, so the test is successful

is (momentum)4, as one can see analytically for all correla-
tors. This means that both the lhs and the rhs of every iden-
tity in (35) and (39) should naively scale by the same fac-
tor λ. To be completely precise, one must not forget to take
into account the logarithmic contributions associated with
scalar two-point functions which, as mentioned in Sect. 3,
behave under rescaling like log(p2/μ2) → log(λ2 p2/μ2) =
log(p2/μ2) + log λ2.

If it comes to numerically checking the rescaled identities,
we can take care of this problem in two ways:

• by rescaling the regularization scale as well by μ → λμ,
using the dedicated initialization option of the Collier-
Link package: the snippet of code in Fig. 9 illustrates the
invariance of the two-point function after rescaling both
the momentum and the regularization scale.

• by leaving everything as it is, since the same two-point
functions are present on both the lhs and rhs of the Ward
identity, so that extra terms should coincide as well.

This proves that, if the identities are satisfied for a given
momentum configuration, they should be identically satisfied
for the rescaled configuration as well. Testing both possibil-
ities is useful to realize that the extra logs coming from the
rescaling of the momenta are not the source of the numerical
instability. Indeed, what we find for our fourth momentum
configuration, whether we take care of μ in the first way
suggested above or not, is that the precision up to which the

Ward identity is numerically satisfied does not exceed 10−1

for some scalar coefficients in the tensor bases.
Nevertheless, since we proved that this result must vanish

exactly too, the fact that the numerical agreement is excel-
lent for such diverse momenta configurations as the first
three leads us to the conclusion that our calculation is cor-
rect, although its numerical evaluation suffers from numeri-
cal instability, which is nevertheless to be expected for such
huge expressions.

Of course, one can think of ways to improve our numerical
tests.

The naive way could be to pursue a brute force approach:
one would feed the numerical routines higher and higher pre-
cision inputs (Mathematica can numerically evaluatae exact
numbers to arbitrary numerical precision), but this would
take an even heavier toll on the memory of the machine,
which is already quite stretched with the required accuracy
standards. A batch of several machines on which we could
parallelize our numerical tests could do the job, of course. We
do not have access to an integrated Mathematica deployment
of this kind, but we firmly believe that the discussion above
has clarified that this would add neither any further under-
standing nor improvement to our result, not least because,
once one has a much higher available computing power, the
identities could be tested analytically right off the bat.

A second way to go could be to compile our output into
optimizedC++ orFortran code. This is presumably feasible,
but it goes behind the scope of the present work.
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Fig. 9 The scaling behaviour of the two-point function: scaling the regularization scale by the same factor as the momentum makes it behave as
if its scaling dimension were the naive one, i.e. 0

These problems will stay, of course, only until a more
clever way to compute the four-point function correlator is
devised, which can yield a more compact result cutting off
all the redundancies our method necessarily implies, but for
the time being we consider ourselves satisfied.

6 Conclusions and perspectives

We have computed the four-point correlation function of the
energy-momentum tensor in momentum space and provided
a set of tools which allow the interested reader to reproduce
the perturbative computation of the two, three and four-point
correlation functions, together with the explicit and detailed
construction of counterterms and anomalies and the test of the
transverse and trace Ward identities. The results for the cor-
relators are fully analytical, expressed in terms of Passarino-
Veltman coefficient functions which can be easily either fully
reduced to scalar integrals or evaluated numerically to arbi-
trary precision.

Considering the sheer dimension of our results, the main
purpose of this work should be understood as the delivery of
a benchmark for numerical checks of more compact results
to be obtained in the future with different strategies, most
probably the conformal bootstrap for fields with spin.

It would also be interesting to perform the same calcula-
tion for other Lagrangian conformal field theories, such as
a fermion or a gauge field: actually, we already did this, but
decided not to publish these results because they are even
more massive than the scalar case and checking the Ward
identities for the corresponding four-point correlation func-
tions is computationally even more demanding. Furthermore,

unlikely the case of the three-point function, the results for
the scalar, fermion and gauge fields do not allow to account
for the full set of constants which would suffice to recon-
struct any four-point correlator, so one does not gain much
further insight into the structure of the CFT by computing
them. Anyway, should we make progress on speeding up
such checks, we will certainly update our repository.

Given the result by Dymarsky [18], it would be also very
useful to identify the 22 independent structures making up
the 4T correlation function in 4d in momentum space, per-
haps after successfully accomplishing the task in 3d, where
the number of independent structures is just 5. Once and
if this task is accomplished, it would also be interesting to
check the expected one-to-one correspondence between the
momentum space result and the coordinate space results of
[19–23]. The mapping between correlators in coordinate and
momentum space has been investigated in some detail in
[6,31] and shown to lead to some non trivial consistency
conditions, which make this effort worth a separate work.

