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Abstract We study the bottomonium spectrum using a rel-
ativistic potential model in the momentum space. This model
is based on a complete one gluon exchange interaction with
a momentum dependent screening factor to account for the
effects due to virtual pair creation that appear close to the
decay thresholds. The overall model does not make use of
nonrelativistic approximations. We fit well established bot-
tomonium states below the open bottom threshold and predict
the rest of the spectrum up to ≈ 11200 MeV and J PC = 3−−.
Uncertainties are treated rigorously and propagated in full to
the parameters of the model using a Monte Carlo to identify
if which deviations from experimental data can be absorbed
into the statistical uncertainties of the models and which can
be related to physics beyond the bb̄ picture, guiding future
research. We get a good description of the spectrum, in par-
ticular the Belle measurement of the ηb(2S) state and the
Υ (10860) and χb(3P) resonances.

1 Introduction

The heavy quark meson sector constitutes a major piece of
information on the nonperturbative regime of the strong inter-
action. In particular, a lot of experimental information has
been gathered on the bottomonium spectrum during the last
years thanks to ATLAS, BaBar, Belle, BESIII, CLEO, CMS,
D0, and LHCb collaborations [1–12] and further results are
expected in the near future during the Belle II run [13,14]
and after the CMS and LHCb upgrades [15,16]. Theory
work has preceded and followed through the experimental
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effort [17–21] in the form of Lattice QCD computations [22–
33], Dyson–Schwinger–Bethe–Salpeter equations [34–40],
effectives Hamiltonians reduced from QCD [41,42] and
potential quark models [43–56]. In this paper we develop
a relativistic quark model for bottomonia based on a com-
plete one gluon exchange. The approach is completely rela-
tivistic and does not rely on nonrelativistic approximations.
In this way the standard spin–orbit, spin–spin, and tensor
interactions are automatically included. We also incorporate
a relativistic scalar interaction and a momentum dependent
screening factor to account for the effects due to virtual pair
creation that appear close to the decay thresholds. All the cal-
culations are performed in the momentum space. The same
model was successfully applied to reproduce the charmo-
nium spectrum in Ref. [57] which we refer the reader to for
technicalities. We fit the model to all the known states of
each J PC below the B B̄ threshold except for the recently
measured χb1(3P) and χb2(3P) which we prefer to predict
in order to gain insight on their nature and the ηb(2S) which
we exclude of our fit owing to the disagreement between
CLEO [58] and Belle [59] measurements. We perform a rig-
orous error estimation that allows us to assess if the inclusion
of a new effect in the phenomenological model is necessary
or not, and we compute the parameter correlations which
provide insight on how independent are the different pieces
of the model among them. A full error analyses is manda-
tory to identify which deviations from experimental data can
be absorbed into the statistical uncertainties of the models
and which can be related to physics beyond the bb̄ picture,
guiding future research.

The paper is organized as follows: in Sect. 2 we pro-
vide the relativistic quark model and the employed solution
method; in Sect. 3 we describe the fitting procedure as well
as the statistical method used to compute the uncertainties;
in Sect. 4 we report the computed bottomonium spectrum up
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to J PC = 3−− and ≈ 11200 MeV as well as the comparison
to the available experimental information. We obtain a very
good description of both fitted and nonfitted bottomonia and
also predict many unobserved states; Sect. 5 summarizes the
conclusions.

2 Model and relativistic equation

2.1 Hamiltonian model

We apply to bottomonia the same model developed in [57] for
charmonia. The total interaction Hamiltonian of this model
is given by the sum of a vector (H̄(v)

) and a scalar (H̄(s))
term. In the momentum space, it has the form:

H̄int(pb,pa) = H̄(v)(pb,pa) + H̄(s)(pb,pa), (1)

where pa and pb represent the three-momenta of both quark
and antiquark in the center of mass of the bottomonium sys-
tem. In more detail, the vector interaction is constructed in
the Coulomb gauge taking into account the whole one gluon
exchange contribution. We have:

H̄(v)(pb,pa) = V (v)(q)

[
J 0

1 J 0
2

(
1 − (ΔE)2

Q2

)

− J1 · J2

(
1 + (ΔE)2

Q2

)]
,

(2)

The effective potential function V (v)(q) will be introduced
and discussed in the following Eq. (7a). Furthermore,

Jμ
i = Jμ

i (σ i ;pb,pa) = ū(pib, σ i )γ
μ
i u(pia, σ i ), (3)

represents the standard Dirac four-current of the quarks, σ i

stands for the Pauli matrices, and γ
μ
i are the gamma matrices,

where i = 1, 2 is the particle label. We also introduce the
quark on-shell energy difference

ΔE = E(pb) − E(pa), (4)

(being E(p) = √
p2 + m2) and the squared (positive) four

momentum transfer

Q2 = q 2 − (ΔE)2. (5)

where q = pb − pa represents the three momentum transfer.

