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Abstract In this work, we perform a holographic analy-
sis to study non local observables associated to a uniformly
boosted strongly coupled large N thermal plasma in d-
dimensions. In order to accomplish the holographic analysis,
the appropriate dual bulk theory turns out to be d +1 dimen-
sionalboosted AdS-Schwarzschild blackhole background. In
particular, we compute entanglement entropy of the boosted
plasma at high temperature living inside a strip geometry with
entangling width l in the boundary at a particular instant of
time. We also study the two-point correlators in the boundary
by following geodesic approximation method. For analyzing
the effect of boosting on the thermal plasma and correspond-
ingly on both non local observables, we keep the alignment of
the width of region of interest both parallel and perpendicular
to the direction of the boost. We find our results significantly
modified compared to those in un-boosted plasma up to the
quadratic order of the boost velocity v. More interestingly,
the relative orientation of the boost and the entangling width
play a crucial role to quantify the holographic entanglement
entropy in the boundary theory. The breaking of rotational
symmetry in the boundary theory due to the boosting of the
plasma along a specific flat direction causes this interesting
feature.
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1 Introduction

Theoretical understanding of strongly coupled quantum field
theories existing in nature, including the recently discovered
Quark–Gluon–Plasma (QGP) in relativistic heavy ion colli-
sion [1–9] is hard to achieve by applying the standard tech-
nics in perturbation theory. On the other side, AdS/CFT
correspondence offers us an indirect way to probe the non-
perturbative effects in strongly coupled systems by explor-
ing a suitable dual weakly coupled theory of gravity. A very
well-studied example of this correspondence is the duality
between type I I B supergravity in AdS5 × S5 and strongly
coupled large N , N = 4 Super Yang-Mills theory living
in the four dimensional conformal boundary of the AdS5

[10–12]. Further generalization to this correspondence has
been achieved by associating temperature to the boundary
gauge theory and by identifying the dual gravity spacetime
to be AdS-Schwarzschild black hole [13]. Considering AdS-
Schwarzschild black hole as the dual bulk gravity, the authors
in [14] have holographically explored the finite temperature
behavior of the non-local observables such as entanglement
entropy, two-point correlation function and the expectation
value of the Wilson loop in the strongly coupled boundary
plasma at finite temperature. Moreover, the closed analytic
expressions for those non-local boundary observables have

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8206-1&domain=pdf
mailto:atanubhatta@iisc.ac.in
mailto:s.chakrabortty@iitrpr.ac.in
mailto:sdengiz@thk.edu.tr
mailto:ercan.kilicarslan@usak.edu.tr


663 Page 2 of 15 Eur. Phys. J. C (2020) 80 :663

been computed both at high and low temperature regimes of
the boundary theory.

In this work, we consider the boundary theory to be a
strongly coupled large N thermal plasma moving with a uni-
form boost v with respect to an observer seating in a static
reference frame attached to the flat boundary spacetime (rest
frame observer). An example of such strongly coupled the-
ory isN = 4 Super Yang-Mills thermal plasma living in four
dimensional flat spacetime. In the bulk, the gravity back-
ground dual to the boosted thermal plasma is realized as
a uniformly boosted AdS Schwarzschild planar black hole
[15].1 Generally, temperature of the boundary plasma is mea-
sured by a boundary observer co-moving with the plasma
(co-moving observer). However, as our current objective is to
explicitly capture the effect of boost parameters, we express
the outcome of our analysis in terms of temperature mea-
sured by the rest frame observer. Similar set up for obtaining
the temperature has been discussed in [17,18]. Nevertheless,
the temperature T as measured by the co-moving observer
is related to the temperature Tboost seen by the rest frame
observer in a very simple way: Tboost = T

γ
. (See appendix-A

for derivation). We focus into the high temperature regime
of the boosted plasma and estimate the modification of cer-
tain nonlocal observables such as entanglement entropy and
two-point correlators up to the quadratic order of the boost
parameter v. In particular, using the uniformly boosted AdS
Schwarzschild planar black hole we perform a holographic
computation of entanglement entropy of the boosted plasma
using a strip geometry with entangling width l in the bound-
ary spacetime. Moreover, we holographically compute the
two point correlator of primary operators inserted at two
spacetime points separated by a width l lying along one of
the flat directions of the boundary theory. The holographic
analysis of two point correlator involves the computation
of appropriate geodesic width followed by the well-known
geodesic approximation method in the bulk spacetime. To
emphasize the effect of boost parameter v in carrying out the
holographic computation for both non-local observables, we
keep the orientation of the width of interest both parallel and
perpendicular to the direction of boost. The v → 0 limit of
our final results consistently reproduces the findings in [14].
To mention a few similar analysis of non-local observable
of a thermal plasma in the high temperature regime we refer
[19,20]. Similarly, the analytical study of such observables
in the low temperature limit is discussed in [14,15,21,22].
A diametrically opposite limit corresponding to the infinite
boost has been also studied [23–26].

1 Note that under a specific long wave width approximation, the quan-
tum dynamics of strongly coupled thermal plasma simplifies to an effec-
tive classical dynamics of ideal fluid having well-defined holographic
dual described by boosted black brane solution [16].

It is important to mention that studying non-local observ-
ables is beyond the scope of analytical technics for arbi-
trary values of boundary parameters (Tboost, v). However,
such analytical study is perfectly viable within a high tem-
perature limit accompanied by a small boost approxima-
tion. We explore the high temperature limit in a systematic
way by introducing a dimensionless parameter Tboostl, where
Tboost and l are the temperature and width of the entangling
region as seen by a rest frame observer in the boundary the-
ory. Given the blackhole background and the correspond-
ing Hawking temperature, we can always choose the width
of the entangling region very large such that the inequal-
ity Tboost >> 1/ l, signifying the high temperature regime,
holds. The physical motivation of exploring only high tem-
perature regime becomes more evident as one introduces dis-
sipation into the boundary theory. Usually, a dissipative sys-
tem attains a local thermodynamical equilibrium where the
temperature is a slowly varying function of spacetime and
the inverse of the temperature sets a local length scale in
the theory. In such a situation, one needs to take the width
of the entangling region to be very large as compared to
the local length scale so that the dissipative characteristics
can be captured. Note that, in [14,15], by virtue of equiva-
lence between the temperature scale and the length scale, for
ideal fluid at finite temperature, the analytical expression of
entanglement entropy has been achived by considering the
entangling region small.

The lay-out of paper is as follows: In Sect. 2 we discuss
the holographic computation of the entanglement entropy
and its high temperature limit. Here, we elaborately discuss
the correction coming due to the uniform boost applied to the
thermal plasma. We make two separate analysis for parallel
and perpendicular cases to emphasize the effect of introduc-
ing boost in the thermal plasma. In Sect. 3, we study the
holographic analysis of two point correlator and also its high
temperature behavior. We also give systematic derivation of
the modification of the correlators due to the uniform boost.
Finally, in Sect. 4, we conclude by mentioning our results
and discuss some future directions.

2 Entanglement entropy in a boosted plasma

The idea of quantum entanglement indicates that a quantum
mechanical measurement on a component of an entangled
pair can indeed affect the outcome of a measurement on the
other component of the pair. The correlation between the
entangled pair is inherently nonlocal and unlike the classical
correlation, it depends on the measurement itself. A well-
defined measure of quantum entanglement can be used as a
suitable non-local probe to explore various interesting phases
of a physical system. In the present analysis, among var-
ious measures of entanglement, we consider entanglement
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entropy (EE) as a suitable non-local probe to explore the
strong coupling phase of a large N thermal plasma.