Also checking conformal Ward identities for our four-
point correlator in momentum space would be interesting,
but the task requires the implementation of second order dif-
ferential operators and their application to a very complicated
object. Since the Ward identities for the four-point correlator
we did test were manageable only numerically, which was
already a highly non trivial task, we did not try to figure
out a way to perform the same numerical task as efficiently
when working with differential operators, not least because
our perturbative results for the lower point functions were
shown in [7] to coincide with the non perturbative results
of [4,5]. The latter were obtained by solving the full set of
conformal Ward identities, so the work of implementing dif-
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ferential operators in our codes for the three-point function
without being able to extend the procedure to the four-point
function would have added no original output to our effort.
Again, should we make progress on this point, we will update
our repository.
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A Conventions

A.1 Conventions for signs and momentum space
correlators definition

The definition of the Fourier transform of the correlation
function of n EMT’s, which holds for any other n-point coor-
dinate space function as well, is given by∫

dd x1 . . . dd xn
〈
Tμ1ν1(x1) . . . Tμnνn (xn)

〉
e−i(p1·x1+···+pn ·xn)

= (2π)d δ(d)

⎛
⎝ n∑
i=1

ki

⎞
⎠ 〈

Tμ1ν1(p1) . . . Tμnνn (pn)
〉
, (54)

where all the momenta are conventionally taken to be incom-
ing.

The covariant derivatives of a contravariant vector Aμ and
of a covariant one Bμ are respectively

∇ν A
μ ≡ ∂ν A

μ + �μ
νρ A

ρ (55)

∇νBμ ≡ ∂νBμ − �ρ
νμBρ, (56)

with the Christoffel symbols defined as

�α
βγ = 1

2
gακ

[−∂κgβγ + ∂βgκγ + ∂γ gκβ

]
. (57)

Our definition of the Riemann tensor is

Rλ
μκν = ∂ν�

λ
μκ − ∂κ�λ

μν + �λ
νη�

η
μκ − �λ

κη�
η
μν. (58)

The Ricci tensor is defined by the contraction Rμν = Rλ
μλν

and the scalar curvature by R = gμνRμν .

The functional variations with respect to the metric tensor
are computed using the relations

δ
√
g = −1

2
√
g gαβ δgαβ

δ
√
g = 1

2
√
g gαβ δgαβ

δgμν = −gμαgνβ δgαβ

δgμν = −gμαgνβ δgαβ. (59)

The variations of the Christoffel symbols w.r.t. variations of
the metric tensor are tensors themselves and their expression
is

δ�α
βγ = 1

2
gαλ

[ − ∇λ(δgβγ ) + ∇γ (δgβλ) + ∇β(δgγ λ)
]
,

∇ρδ�α
βγ = 1

2
gαλ

[ − ∇ρ∇λ(δgβγ ) + ∇ρ∇γ (δgβλ) + ∇ρ∇β(δgγ λ)
]
.

(60)

A.2 Weyl invariant and Euler density in 4d

It is well known that the object one has to deal with in order
to construct Weyl-invariant objects for general dimensions d
is the traceless part of the Riemann tensor, called the Weyl
tensor, defined by

Cαβγ δ = Rαβγ δ − 1

d − 2
(gαγ Rδβ + gαδ Rγβ − gβγ Rδα − gβδ Rγα)

+ 1

(d − 1)(d − 2)
(gαγ gδβ + gαδ gγβ)R. (61)

This object enjoys the same symmetry properties of the Rie-
mann tensor, i.e.

Cαβγ δ = −Cβαγ δ = Cβαδγ = Cδγβα, (62)

and, moreover, is traceless with respect to any couple of its
indices. It is invariant under Weyl scalings of the metric

δWCα
βγ δ = 0. (63)

In 4 dimensions, the only quantity which is Weyl invariant
when multiplied by

√
g, is the Weyl tensor squared, which is

F ≡ Cαβγ δCαβγ δ = Rαβγ δRαβγ δ − 2 Rαβ Rαβ + 1

3
R2.

(64)
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The other quantity with which one can construct an inte-
gral which is Weyl invariant (in fact, a constant) for general
even dimensions d = 2 k is the Euler density, defined as

E2k = 1

2k
δμ1a1ν1b1...μkakνkbk R

μ1ν1λ1κ1 . . . Rμkνkakbk . (65)

The antisymmetric Kronecker symbol is given by

δν1a1ν2a2...νnan = n!
∑

P(a1,...,an)

(−1)TP gν1P(a1) . . . gνnP(an),

(66)

where TP is the number of inversions in the permutation P
of the n numbers a1, . . . an .