The factors 1 ± (ΔE)2

Q2 give the retardation contributions in
the Coulomb gauge. Analogously, the scalar interaction is
defined as

H̄(s)(pb,pa) = V (s)(q) I1 I2, (6)

where Ii is a scalar vertex and V (s)(q) is the scalar effective
potential function of the following Eq. (7b). Finally, the
vector and the scalar effective potentials functions have the
following form:

V (v)(q) = −4

3

αst

q 2 + βv

3b2 − q 2

(q 2 + b2)3 , (7a)

V (s)(q) = A + βs
3b2 − q 2

(q 2 + b2)3 . (7b)

The first term of Eq. (7a) represents a standard vector interac-
tion, mediated by a massless gluon; αst is the effective strong
coupling constant. When inserted in Eq. (2), the complete
Coulomb gauge relativistic interaction (with the color factor
4/3) is obtained. The second term of Eq. (7a) represents a
regularized confining interaction corresponding to a linear
term in the coordinate space, as shown in Ref. [57], in which
βv corresponds to the vector confinement strength. As for
the scalar potential function given by, Eq. (7b) we note that
it contains a phenomenological constant term A plus a βs

term which corresponds to the scalar confinement strength.
In both vector and scalar confining terms the regulariza-
tion parameter b has been introduced to avoid the divergence
when |q| → 0.

With the definitions given above, the complete interaction
Hamiltonian of Eq. (1) can be straightforwardly constructed.
In any case, all the details have been given in the Appendix
of Ref. [57].

As in [57] for charmonia, we use two different prescrip-
tions for the scalar interaction:

{
potential I → model using Eqs. (7) with βs = 0,

potential II → model using Eqs. (7) with βs �= 0.
(8)

In this way we can check if the two forms of the scalar inter-
action (with or without the confinement term) have the same
effect on the spectrum, as in the case of the charmonium
system. Besides, in order to take into account the effects
of the virtual [60,61] pair creation that appear close to the
decays thresholds, we include a screening momentum depen-
dent factor. Hence, the total Hamiltonian takes the final form

H̄int(pb,pa) → Hint(pb,pa)

= Fs(pb)H̄int(pb,pa)Fs(pa), (9)

where the screening factors Fs(p) with pa or pb is defined
as

Fs(p) = 1 + ks
ks + exp

(
p2/p2

s

) . (10)

Where ps and ks are others parameter of the model. In this
way, the model, with potential I and potential II, depends on
seven and eight parameters, respectively (see Table 2).
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2.2 Relativistic equation and solution method

The relativistic equation we use has been obtained perform-
ing a three dimensional reduction of the Bethe–Salpeter equa-
tion and keeping only the contributions of the positive energy
Dirac spinors [57]. In the center of mass of the bb̄ system,
the relativistic integral equation takes the form

[K (pb) + M0]Ψ (pb)

+
∫

d3 paHint(pb,pa)Ψ (pa) = M Ψ (pb), (11)

where we have introduced the relativistic energy

K (p) = 2
√
p 2 + m2, (12)

and M0 represents the phenomenological zero point energy
of the spectrum, M is the resonance mass (i.e. the eigenvalue
of the integral equation) and Ψ (p) is the resonance wave
function. The wave function Ψn,{ν}(p) ({ν} = L , S, J ) can
be written as

Ψn,{ν}(p) = Rn,L(p; p̄) [
YL( p̂) ⊗ χS

]
J,MJ

, (13)

where Rn,L(p; p̄) corresponds to the radial function in the
momentum space with n the principal quantum number, p̄
the variational parameter (with dimensions of momentum),
YL ,ML ( p̂) are the spherical harmonics, and χS,MS is the spin
function. To solve Eq. (11) we use the variational method.
As trial functions we use a combination of a finite subset of
three dimensional harmonic oscillators. Hence, we can write
the Hamiltonian matrix as

M{ν},nb,na

= M0δnb,na +
∫

d3 p Ψ
†
nb,{ν}(p)K (p)Ψna ,{ν}(p)

+
∫

d3 pb d
3 paΨ

†
nb,{ν}(pb)Hint(pb,pa)Ψna ,{ν}(pa).

(14)

The eigenvalues and the eigenstates are found through
the variational method, diagonalizing and minimizing the
M{ν},nb,na matrix in Eq. (14) [57,62]. The angular part
is solved analytically and the radial part numerically. The
details can be found in the Appendix of Ref. [57].