To define EE quantitatively, let us proceed with a quantum
mechanical bipartite system for which the Hilbert space is
defined as

H = HA ⊗ HB, (2.1)

where HA and HB are the Hilbert space of the individual
subsystems A and B. To evaluate the EE first we need to
construct reduced density matrix by taking partial trace of
total density matrix ρ over HB as

ρA = TrB ρ. (2.2)

Then, the von-Neumann entropy associated to the reduced
density matrix becomes the EE of the system A

SA = − TrA
(
ρA log ρA

)
. (2.3)

It is very difficult to implement the aforementioned pre-
scription (2.3) to compute EE in perturbative quantum
field theory (QFT) in arbitrary dimensions. In two dimen-
sional QFT preserving conformal invariance, the replica trick
method turns out to be very useful in obtaining the results for
EE [27,28]. The EE in this case contains finite non-local con-
tributions as well as local divergent part which is regularized
by an appropriate UV cut-off [28,29].

In strongly coupled QFT, it is still not well-understood
how to compute the EE directly by using (2.3). Ryu and
Takayanagi (RT) conjectured a new holographic prescrip-
tion which associates the EE of the boundary field theory
endowed by a conformal symmetry structure, with the area
of an extremum hyper-surface, a purely geometrical quan-
tity in the dual bulk gravity [30–32]. In particular, entangle-
ment entropy of a region A ind-dimensional strongly coupled
boundary theory is conjectured to be

SA = Area(γA)

4G(d+1)
N

, (2.4)

where γA is a co-dimension two space-like minimal surface
in the holographically dual d + 1 dimensional bulk grav-
ity, G(d+1)

N signifies the Newton constant in the d + 1 bulk
spacetime. The boundary of the co-dimension two space-
like minimal surface, ∂γ A coincides with the boundary ∂A
of the entangling region A. The aforementioned equation
(2.4) serves as our working formula to compute entangle-
ment entropy of a sub-region A in a strongly coupled boosted
thermal plasma.

The d + 1 dimensional gravity background dual to large
N , strongly coupled plasma at finite temperature living in
d dimensional boundary is given as the following AdS
Schwarzschild black hole spacetime,

ds2 = r2

R2

⎡
⎣−(1 − rdH

rd
)dt2 + dx2 + dx2

d−2 + R4

r4

dr2

1 − rdH
rd

⎤
⎦ .

(2.5)

In the present analysis, we introduce a uniform boost v to the
thermal plasma along a spatial flat direction in the boundary,
say x. By virtue of AdS/CFT duality, the holographic dual
of the uniformly boosted plasma can be described as boosted
AdS Schwarzschild black hole spacetime,

ds2 = r2

R2

[
−dt2 + dx2 + γ 2 r

d
H

rd
(dt + vdx)2

+dx2
d−2 + R4

r4

dr2

1 − rdH
rd

⎤
⎦ , (2.6)

with γ = 1/
√

1 − v2. In natural unit, the boost velocity v is
a dimensionless parameter and its value is bounded within
[0,1].

2.1 Holographic computation in parallel case

To understand the effect of boost on the entanglement struc-
ture of the thermal plasma we first consider the entangling
region A to be a strip in the boundary defined in a constant
time slice (t = t0) as,

x ∈
[
− l

2
,
l

2

]
; xi ∈

[
− L

2
,
L

2

]
(i = 1, 2, . . . d − 2),

(2.7)

where x and xi s are the spatial coordinates in the boundary
theory. We also take L → ∞ so that the entangling strip
region looks symmetrical with respect to all xi directions.
Note that in the present set up the direction of boost velocity
of thermal plasma and the alignment of the entangling width
l are both along x direction and we call it as parallel case.

A suitable ansatz for a co-dimension two space-like sur-
face γA embedded in the d + 1 dimensional dual gravity
theory can be parameterized by d − 2 number of coordinates
σα, α = 1, 2, . . . , d − 2. The choice of those coordinates
is σ 1 = x, σ i = xi , i = 1, 2, . . . , d − 3. As we impose
the limit L → ∞, among all the coordinates on γA the only
non trivial profile can be assigned to x = x(r). The induced
metric on surface γA reads as,

Gxx = r2

R2

⎡
⎣
(

1 + rdH
rd

γ 2v2

)
+ r ′2R4

r4

(
1 − rdH

rd

)−1
⎤
⎦

Gii = gii = r2 ∀i ∈ (1, 2, . . . d − 2), (2.8)
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with r ′ ≡ dr
dx . The corresponding area functional we aim to

minimize takes the form,

A|| = Ld−2

Rd−2

∫
drrd−2

[
1

R2

(
r2 + γ 2v2 rdH

rd−2

)
x ′2

+ R2

r2

(
1 − rdH

rd

)−1
⎤
⎦

1
2

, (2.9)

with x ′ ≡ dx
dr . The fact that the action (2.9) which has an

explicit dependence of boost parameter, turns out to be a key
feature from the perspective of our present analysis. It is also
important to mention that v → 0 limit can be smoothly taken
in (2.9) and also in all subsequent steps of our computation
to reproduce the known results for un-boosted case [14].

The minimization procedure boils down to the computa-
tion of the on-shell area functional. Since the area functional
does not have any explicit dependence on the variable func-
tion x(r), we can detour the process of obtaining equation
of motion by constructing a much simpler object, the first
integral of motion

rd−2
[

1
R2

(
r2 + γ 2v2 rdH

rd−2

)
x ′
]

√
1
R2

(
r2 + γ 2v2 rdH

rd−2

)
x ′2 + R2

r2

(
1 − rdH

rd

)−1
= C, (2.10)

where C is some arbitrary constant needed to be fixed by
imposing suitable boundary condition. A natural choice of
boundary condition fitting with the geometry of the surface
γA is

lim
x ′→∞

r = r ||
t , (2.11)

where r ||
t signifies the radial value of the turning point as γA

approaches deep in to the bulk space time. Using the above
mentioned boundary condition (2.11) we can re-express the
arbitrary constant C in terms of r ||

t ,

C = r ||
t
d−2

√√√√ 1

R2

(
r ||
t

2 + γ 2v2
rdH

r ||
t
d−2

)
. (2.12)

With the use of first integral of motion the equation of
motion obtained by extremizing the classical action (2.9)
turns out to be a first order differential equation which reads
as,

dx

dr
= ±

R2r ||
t
d−2

√
r ||
t

2 + γ 2v2 rdH

r ||
t
d−2

(
1 − rdH

rd

)−1/2

rd−1

(
r2 + γ 2v2 rdH

rd−2

)
√√√√√1 − r ||

t
2(d−2)

r2(d−2)

r ||
t

2+γ 2v2 rdH

r
||
t
d−2

r2+γ 2v2 rdH
rd−2

.