By applying the general definition 65, we find that in 4
dimensions we have

E4 ≡ G = Rαβγ δRαβγ δ − 4 Rαβ Rαβ + R2,

A.3 Vanishing of the Euler counterterms

In this section, we outline the proof of the claim made at
the end of section 4, that the Euler counterterm vanishes in
d = 4, as all the derivatives of the integrated Euler density,
which is a topological invariant. Explicit calculations can be
found in the notebook vanishing_euler_ct.nb. The derivation
is inspired by the discussion of the three point function in
Appendix A.2 of [4].

In order to do so, we exploit the fact that in d dimen-
sions only d momenta can be independent. If we have d such
momenta available, then the metric is not an independent
tensor and we can rewrite it as

δμν =
d∑

j,k=1

pμ
j pν

k

(
Z−1

)
k j

, (67)

where Z is the Gram matrix, i.e. Zi j = (pi · p j )
d
k, j=1.

Since, except for specific kinematic configurations, a gen-
eral n-point function depends on n−1 independent momenta,
because of momentum conservation, if n = d, we can con-
struct the n-th independent momentum using the completely
antisymmetric Levi-Civita tensor,

nμ = εμμ2...μn p2 . . . pn . (68)

By construction nμ is orthogonal to all of the other n − 1
momenta. In our case we have n = d = 4, so we can define
our vector nμ in terms of p2, p3 and p4.

Our Gram matrix is given by
⎛
⎜⎜⎝

p2
2 p2 · p3 p2 · p4 0

p3 · p2 p2
3 p3 · p4 0

p4 · p2 p4 · p3 p2
4 0

0 0 0 n2

⎞
⎟⎟⎠ , (69)

with n2 = (p2 · p3)
2 p2

4 + (p2 · p4)
2 p2

3 + (p3 · p4)
2 p2

2 −
2 (p2 · p3) (p2 · p4) (p3 · p4) − p2

2 p2
3 p2

4.

If we compute the inverse Gram matrix and apply (67)
to Dμ1ν1μ2ν2μ3ν3μ4ν4

G (p1, p2, p3, p4), we can check that,
indeed, the Euler counterterm vanishes.

In our notebook, we first check that all of the traces of the
re-expressed Euler counterterm are zero, if up to two indices
pair are left open, i.e.

δ
(4)
μ1ν1 δ

(4)
μ2ν2 δ

(4)
μ3ν3 δ

(4)
μ4ν4 Dμ1ν1μ2ν2μ3ν3μ4ν4

G (p1, p2, p3, p4) = 0,

δ
(4)
μ2ν2 δ

(4)
μ3ν3 δ

(4)
μ4ν4 Dμ1ν1μ2ν2μ3ν3μ4ν4

G (p1, p2, p3, p4) = 0,

δ
(4)
μ3ν3 δ

(4)
μ4ν4 Dμ1ν1μ2ν2μ3ν3μ4ν4

G (p1, p2, p3, p4) = 0.

(70)

These preliminary tests are not very informative, in fact, for
if we consider the trace Ward identities for the Euler coun-
terterm in d dimensions, we see from (49) to (51) that the
traces with four, three and two traced indices pairs must van-
ish also for d �= 4. On the other hand, if we have only one
traced pair, we see that the rhs of (51) in d = 4 is given by
a symmetric combination of the 3-point Euler counterterms.
Thus, proving that

δ(4)
μ1ν1

Dμ1ν1μ2ν2μ3ν3μ4ν4
G (p1, p2, p3, p4) = 0. (71)

actually holds is the first non trivial test one can make. One
can observe that since the symmetric combination in the rhs
of (51) certainly does not vanish in d �= 4, then (71) is a
non trivial check of the fact that also the 3-point function
counterterm must vanish for d = 4. Indeed, its explicit form
involves the projector onto the space of fully antisymmetric
5-indices tensors [1], which is necessarily zero for integer
d < 5. This is also explicitly shown in our code.

Finally, we perform the same check for the fully uncon-
tracted Euler counterterm, actually finding out that

Dμ1ν1μ2ν2μ3ν3μ4ν4
G (p1, p2, p3, p4) = 0. (72)

The full tests with all the necessary comments and details
can be found in our repository.