3 Parameter determination

To determine the values of the parameters, the uncertainties,
and the theoretical bottomonium spectrum we fit the exper-
imental masses given in Table 1, i.e. all the known states of
each J PC below the B B̄ threshold except for the recently
measured χb1(3P) and χb2(3P) which we try to predict in
order to gain insight on their nature and the ηb(2S) which we

prefer to exclude of our fit owing to the disagreement between
CLEO and Belle masses [51]. From CLEO data a mass of
9974.6±2.3±2.1 MeV [58] was obtained while Belle mea-
sures 9999.0 ± 3.5+2.8

−1.9 MeV [59]. BABAR reports a range
value between 9974 and 10,015 MeV [63]. The PDG favors
the Belle measurement [12], therefore we show this experi-
mental value in Table 1 and Figs. 1 and 2. To perform the fits
and the error analyses we use the bootstrap technique [64–67]
and proceed as follows:

1. We randomly choose values for the masses of the reso-
nances by sampling a Gaussian distribution according to
their uncertainties (systematic and statistical summed in
quadrature), obtaining a resampled bottomonium spec-
trum;

2. We use the least-squares method to minimize the squared
distance

d2 =
∑
i

(
Eth
i − Mi

)2
, (15)

where Mi are the resampled experimental bottomo-
nia, i.e. the states 0−+ (ηb(1S)); 1−− (Υ (1S), Υ (2S),
Υ (3S)); 0++ (χb0(1S),χb0(2S)); 1+− (hb(1P),hb(2P));
1++ (χb1(1P), χb2(2S)); 2−− (Υ (1D)) y 2++ (χb2(1P),
χb2(2S)). The Eth

i represents the theoretical states calcu-
lated by solving the eigenvalue Eq. (14) with potentials I
and II. The fit is performed using MINUIT [68].

This procedure is repeated 1000 times in order to obtain
enough statistics to compute the expected values of the
parameters as well as their uncertainties at a 1σ (68%) con-
fidence level (CL). The expected value of the parameters
(Table 2) are computed as the mean value of the 1000 sam-
ples. The uncertainties are obtained as the the differences
between the mean value and the highest and lowest masses
of the best 68% of the fits. Hence, our uncertainties can
be asymmetric. Once the parameters have been determined,
we can compute the bottomonium spectrum and the associ-
ated uncertainties (Table 1). We find an excellent agreement
between theory and fitted states within uncertainties. We note
that the values of the common parameters of the two poten-
tials are very similar. These results show that, unlike for char-
monia, the scalar confinement term of the interaction does
not seem to be relevant in the bottomonia description. To
gain further insight on this issue we compute the correlation
matrices, Tables 3 and 4, for potentials I and II, respectively.

For potential I (Table 3) we find a strong correlation
between the parameters of the vector interaction (αs and βv)
and the scalar interaction parameter A, which indicates that
vector and scalar interactions are physically correlated in this
model. The screening parameter ps is weakly correlated with
the vector interaction parameters but strongly correlated with
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Table 1 Fitted bottomonia for potentials I and II compared to the PDG
values; n stands for the principal quantum number, L for the orbital
angular momentum, J for the total angular momentum, and S for the

spin. The statistical and systematic errors have been added in quadrature
for the bootstrap technique

Name n 2S+1L J Masses (MeV)

Potential I Potential II Experiment

ηb 1 1S0 9402+27
−24 9404+19

−14 9399.0 ± 2.3

Υ (1S) 1 3S1 9455+21
−23 9454+19

−16 9460.30 ± 0.26

χb0(1P) 1 3P0 9856+22
−20 9858+14

−19 9859.44 ± 0.42 ± 0.31

χb1(1P) 1 3P1 9894+17
−15 9893+9

−11 9892.78 ± 0.26 ± 0.31

hb(1P) 1 1P1 9902+17
−16 9901+9

−10 9899.3 ± 0.8

χb2(1P) 1 3P2 9927+15
−17 9923+13

−14 9912.21 ± 0.26 ± 0.31

Υ (2S) 2 3S1 10,017+20
−19 10,016+17

−15 10,023.26 ± 0.31

Υ (1D) 1 3D2 10,151+13
−19 10,149+16

−14 10,163.7 ± 1.4

χb0(2P) 2 3P0 10,232+18
−16 10,233+12

−13 10,232.5 ± 0.4 ± 0.5

χb1(2P) 2 3P1 10,253+14
−15 10,254+7

−11 10,255.46 ± 0.22 ± 0.50

hb(2P) 2 1P1 10,257+14
−15 10,259+8

−10 10,259.8 ± 0.5 ± 1.1

χb2(2P) 2 3P2 10,274+13
−15 10,274+11

−12 10,268.65 ± 0.22 ± 0.50

Υ (3S) 3 3S1 10,361 ± 25 10,364 ± 14 10,355.2 ± 0.5

Fig. 1 Bottomonium spectrum
computed with potential I. The
blue boxes represent the
experimental states with their
error bands, the purple ones
provide the computation of the
fitted states. The green boxes
represent the predictions of the
model and, in particular, those
with black edges correspond to
missing resonances. For
simplicity we only include the
names of the experimentally
known states
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the scalar interaction ones. For potential II, we have the addi-
tional parameter βs . In this potential, the parameters are less
correlated as shown in Table 4 with one exception, the addi-
tional scalar interaction parameter βs is noticeble correlated
with the vector interaction parameter βv . Consequently, we
find a significant correlation between the confinement terms
of the vector and the scalar interactions. The parameter ps