(2.13)

The co-dimension two hyper-surface approaching inside the
bulk has two independent branches and those two branches
are smoothly joined at r = r ||

t . The corresponding boundary
conditions satisfied by these two independent branches are

lim
r→∞ x(r) = ± l ||

2
. (2.14)

Using any one of the above boundary conditions, we solve
the equation of motion (2.13) to relate the free bulk parameter
rt with the free parameter l in the boundary theory

l ||

2
= R2

∫ ∞

r ||
t

×dr
r ||
t
d−1√

1 + γ 2v2αd

(
1 − αd r ||

t
d

rd

)−1/2

rd+1

(
1 + γ 2v2αd r ||

t
d

rd

)√√√√1 − r ||
t

2(d−1)

r2(d−1)

1+γ 2v2αd

1+γ 2v2αd rdH
rd

,

(2.15)

where α = rH
r ||
t

is a dimensionless parameter which takes

value within (0,1). With a suitable change of variable u = r ||
t
r ,

the integral takes the following form,

l ||

2
= R2

r ||
t

∫ 1

0
du

√
1 + γ 2v2αd ud−1

×
(
1 − αdud

)−1/2

(
1 + γ 2v2αdud

)√
1 − u2(d−1) 1+γ 2v2αd

1+γ 2v2αdud

. (2.16)

The exact evaluation of the above integral (2.15) for arbi-
trary non zero values of v is hard to achieve. Hence, we
expand the integrand as a power series of v and evaluate the
integral order by order in the power of v. To ensure the con-
vergence of the power series in v, we always assume v < 1.
Note that in natural unit, choosing v < 1 actually implies
a demarcation from the full relativistic consideration in the
boundary theory. Even then, we can consider v < 1 as a
first approximation and incorporate the modification coming
purely from the boost. A peculiarity in the boost expansion
of the integrand shows that all non-vanishing contributions
come with the even power of v. Here, for our present analy-
sis, we restrict the the boost expansion up to quadratic order
in v

l ||

2
= R2

r ||
t

∫ 1

0
du

[ 1

(1 − u2(d−1))1/2

−v2αd (2ud − u3d−2 − 1)

2(1 − u2(d−1))
3/2

]
u(d−1)

(
1 − αdud

)−1/2
.

(2.17)

Further, we always assume that the two independent
branches of co-dimension two hyper-surface always grow
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inside the bulk in such a way that rt is always greater than the

rH (α < 1). Under this consideration, the
(
1 − αdud

)−1/2

factor in the integrand as given in (2.17) is further expanded
into a power series in α. Finally, we integrate the right hand
side of the (2.17) order by order up to quadratic power of v.
By focusing on the first leading term we obtain 2,

( l ||
2

)
O(1)

= R2

r ||
t

∞∑
n=0

�(n + 1
2 )

�(n + 1)�( 1
2 )

αnd
∫ 1

0
du

[
u(d(n+1)−1)

(1 − u2(d−1))1/2

]

= R2

r ||
t

∞∑
n=0

αnd

nd + 1

�(n + 1
2 )�(

d(n+1)
2(d−1)

)

�(n + 1)�(
(nd+1)
2(d−1)

)
. (2.18)

Note that the above expression (2.18) reproduces the relation
between l and r ||

t in the unboosted case [14].
The next non-vanishing leading order term is quadratic in

the boost velocity v,

( l ||
2

)
O(v2)

= v2αd R2

r ||
t

∞∑
n=0

αnd �(n + 1
2 )

�(n + 1)

{ 2�[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]
}
. (2.19)

For sufficiently large n, all terms inside the curly bracket
in (2.19) conspire with each other in such a way that they
do not contribute to any new divergence. Now, by collecting
first few leading order terms we get a form of l

2 ,

l ||

2
= R2

r ||
t

∞∑
n=0

αnd

nd + 1

�(n + 1
2 )�(

d(n+1)
2(d−1)

)

�(n + 1)�(
(nd+1)
2(d−1)

)

+ R2v2αd

r ||
t

∞∑
n=0

αnd �(n + 1
2 )

�(n + 1)

[ 2�[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
] −

�[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]
]

+ O(v4). (2.20)

As we substitute x ′ as given in the Eq. (2.13) into (2.9), we
get the action functional corresponding to the both branches
of co-dimension two minimal surface γA,

2 We use 1√
1−αd ud

= ∑∞
n=0

�(n+ 1
2 )

�(n+1)�( 1
2 )

αndund and
∫ 1

0 dxxμ−1(1 − xλ)
ν−1 = B(

μ
λ

,ν)

λ
= �(

μ
λ

)�(ν)

λ �(
μ
λ

+ν)
.

A|| = 2
Ld−2

Rd−3

∫ ∞

r ||
t

dr rd−3

1√√√√√(1 − r ||
t

2(d−1)

r2(d−1)

1+γ 2v2 rdH

r
||
t
d

1+γ 2v2 rdH
rd

)

(
1 − rdH

rd

)−1/2

. (2.21)

It is evident from the explicit form of integrand in (2.21)
that the area has a divergence as r → ∞. To regulate the
divergence, we introduce an IR cut-off r0 in the divergent
piece of the area functional in the bulk theory.

A||
infinite = 2

(d − 2)

Ld−2

Rd−3 r
d−2
0 . (2.22)

By the virtue of holographic duality the IR cut-off r0 in the
bulk corresponds an UV cut-off δ|| = R2

r0
in the boundary

theory.

A||
infinite = 2

d − 2

Ld−2Rd−1

δ||d−2 . (2.23)

Note that the strongest contribution of entanglement between
a region A and region B comes from the boundary ∂A [33–
36]. Consistent to this fact, also in the holographic compu-
tation, we see that the UV divergent term turns out to be
proportional to the dimension of area in the boundary space-
time. Finally we re-expressing the finite part of the area func-
tional in terms of a suitable dimensionless variable u = rt

r ,
as follows,

A||
finite = 2r ||

t
d−2 Ld−2

Rd−3

∫ 1

0
du

[ 1

ud−1
√

1 − u2(d−1)

+v2αd ud−1(1 − ud)

2(1 − u2(d−1))
3/2

] (
1 − αdud

)−1/2 −

× 2

(d − 2)

Ld−2

Rd−3 r
d−2
0

= 2
Ld−2

Rd−3 r
||
t
d−2[{ √

π�(− d−2
2(d−1)

)

2(d − 1)�( 1
2(d−1)

)

+
∞∑
n=1

�(n + 1
2 )αnd

�(n + 1)

1

2(d − 1)

�(
d(n−1)+2

2(d−1)
)

�( nd+1
2(d−1)

)

}

−v2αd
{√

π
( �( d

2(d−1)
)

2(d − 1)�( 1
2(d−1)

)

− �( d
(d−1)

)

2(d − 1)�( d+1
2(d−1)

)

)

+
∞∑
n=1

�(n + 1
2 )αnd

�(n + 1)

1

2(d − 1)

(�(
d(n+1)
2(d−1)

)

�( nd+1
2(d−1)

)

− �(
d(n+2)
2(d−1)

)

�(
(n+1)d+1

2(d−1)
)

)
+ O(v4, ε2)

}]
(2.24)
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The expression of Afinite contains an infinite series which
is convergent within the regime of the inequality r ||

t > rH .
Once the finite part of the area is obtained, by following the
RT proposal (2.4), one can finally calculate the entangle-
ment entropy of the strip in the boundary theory. To express
the entanglement entropy in terms of boundary parameters,
one needs to solve (2.20) for r ||

t . Achieving such solution
by analytical method for arbitrary values of temperature and
boost is not possible. However, in high temperature region,
the analytic expression of the r ||

t turns out to be obtainable
order by order in the power of boost parameter v. It is impor-
tant to note that as the rest frame observer sees the boundary
plasma moving with a uniform boost, the realization of entan-
glement to him/her is based on instantaneous observation. At
each instant, the rest frame observer expects some instanta-
neous correlation between a part of the plasma momentarily
confined inside region A in the boundary and the rest of
the plasma outside that region. There is no a priori reason
to assume that the strength of the entanglement as seen by
the rest frame observer varies from one instant to another.
Similarly, in the bulk, space-like hyper-surface we consider
is defined by some constant time slice in the bulk metric
and the corresponding holographic EE for strongly coupled
boosted plasma is being computed at that particular instant
of time. Since the result should be independent of the choice
of constant time slice, we expect the same value for EE for
all instants of time.