B Functional derivatives

B.1 Basic functional derivatives

Here we give the basic momentum space functional deriva-
tives, which are the building blocks needed to for all of the
counterterms, vertices and anomalies. Once these few formu-
las are understood, the construction of all the rest is a matter
of (very) careful bookkeeping and a lot of applications of
the chain rule for functional derivatives: please notice that in
the following formulas terms which vanish in the flat space-
time limit are already dropped, but one must take them into
account for higher order derivatives.[

gαβ

]μ1ν1
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= 1

2

(
δμ1
α δ

ν1
β + δν1

α δ
μ1
β

)
,

[
gαβ

]μ1ν1

= −1

2

(
δμ1α δν1β + δν1α δμ1β

)
,

[√
g
]μ1ν1

= 1

2
gμ1ν1 ,

[
�α

βχ

]μν

(k)

= i

2
δαλ

(− [
gβχ

]μν
kλ + [

gβλ

]μν
kχ + [

gλχ

]μν
kβ

)
,

[
�αβχ

]μν
(k)

≡ δαδ

[
�δ

βχ

]μν

(k)
[
�α

βχ

]μ1ν1μ2ν2
(k1, k2)

= [
gαλ

]μ1ν1 [
�λβχ

]μ2ν2 (k2) + (1 → 2),[
�α

βχ

]μ1ν1μ2ν2μ3ν3
(k1, k2, k3)

= [
gαλ

]μ1ν1μ2ν2 [
�λβχ

]μ3ν3 (k3) + (1 ↔ 2, 1 → 3).

(73)

All further details are given in the file all_functional_
derivatives_computed.nb

B.2 Interaction vertices of the scalar field with gravitons

We provide here the explicit forms of the three vertices used
in the Feynman diagrams. The computation of the vertices
can be done by taking at most three functional derivatives of
the scalar action in curved space with respect to the metric
tensor and, of course, the scalar field. This is because the
vev’s of the fourth order derivatives correspond to massless
tadpoles, which are set to zero in DR, so no fourth derivative
is needed.

• graviton - scalar - scalar vertex

Vμν
Hφφ(p,q) = 1

2

(
δμαδνβ − 1

2
δμνδαβ

) (
pαqβ + pβqα

)
,

+χ
(
δμνδαβ − δμαδνβ

)
(
pα pβ + pαqβ + qα pβ + qαqβ

)
,

• graviton - graviton - scalar - scalar vertex

Vμνρσ
HHφφ

(p,q, l) = 1

2

( [√
g
]ρσ

(
δμαδνβ − 1

2
δμνδαβ

)

+
[
gμαgνβ − 1

2
gμνgαβ

]ρσ ) (
pαqβ + pβqα

)
,

+χ

{( [√
g
]ρσ

(
δμνδαβ − δμαδνβ

)

+
[
gμνgαβ − gμαgνβ

]ρσ
)

(
pα pβ + pαqβ + pβqα + qαqβ

)

+
(
δμνδαβ − δμαδνβ

) [
�λ

αβ

]ρσ
(l) i (pλ + qλ)

−
(

1

2
δμνδαβ − δμαδνβ

) [
Rαβ

]ρσ
(l)
}
,

• graviton - graviton - scalar - scalar vertex

Vμνρσχω
HHHφφ(p,q, l1, l2) = 1

2

{ [√
g
]ρσχω

×
(

δμαδνβ − 1

2
δμνδαβ

)

+ [√
g
]ρσ

[
gμαgνβ − 1

2
gμνgαβ

]χω

+ [√
g
]χω

[
gμαgνβ − 1

2
gμνgαβ

]ρσ

+
[
gμαgνβ − 1

2
gμνgαβ

]ρσχω } (
pαqβ + pβqα

)

+χ

{ [√
g
]ρσχω (

δμνδαβ − δμαδνβ
)

+ [√
g
]ρσ [

gμνgαβ − gμαgνβ
]χω

+ [√
g
]χω [

gμνgαβ − gμαgνβ
]ρσ

+ [
gμνgαβ − gμαgνβ

]ρσχω
}

× (
pα pβ + pαqβ + qα pβ + qαqβ

)
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+ χ

{ ([√
g
]χω [

δμνδαβ − δμαδνβ
]

+ [
gμνgαβ − gμαgνβ

]χω
) [

�λ
αβ

]ρσ

(l1)

+ (ρ, σ, l1) ↔ (τ, ω, l2)

+ (
δμνδαβ − δμαδνβ

) [
�λ

αβ

]ρσχω

(l1, l2)
}
i (pλ + qλ)

+ χ

{([√
g
]χω

(
δμαδνβ − 1

2
δμνδαβ

)

+
[
gμαgνβ − 1

2
gμνgαβ

]χω) [
Rαβ

]ρσ
(l1)

+ (ρ, σ, l1) ↔ (τ, ω, l2)

+
(

δμαδνβ − 1

2
δμνδαβ

) [
Rαβ

]ρσχω
(l1, l2)

}
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