In the following, we compute the high temperature behav-
ior (l ||Tboost >> 1) of the EE in the boundary theory. As
elucidated previously, within (l ||Tboost >> 1) limit, the
extremal surface approaches to cover a part of the horizon
(r ||
t → rH ). To capture the high temperature limit we re-

write the area functional in the following way such that we
can avoid divergence in the computation

A||
finite = 2

Ld−2

Rd−3 r
||
t
d−2[ l ||r ||

t

2R2

− (d − 1)
√

π�[ d
2(d−1)

]
(d − 2)�[ 1

2(d−1)
]

∞∑
n=1

×�(n + 1
2 )αnd

�(n + 1)

1

nd + 1

( d − 1

d(n − 1) + 2

)�[ d(n+1)
2(d−1)

]
�[ nd+1

2(d−1)
]

−v2αd
∞∑
n=0

αnd �(n + 1
2 )

�(n + 1)

[ �(
d(n+1)
2(d−1)

)

2(d − 1)�( nd+1
2(d−1)

)

− �(
d(n+2)
2(d−1)

)

2(d − 1)�(
(n+1)d+1

2(d−1)
)

+ 2�[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]
]

+ O(v4). (2.25)

Note that infinite series present in (2.25) does not give
rise to any new divergent term. Now by imposing the limit
r ||
t → rH in (2.25), one can obtain the leading behavior of

the minimal area as,

A||
finite = Vd−1r

d−1
H

Rd−1

[
1 + 2R2

l ||rH
(S ||

0 + v2S ||
1 )

]
+ O(v4),

(2.26)

where we have denoted the spatial volume of the rectangular
strip as Vd−1 = l ||Ld−2 and S ||

0 and S ||
1 can be expressed as,

S ||
0 =

(
− (d − 1)

√
π�[ d

2(d−1)
]

(d − 2)�[ 1
2(d−1)

]

+
∞∑
n=1

�(n + 1
2 )

�(n + 1)

1

nd + 1

( d − 1

d(n − 1) + 2

)�[ d(n+1)
2(d−1)

]
�[ nd+1

2(d−1)
]
)
,

S ||
1 = −

∞∑
n=0

�(n + 1
2 )

�(n + 1)

[ �(
d(n+1)
2(d−1)

)

2(d − 1)�( nd+1
2(d−1)

)

− �(
d(n+2)
2(d−1)

)

2(d − 1)�(
(n+1)d+1

2(d−1)
)

+ 2�[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]
]
. (2.27)

Finally following the holographic prescription (2.4), within
the high temperature limit, EE of the uniformly boosted ther-
mal plasma in terms of the temperature Tboost from the point
of view of the rest frame observer can be expressed as fol-
lows,

S|| = Rd−1

4Gd+1
N

[ 2

d − 2

( L

δ||
)d−2

+Vd−1

(4πTboost

d

)d−1

{1 + v2
(d − 1

2

)
}

+Ad−2

(4πTboost

d

)d−2

{S ||
0 + v2

(
S ||

1 + d − 2

2
S ||

0

)
}
]

+O(v4), (2.28)

where Ad−2 = 2Ld−2 is the spatial area of the rectangular
strip. Note that the leading contributions of the finite part of
EE is proportional to volume whereas the sub-leading part
is proportional to the area. In both the finite terms there are
respective modifications arising from the boost parameter.

It is curious to learn about the holographic c-function to
estimate the possible modification of degrees of freedom
due to the emergence of boost parameter in the dual ther-
mal plasma. Following [37], we compute the holographic
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c-function of the boosted plasma,

C||
v = Cv=0γ

d−1, (2.29)

where Cv=0 is the c-function for un-boosted plasma. It is
evident from the above expression that the boost enhances
the degrees of freedom as compared to that in the un-boosted
case.

So far we are using the approximation r ||
t → rH in

the computation of holographic entanglement entropy for
a boosted plasma and it indicates that however close the
extremal surface with respect to the horizon is, it can not
exactly reach up to the horizon. In the following analy-
sis, we shall assume r ||

t = (1 + ε)rH with ε << 1, so
that r ||

t → rH can be interpreted as a first approximation
and the ε parameter measures how fast the extremal surface
approaches to the horizon. Up to linear order O(ε), we can
write, α = 1

1+ε
≈ 1 − ε and rewrite the expression for the

entangling width l || (2.20) as follows,

l ||

2
= R2

(1 + ε)rH

√
π �

(
1

2(d−1)

)

�
(

1
2(d−1)

)

− R2

(1 + ε)rH

1√
2d(d − 1)

log

(
1 − 1

(1 + ε)d

)

+ R2

(1 + ε)rH

∞∑
n=1

[
1

nd + 1

�(n + 1
2 )�(

d(n+1)
2(d−1)

)

�(n + 1)�(
(nd+1)
2(d−1)

)

− 1

n
√

2d(d − 1)

]
1

(1 + ε)nd

+ R2v2(1 + ε)−d

(1 + ε)rH

∞∑
n=0

�(n + 1
2 )

�(n + 1)

[
2�[ d(n+2)

2(d−1)
]

(d(n − 1) + 3)�[ d(n−1)+3
2(d−1)

]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]

]
1

(1 + ε)nd

+O(v4). (2.30)

Rearranging both sides of the above expression we get,

1√
2d(d − 1)

log(dε) = − l ||rH
2R2

+
√

π�( d
2(d−1)

)

�( 1
2(d−1)

)
+

∞∑
n=1

{�(n + 1
2 )

�(n + 1)

1

nd + 1

�(
d(n+1)
2(d−1)

)

�(
(nd+1)
2(d−1)

)

− 1√
2d(d − 1)n

}

+v2
∞∑
n=0

�(n + 1
2 )

�(n + 1)

[
2�[ d(n+2)

2(d−1)
]

(d(n − 1) + 3)�[ d(n−1)+3
2(d−1)

]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]

]

+O(ε). (2.31)

Solving the above equation for ε and considering the leading
order term we get,

ε = Ev
ent e

−
√

d(d−1)
2

l||rH
R2 , (2.32)

where we have defined Ev
ent as,

Ev
ent = 1

d
exp

[√
2d(d − 1)

(√
π�( d

2(d−1)
)

�( 1
2(d−1)

)

+
∞∑
n=1

{�(n + 1
2 )

�(n + 1)

1

nd + 1

�(
d(n+1)
2(d−1)

)

�(
(nd+1)
2(d−1)

)

− 1√
2d(d − 1)n

})

+v2
∞∑
n=0

�(n + 1
2 )

�(n + 1)

[ 2�[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]
]
. (2.33)

We have already checked that the finite part of the minimal
area (2.26) behaves regularly when there was no ε correction.
However, as we consider r ||

t = (1 + ε)rH , we need to make
sure that no new divergent term at the linear order in ε should
further appear in the expression of finite area. To investigate
the possibility of any such divergence at the linear order in ε

and hence to regulate them appropriately, we rearrange terms
in (2.25),
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A||
finite = 2

Ld−2

Rd−3 r
||
t
d−2

[
lr ||
t

2R2

− (d − 1)
√

π�[ d
2(d−1)

]
(d − 2)�[ 1

2(d−1)
] +

√
d − 1

2d3 Li2(α
d)

+
∞∑
n=1

αnd

{
�(n + 1

2 )

�(n + 1)

1

nd + 1

( d − 1

d(n − 1) + 2

)

× �[ d(n+1)
2(d−1)

]
�[ nd+1

2(d−1)
] −

√
d − 1

2d3

1

n2

}

− v2αd
∞∑
n=0

αnd �(n + 1
2 )

�(n + 1)

{
�(

d(n+1)
2(d−1)

)

2(d − 1)�( nd+1
2(d−1)

)

− �(
d(n+2)
2(d−1)

)

2(d − 1)�(
(n+1)d+1

2(d−1)
)

+ 2�[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]

}]
. (2.34)

In the above expression we have used the series represen-
tation of the polylog function, Li2(z) = ∑∞

n=1
zn

n2 . Now we

expand terms in the powers of ε and keep terms up to O(ε)3.

A||
finite = Ld−2l ||rd−1

H

Rd−1

[
1 + 2R2

l ||rH

{(
S ||

0

−ε

√
d − 1

2d

)
+ v2

(
S ||

1 + ε S ||
3

)}]
+ O(ε2), (2.35)

where

S ||
3 =

∞∑
n=0

�(n + 1
2 )

�(n + 1)

{
2�[ d(n+2)

2(d−1)
]

(d(n − 1) + 3)�[ d(n−1)+3
2(d−1)

]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]

}

+
∞∑
n=0

(nd + 2)�(n + 1
2 )

�(n + 1)

{
�(

d(n+1)
2(d−1)

)

2(d − 1)�( nd+1
2(d−1)

)

− �(
d(n+2)
2(d−1)

)

2(d − 1)�(
(n+1)d+1

2(d−1)
)

+ 2�[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

− �[ d(n+4)−2
2(d−1)

]
(d(n + 1) + 1)�[ d(n+1)+1

2(d−1)
]

3 For small ε, Li2(αd ) = π2

6 + dε(−1 + log(dε)) + · · ·

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]

}
. (2.36)

Using the Ryu-Takayangi’s prescription, once again we
compute the holographic entanglement entropy for boosted
plasma up to O(ε),

S|| = Rd−1

4Gd+1
N

[ 2

d − 2

( L

δ||
)d−2

+Vd−1

( 4πTboost

d

)d−1

{1 + v2
( d − 1

2

)
}

+Ad−2

( 4πTboost

d

)d−2
{(

S ||
0 − ε

√
d − 1

2d

)

+v2
(
S ||

1 + d − 2

2
S||0 + ε

(
S ||

3 − (d − 1)

√
d − 1

2d

))}]
+ O(v4).

(2.37)

Comparing Eq. (2.28) with Eq. (2.37) we immediately
observe that the term proportional to Vd−1 Tboost

d−1 is
exact in ε correction whereas the area dependent term
Ad−2 Tboost

d−2 gets modified in ε.

2.2 Holographic computation in perpendicular case

In this section we carry out the holographic analysis of the
entanglement entropy of boosted plasma keeping the direc-
tion of the boost and the orientation of the width l perpen-
dicular to each other. This is what we call perpendicular
case. The analysis in this section is qualitatively similar to the
parallel case and thus to avoid repetition we mostly mention
final results. To accomplish the holographic computation we
recast the boosted bulk geometry in the following way,

ds2 = r2

R2

⎡
⎣ − dt2 + dx2 + γ 2 r

d
H

rd
(dt + vdx)2 + dx2⊥

+dx2
d−3 + R4

r4

dr2

1 − rdH
rd

⎤
⎦ , (2.38)

where we assume the thermal plasma is boosted along x
direction and the length of interest which is nothing but entan-
gling width is along x⊥ direction (orthogonal to x direction).

x⊥ ∈
[
− l

2
,
l

2

]
x ∈

[
− L

2
,
L

2

]
;

xi ∈
[
− L

2
,
L

2

]
(i = 1, 2, . . . d − 3), (2.39)
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with r ′ ≡ dr
dx⊥ . The area functional reads as,

A⊥ = Ld−2

Rd−2

∫
drrd−3

⎡
⎣
(
r2

R2 x
′2⊥

+ R2

r2

(
1 − rdH

rd

)−1 )(
r2 + γ 2v2 rdh

rd−2

)⎤
⎦

1
2

, (2.40)

with x⊥′ ≡ dx⊥
dr . Now using the appropriate boundary con-

ditions

lim
x ′⊥→∞

r = r⊥
t , lim

r→∞ x⊥(r) = ± l⊥

2
. (2.41)

We arrive at,

l⊥

2
= R2

r⊥
t

∞∑
n=0

αnd

nd + 1

�(n + 1
2 )�(

d(n+1)
2(d−1)

)

�(n + 1)�(
(nd+1)
2(d−1)

)

+ R2v2αd

r⊥
t

∞∑
n=0

αnd �(n + 1
2 )

�(n + 1)

{ �[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]
}

+ O(v4). (2.42)

and finite contributions. Although the infinite contribution

A⊥
infinite = 2

d−2
Ld−2Rd−1

δ⊥d−2 is same as the parallel case and

δ⊥d−2
is the UV cut-off, whereas the finite part modifies in a

non-trivial way. Finally, we focus into the high temperature
limit (lTboost >> 1) and in order to implement the limit
we express the action functional in the following prescribed
form,

A⊥
finite = 2

Ld−2

Rd−3 r
d−2
t

[ lrt
2R2 − (d − 1)

√
π�[ d

2(d−1)
]

(d − 2)�[ 1
2(d−1)

]
∞∑
n=1

×�(n + 1
2 )αnd

�(n + 1)

1

nd + 1

( d − 1

d(n − 1) + 2

)�[ d(n+1)
2(d−1)

]
�[ nd+1

2(d−1)
]

−v2αd
∞∑
n=0

αnd �(n + 1
2 )

�(n + 1)

[ �(
nd+2)
2(d−1)

)

2(d − 1)�(
(n−1)d+3

2(d−1)
)

− 2�(
d(n+2)
2(d−1)

)

2(d − 1)�(
(n+1)d+1

2(d−1)
)

+ �[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

+ �[ d(n+1)
2(d−1)

]
2(d − 1)�[ nd+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]
]

+ O(v4). (2.43)

Note that infinite series present in (2.43) does not give
rise to any new divergent term. Now by imposing the limit

rt → rH in (2.43), one can obtain the leading behavior of
the minimal area as,

Afinite = Vd−1r
d−1
H

Rd−1

[
1 + 2R2

l⊥rH
(S⊥

0 + v2S⊥
1 )

]
+ O(v4),

(2.44)

where we have denoted the spatial volume of the rectangular
strip as Vd−1 = l Ld−2 and S0 and S1 can be expressed as,

S⊥
0 =

(
− (d − 1)

√
π�[ d

2(d−1)
]

(d − 2)�[ 1
2(d−1)

] +
∞∑
n=1

×�(n + 1
2 )

�(n + 1)

1

nd + 1

( d − 1

d(n − 1) + 2

)�[ d(n+1)
2(d−1)

]
�[ nd+1

2(d−1)
]
)
,

S⊥
1 = −

∞∑
n=0

�(n + 1
2 )

�(n + 1)

[ �(
nd+2)
2(d−1)

)

2(d − 1)�(
(n−1)d+3

2(d−1)
)

− 2�(
d(n+2)
2(d−1)

)

2(d − 1)�(
(n+1)d+1

2(d−1)
)

+ �[ d(n+2)
2(d−1)

]
(d(n − 1) + 3)�[ d(n−1)+3

2(d−1)
]

+ �[ d(n+1)
2(d−1)

]
2(d − 1)�[ nd+1

2(d−1)
]

− �[ d(n+1)
2(d−1)

]
(d(n − 2) + 3)�[ d(n−2)+3

2(d−1)
]
]
. (2.45)

Finally, holographic entanglement entropy of the strongly
coupled boosted plasma living in the strip region with entan-
gling width l⊥ along x⊥ from the perspective of rest frame
observer,

S⊥ = Rd−1

4Gd+1
N

[ 2

d − 2

( L
δ

)d−2

+Vd−1

(4πTboost

d

)d−1

{1 + v2
(d − 1

2

)
}

+Ad−2

(4πTboost

d

)d−2

{S⊥
0 + v2

(
S⊥

1 + d − 2

2
S⊥

0

)
}
]

+O(v4), (2.46)

where Ad−2 = 2Ld−2 is the spatial area of the rectangular
strip. Since the ε correction analysis in the perpendicular case
would not lead to any qualitatively new result as compared to
parallel case, we plan to hold off that analysis for time being.
Here also we compute the central charge C⊥

v and observe
no quantitative change as such. This probably implies the
number of degrees freedom in the boosted plasma at any
instant is independent of the relative orientation of the static
observer with respect to the boost direction. However, most
interestingly, this is not the case for holographic entangle-
ment entropy which we discuss in the following.

It is important to note that the expressions for holographic
entanglement entropy of boosted fluid for both parallel and
perpendicular case are formally similar and we verify this
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fact up to the first order approximation (r || → rh or r⊥ →
rh). However, due to the difference between coefficients S ||

1
and S⊥

1 we estimate the variation of entanglement entropy
due to the change of orientation of entangling width with
respect to the direction of boost. To quantify such difference
we compute the following,

S|| − S⊥ = Rd−1

4Gd+1
N

[
Ad−2

(4πT boost

d

)d−2

v2(S ||
1 − S⊥

1 )
]
.

(2.47)

By using the definition of S ||
1 and S⊥

1 as given in eqn (2.27)
and in eqn (2.45) respectively we compute S|| − S⊥ for four
dimensional boundary theory and it turns out as,

S||
d=4 − S⊥

d=4

= −0.272525
Rd−1

4Gd+1
N

[
Ad−2

(4πT boost

d

)d−2

v2
]
.

(2.48)

It is evident from the above analysis that S||
d=4 < S⊥

d=4. This
is also true for boundary theories living on d > 4 spacetime.
Therefore we conclude that the holographic entanglement
entropy associated to strongly coupled boosted plasma in
perpendicular case is higher than the same for the parallel
case.

3 Two point correlator in a boosted plasma

After having discussed the holographic entanglement entropy
of the strongly coupled boosted plasma, here we explore
another important non-local observable, equal time two-
point correlation function, by using the geodesic approxima-
tion method. Holographic computation of two-point correla-
tion function in Euclidean signature was first introduced in
[11,12]. Further generalization for studying two point func-
tion directly from the Minkowski signature at finite temper-
ature was prescribed in [38,39].

Following [40–43], the equal time two point correlators
in the strongly coupled boundary theory can be realized as a
weighted sum over all possible paths starting from a boundary
configuration (t, x) and ending at (t, x ′) as follows

〈O(t, x)O(t, x ′)
〉 =

∫
DP e−L(P). (3.1)

Here,  is the conformal dimension of the operator O and
L(P) is the proper length of the path P . The conformal
dimension of the boundary operator is related to the bulk
theory as  = (d + √

d2 + 4m2R2)/2, where m is the mass
of the bulk primary scalar and R is the radius of curvature in
the AdS spacetime.

By using the saddle point approximation, the equation
(3.1) turns into the discrete summation over the geodesics as
follows,

〈O(t, x)O(t, x ′)
〉 =

∑
e−Lgeodesic , (3.2)

where Lgeodesic is the magnitude of the geodesic linking
(t, x) and (t, x ′). Due to the existence of the logarithmic
divergence in Lgeodesic, the regularized geodesic length can
be defined with the assumption of the cutoff rb as

Lren
geodesic = Lgeodesic − 2 ln rb, (3.3)

with which one eventually gets the regularized two-point
function,
〈O(t, x)O(t, x ′)

〉 = e−Lrengeodesic . (3.4)

With this formal connection between the two point cor-
reletor and the geodesic length approximation method we
proceed in the next section to discuss the holographic com-
putation of two point equal time correletor for the strongly
coupled boosted large N plasma at finite temperature.

3.1 Holographic derivation

Here we compute the two-point correlation function

〈O(t,− l

2
, xd−2 = 0)O(t,

l

2
, xd−2 = 0)〉

≡ 〈O(t,−l/2)O(t, l/2)〉
of scalar primary operators. The relevant part of the met-
ric (2.6) to compute the geodesic length connecting the points
(t,− l

2 , xd−2 = 0) and (t, l
2 , xd−2 = 0) would be

ds2 = r2

(
1 + γ 2 r

d
H

rd
v2

)
dx2 + 1

r2

(
1 − rdH

rd

)dr2, (3.5)

where we have fixed the AdS radius R = 1 for the sake of
simplicity. Note that the present choice of spacelike boundary
interval of width l is exactly similar to the choice of entan-
gling width l || as mentioned in the parallel case. It is straight-
forward to check that the analogue of choosing a spacelike
interval in the boundary analogous to l⊥ as given in perpen-
dicular case reproduces the holographic computation of two
point correlators in the unboosted plasma. This is intuitively
expected as such spacelike interval is oriented in an entirely
orthogonal way with respect to boost direction. To proceed
further, we take the affine parameter to be the geodesic proper
length s and write the spacelike geodesic equations

ẋ =dx

ds
= rt

r2

1

1 + γ 2 rdH
rd

v2
, (3.6)

ṙ =dr

ds
= ±r

√√√√√
⎛
⎝1 − r2

t

r2

1

1 + γ 2 rdH
rd

v2

⎞
⎠

(
1 − rdH

rd

)
, (3.7)
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where the two branches of spacelike geodesic join smoothly
at r = rt . The branch starting from (r → ∞, x = l/2) and
ending at (rt , x = 0) is called the positive branch, whereas
the negative branch starts from (r → ∞, x = −l/2) and
ends at (rt , x = 0). Looking at (3.6) and (3.7) for the positive
branch, one arrives at

dr

dx
= r3

rt

(
1 + γ 2 r

d
H

rd
v2

)√√√√√
(

1 − rdH
rd

)⎛
⎝1 − 1

r2

r2
t

1 + γ 2 rdH
rd

v2

⎞
⎠.

(3.8)

Together with the appropriate boundary conditions, one can
solve the equation (3.8) as,

l

2
=rt

∫ ∞

rt

dr

r3(1 + γ 2 rdH
rd

v2)

√√√√√
⎛
⎝1 − 1

r2
r2
t

1+γ 2 rdH
rd

v2

⎞
⎠

(
1 − rdH

rd

)−1/2

= 1

rt

∫ 1

0

udu(
1 + γ 2v2 rdH

rdt
ud

)√
1 − u2

1+γ 2v2 rdH
rdt

ud

(
1 − rdH

rdt
ud

)−1/2

.

(3.9)

Following the similar consideration as described in the last
section, we perform a perturbative expansion of the integrand
in (3.9) with respect to the boost parameter v and keep all the
terms up to O(v2). Now, by integrating the expanded version
of (3.9) we get,

l

2
= 1

rt

∫ 1

0
du

[
u√

1 − u2
+ v2 u

d+1(−2 + u2)

2(1 − u2)
3
2

(
rH
rt

)d
]

∞∑
n=0

�
[
n + 1

2

]
√

π�[n + 1]
(
rH
rt

)nd

und

= 1

2rt

∞∑
n=0

�
[
n + 1

2

]

�[n + 1]
{

�
[ nd+2

2

]

�
[ nd+3

2

]

+ v2 (n + 1)d

(n + 1)d + 1

�
[

(n+1)d+2
2

]

�
[

(n+1)d+1
2

] (
rH
rt

)d
}(

rH
rt

)nd

.

(3.10)

Notice that the large n behavior of the v-independent part of
the series is ∼ 1

n (rH/rt )nd and it converges as the condition
rH/rt < 1 is maintained. Moreover, the v dependent contri-
bution behaves as ∼ (rH/rt )nd which is also convergent as
rH/rt < 1. However, in the high temperature regime both of
these terms give rise to divergences.

After obtaining a relation between rt and l, we now com-
pute the geodesic length by using (3.7) as follows

L =2
∫ ∞

rt

dr

r

√
1 − r2

t
r2

1

1+γ 2 rdH
rd

v2

(
1 − rdH

rd

)−1/2

= 2
∫ 1

rt/rb

du

u
√

1 − u2

1+γ 2v2 rdH
rdt

ud

(
1 − rdH

rdt
ud

)−1/2

.

(3.11)

Observe that taking care of the two branches of the geodesic
results in setting the factor of 2 in front of the integral.
Expanding (3.11) up to second order in v, one finds the reg-
ularized geodesic length to be

Lren = 2
∫ 1

rt/rb
du

[
1

u
√

1 − u2
− v2 ud+1

2(1 − u2)
3
2

(
rH
rt

)d
]

∞∑
n=0

�
[
n + 1

2

]
√

π�[n + 1]
(
rH
rt

)nd

und − 2 ln rb, (3.12)

where we have introduced a cutoff rb to remove the log diver-
gence in L . After evaluating the integral, one ultimately gets

Lren = 2 ln

(
2

rt

)
+

∞∑
n=1

�
[
n + 1

2

]
�
[ nd

2

]

�[n + 1]� [ nd+1
2

]
(
rH
rt

)nd

+ v2

∞∑
n=0

�
[
n + 1

2

]
�
[

(n+1)d+2
2

]

�[n + 1]�
[

(n+1)d+1
2

]
(
rH
rt

)(n+1)d

. (3.13)

Again considering the large n behavior of the summands that
appear in the above expression one can show that Lren is well
defined when rH/rt < 1. In what follows, by using (3.10),
we solve rt in the in the high temperature limit and study the
two-point correlator.

3.2 High temperature behavior of two-point function

In this section we compute the two point correlators as
Tboostl � 1. In the dual bulk theory, we follow the geodesic
approximation method keeping the fact in mind that the near
horizon part of the geodesic contributes to the leading order
in the computation.

Lren = 2 ln

(
2

rt

)
+

∞∑
n=1

(
nd + 1

nd

)
�
[
n + 1

2

]
�
[ nd+2

2

]

�[n + 1]� [ nd+3
2

]
(
rH
rt

)nd

+ v2
∞∑
n=0

�
[
n + 1

2

]
�
[

(n+1)d+2
2

]

�[n + 1]�
[

(n+1)d+1
2

]
(
rH
rt

)(n+1)d

.

(3.14)
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Once we implement the high temperature limit (rt → rh), we
observe the appearance of divergence in the above expression
(3.14) of geodesic length. To bypass such divergence we re-
write Lren by using (3.10), in the following way,

Lren = 2 ln

(
2

rt

)
+ (rt l − 2)

+
∞∑
n=1

(
1

nd

)
�
[
n + 1

2

]
�
[ nd+2

2

]

�[n + 1]� [ nd+3
2

]
(
rH
rt

)nd

+ v2
∞∑
n=0

(
rH
rt

)(n+1)d �(n + 1
2 )

�(n + 1)

⎡
⎣�

(
(n+1)d+2

2

)

�
(

(n+1)d+1
2

)

−2
�
(

(n+1)d+2
2

)

�
(

(n+1)d+2
2

) +
�
(

(n+1)d+4
2

)

�
(

(n+1)d+3
2

)
⎤
⎦ . (3.15)

Note that under high temperature limit, the v independent
terms present in both (3.10) and (3.13) give rise to same
type of divergences. However as we combine them in (3.2),
those divergences cancel each other and Lren remains finite.
Similarly, it is straightforward to check that the divergences
related to high temperature limit present in the v dependent
terms in (3.2) also get nicely cancelled.

1√
n

(
nd

2

)1/2

− 2
1√
n

(
nd

2

)1/2

+ 1√
n

(
nd

2

)1/2

= 0

(3.16)

As a first approximation, by using rt ∼ rH in the high tem-
perature limit, geodesic length reads as,

Lren ≈ 2 ln

(
2

rH

)
+ (rHl − 2)

+
∞∑
n=1

(
1

nd

)
�
[
n + 1

2

]
�
[ nd+2

2

]

�[n + 1]� [ nd+3
2

]

+ v2
∞∑
n=0

�(n + 1
2 )

�(n + 1)

⎡
⎣�

(
(n+1)d+2

2

)

�
(

(n+1)d+1
2

) − 2
�
(

(n+1)d+2
2

)

�
(

(n+1)d+2
2

)

+
�
(

(n+1)d+4
2

)

�
(

(n+1)d+3
2

)
⎤
⎦ .

(3.17)

Consequently, by inserting (3.17) into (3.4), one obtains the
two-point correlation function as,

〈O(t,−l/2)O(t, l/2)〉 ≈ Cd,,v r
2
H e−rH l , (3.18)

where

Cd,,v =
(

1

4
exp

(
2 −

∞∑
n=1

(
1

nd

)
�
[
n + 1

2

]
�
[ nd+2

2

]

�[n + 1]� [ nd+3
2

]
))

× exp

⎛
⎝−v2

∞∑
n=0

�(n + 1
2 )

�(n + 1)

⎡
⎣�

(
(n+1)d+2

2

)

�
(

(n+1)d+1
2

)

−2
�
(

(n+1)d+2
2

)

�
(

(n+1)d+2
2

) +
�
(

(n+1)d+4
2

)

�
(

(n+1)d+3
2

)
⎤
⎦
⎞
⎠ .

Finally we express the two point correlators in terms of
the boundary parameters, viz. Tboost and the boost velocity
v.

〈O(t, x)O(t, x ′)〉 ≈ Cd,

(
4πTboost

d

)2

e−4πTboost |x−x ′|/d

×
[

1 + v2

(
1 − 2πTboost |x − x ′|

d

−
∞∑
n=0

�(n + 1
2 )

�(n + 1)

⎡
⎣�

(
(n+1)d+2

2

)

�
(

(n+1)d+1
2

)

−2
�
(

(n+1)d+2
2

)

�
(

(n+1)d+2
2

) +
�
(

(n+1)d+4
2

)

�
(

(n+1)d+3
2

)
⎤
⎦
)]

,

(3.19)

where Cd, = limv→0 Cd,,v . It is evident from the above
expression that at the high temperature limit, the leading term
in the two point correlator is exponentially decaying. The
sub-leading contribution is solely due to the presence of the
boost parameter in the theory. Moreover, one may further
generalize the above computation of two point correlator by
using the relation rt = (1 + ε)rH to see the rate of approach
of rc towards rH and its implication over the two point cor-
relators.

4 Conclusion

In this work, we have explored the behavior of non local
observables for strongly coupled large N , thermal plasma
where the boost is given along any one of the spatial bound-
ary coordinates (say x). In particular, using the boosted AdS
Schwarzschild blackhole background (2.6) as the dual bulk
theory, we have holographically computed the entanglement
entropy of a strip region in the boundary theory. In this com-
putation, we keep both entangling width of the strip region
and the boost, aligned along the same spatial boundary direc-
tion as well as orthogonal to each other. In both cases, we
have explicitly computed the modification of both leading
and sub-leading terms of the finite contribution to the entan-
glement entropy up to the quadratic order in the boost param-
eter. We have observed that the holographic entanglement
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entropy of the strongly coupled boosted plasma in perpendic-
ular case is always higher than that the parallel case. In order
to provide an explanation of this difference in two cases for
HEE, we emphasize that by boosting the boundary plasma
we essentially invoke the breaking of rotational symmetry
in the boundary theory. Therefore the observation made by
static observer in both cases differs accordingly as the par-
allel case is connected to the perpendicular case by a mere
rotation and again the rotational symmetry is broken.

We have also computed the two point correlators of the
strongly coupled plasma by using the geodesic approxi-
mation method. We are interested in the geodesic which
connects two points in the boundary theory specified as
(t,− l

2 , xd−2 = 0) and (t, l
2 , xd−2 = 0). In this analysis

we observe that the leading contribution to two point cor-
relators remains exact in boost parameter and behaves as a
exponentially decaying function of the width l, whereas the
next sub-leading term is proportional to the quadratic power
of the boost parameter. Here we notice that the perpendicular
case does not lead to a modification of two point correlator
due to the presence of boost in the theory.

In our analysis, the only length scale available is specified
by a characteristic length l, inverse of which automatically
defines a characteristic temperature scale in the theory. It
turns out that one way to achieve the analytical result for
non-local boundary observable is to consider the tempera-
ture of the plasma to be very high as compared to the char-
acteristic temperature scale. It is necessary to parameterize
the boundary non-local observables in terms of boundary
entities measured from a specific frame of reference. Here,
we prefer to present our result from the point of view of
rest frame observer. Hence, we express the final form of the
boundary non-local observable in terms of Tboost, l and the
boost parameter v. Using the definition of the holographic
c-function given in [37] we have also shown that the boost
enhances the degrees of freedom as compared to that in the
un-boosted case.

Achieving modification of boundary observables due to
arbitrary value of boost parameter v is beyond the scope of
analytical technics. Instead, we assume perturbative expan-
sion in the power of v and compute the results up to the
quadratic power in v. It turns out the boost dependent cor-
rections present in both EE and two point correlators do not
bring in any new divergence at the high temperature limit.

It would be interesting to check how the holographic
entanglement entropy of a strip region in the boundary plasma
varies with the boost v, where the direction of boost and
the alignment of the entangling width l are perpendicular to
each other. Like wise one can compute the two point cor-
relator using a geodesic connecting the points (t, 0, x1 =
−L , xd−3 = 0) and (t, 0, x1 = L , xd−3 = 0). Further,
one can study the holographic entanglement entropy of a
spherical region in the boosted plasma. In that case due to

the present of boost along x axis in the boundary, spherical
symmetry of the entangling region will be modified accord-
ingly. In [44,45], the authors have studied low temperature
behavior of various non-local observables in the boundary
theory by actually doing the computation in the dual bulk
theory described by a black hole that is boosted along the
holographic direction. The dual boundary theory is a thermal
plasma that is expanding and cooling down. It would inter-
esting to study the high temperature behavior of non local
observables in such theories. As an immediate generaliza-
tion, it would be highly interesting to introduce dissipation
in the boosted thermal plasma and study the behavior of non
local observables within the high temperature limit.

It is natural to ask whether our analysis of non-local
observables for a boosted thermal plasma in the high tem-
perature limit can be extended for arbitrary values of boost
parameter. Such analysis requires a systematic series expan-
sion of the integrands given in Eq. (2.17) and also in Eq.
(2.24) in both temperature and boost parameter. Such dou-
ble series expansion has already been presented in [46,47].
In this regard, we mention that although in principle, such
double series expansion is also possible in our analysis of
holographic entanglement entropy in both perpendicular and
parallel cases, it is very hard to provide an analytical proof
of the non-existence of unphysical divergence at all orders
of boost parameter in such expansion. We check that if we
generalize our analysis beyond quadratic order, no contribu-
tion appears from odd power of boost. If we keep our analy-
sis limited up to quartic power of boost, the cancellation of
divergence similar to quadratic order of boost nicely works.
However, it would be really worth to guess a closed analyt-
ical form of entanglement entropy at high temperature for
arbitrary value of boost by investigating contributions com-
ing from beyond the quartic power. We thank the anonymous
referee for suggesting to highlight this issue.
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A Hawking temperature for boosted black brane

We start with the boosted black brane metric written in AdS-
Schwarzschild coordinate

ds2 = − r2

R2

(
1 − γ 2 r

d
H

rd

)
dt2 + 2vγ 2 rdH

rd−2R2 dt dx

+ r2

R2

(
1 + v2γ 2 r

d
H

rd

)
dx2 + r2

R2 dx
2
d−2 + R2

r2

dr2

1 − rdH
rd

.

(A.1)

The hypersurface r = rH is a null hypersurface. The nor-
mal on this hypersurface is

nα = {0, . . . , 0, 1}. (A.2)

We can show that

gμνnμnν

∣∣
r=rH

= 0. (A.3)

The metric is symmetric under time translation, there-
fore ξt = {1, 0, . . . , 0} is a Killing vector. Similarly, ξx =
{0, 1, . . . , 0} is also a Killing vector. One can also check that
these vectors satisfy the Killing equations

ξα∂αgμν + gμα∂νξ
α + gνα∂μξα = 0. (A.4)

We now consider observers moving in x direction with an
arbitrary, but uniform velocity dx/dt = β. They move with
a four-velocity

uα
s = �(ξα

t + βξα
x ). (A.5)

Note that ξα
t +βξα

x is a Killing vector. The normalization
factor � is given by

�−2 = −gμν(ξ
μ
t + βξμ

x )(ξν
t + βξν

x )

= −gtt − 2βgtx − β2gxx

= −gxx (β
2 − 2bβ + gtt/gxx ), (A.6)

where b = −gtx/gxx . Outside the event horizon the vector
ξα
t + βξα

x must be timelike, and on the horizon it must be
null. The condition �−2 > 0 gives rise to the following
requirement on the velocity of the observer:

β− < β < β+, (A.7)

where β± = b ± √
b2 − gtt/gxx . At the situation β− = β+

which implies β = b; the observer is forced to move with a

velocity equal to b. This occurs when

b2 − gtt
gxx

= 0. (A.8)

For example in d = 4 this condition becomes

r4 − r4
H (1 − v2)γ 2 = 0. (A.9)

The largest solution is r = r+ = rH . The Killing vector
ξα
t + βξα

x becomes null at r = r+ = rH which we identify
with black brane’s event horizon.

To confirm that r = rH is truly the event horizon, we use
the property that in a stationary spacetime, the event horizon
is also an apparent horizon – a surface of zero expansion for
a congruence of outgoing null geodesics orthogonal to the
surface. The event horizon must therefore be a null, stationary
surface. We have already shown in the beginning that the
surface is null. As the surface is independent of t the surface
is stationary.

At r = r+ = rH , one gets

b(r+) = −v, (A.10)

and the null Killing vector

ξα = ξα
t + b(r)ξα

x . (A.11)

The surface gravity, κ is defined as

∇α(−ξβξβ) = 2κξα. (A.12)

As r = rH is an null hypersurface,

ξα = f (xμ)nα with f (xμ) = 1√
1 + v2γ 2 rdH

rd

. (A.13)

At r = rH

ξα = {0, 0, . . . , 0, 1/γ }. (A.14)

Now

∇α(−ξβξβ)
∣∣
r=rH

= ∂α(−ξβξβ)
∣∣
r=rH

= {0, 0, . . . , 0,
drH
γ 2R2 }. (A.15)

Therefore from (A.12) we find

κ = drH
2γ R2 , (A.16)

and the Hawking temperature

TH = κ

2π
= d

4πR2

rH
γ

. (A.17)
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