of the screening factors is weakly correlated with the other
parameters of the interactions except with the phenomeno-
logical parameter A in the scalar interaction. This sizeable
correlation highlights how the screening factor impacts more
on the scalar interaction.

Using the values obtained in the fitting procedure we plot
the screening function Fs(p) in Fig. 3 for the two potentials.
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Fig. 2 Bottomonium spectrum
computed with potential II.
Same conventions as in Fig. 1
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Table 2 Fit parameters for both potentials. Error bars are reported at 1σ (68%) CL and take into account all the correlations among the parameters

Parameter Potential I Potential II

m (GeV) 4.52+0.13
−0.13 4.51+0.08

−0.09

M0 (GeV) 0.48+0.33
−0.27 0.47 ± 0.2

αst 0.39+0.09
−0.10 0.37+0.10

−0.10

βv (GeV2) 0.018+0.004
−0.001 0.017+0.003

−0.003

ks 98+22
−12 100+29

−20

ps (GeV) 1.55+0.23
−0.20 1.56+0.23

−0.21

A (GeV−2) 0.0011 ± 0.0010 −0.0013 ± 0.0013

βs (GeV2) 0 (fixed) 0.090+0.002
−0.002

Table 3 Correlation matrix for the parameters of potential I

m M0 αst βv ks ps A

m 1

M0 −0.89 1

αst 0.13 0.30 1

βv −0.08 −0.36 −0.87 1

ks −0.03 0.01 −0.09 0.03 1

ps 0.09 −0.09 −0.07 0.08 0.02 1

A −0.18 −0.10 −0.68 0.46 −0.12 −0.55 1
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Table 4 Correlation matrix for the parameters of potential II

m M0 αst βv ks ps A βs

m 1

M0 −0.76 1

αst 0.53 0.14 1

βv −0.26 −0.15 −0.58 1

ks 0.34 −0.29 0.06 −0.04 1

ps 0.13 −0.13 −0.05 0.03 0.36 1

A 0.42 −0.05 0.52 −0.32 0.48 0.77 1

βs −0.21 0.01 −0.31 −0.57 −0.03 0.07 −0.07 1

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Fig. 3 Screening function for potentials I (dashed blue) and II (solid
orange). For ks and ps we use the central values in Table 2. We high-
light the values of the screening momenta pI

1/2 (potential I) and pII
1/2

(potential II) introduced in [57]

As mentioned above we introduce the screening momenta
p j

1/2 (j = I, II labels potentials I and II) which are given

by Fs(p
j
1/2) = 1/2 (we recall that Fs(0) = 1). Through

the fitting values, we find pI
1/2 = 3.38 GeV and pII

1/2 =
3.34 GeV. These values correspond to the screening kinetic
energy

Ē j = 2

√
m2 +

(
pj

1/2

)2
, (16)

which amount to Ē I = 11.281 GeV for potential I and
Ē II = 11.260 GeV for potential II. This result show that
the screening effect is active above the open bottom thresh-
old as in charmonia. Nevertheless, due to the high values of
Ē I,II, we find that the screening effect is less relevant for the
low-lying part of the bottomonium spectrum than for char-
monia [57].

4 Bottomonium spectrum

Using the relativistic model interaction, with either potential
I or II, we obtain the bottomonium spectrum. Through the

bootstrap method, the errors in the fitted states are carried in
full to the computed uncertainties in the parameters and to
the spectrum. We provide the computed spectrum in Tables 1
(fitted states) and 5 (predicted states). The computed and the
experimental spectra are compared in Figs. 1 (potential I)
and 2 (potential II). In general, the spectrum is reproduced
by the model within the experimental uncertainties.

We note that the parameters obtained with both potentials
are very similar, leading to closely akin spectra. This result
shows that the confining part of the scalar potential does not
impact the bottomonium spectrum. However, the presence
of the scalar interaction is necessary for an optimum fit, i.e.
the parameter A contribution in Eq. (7b). In what follows we
look into the states that were not included in the fit as well
as the predicted higher-lying spectrum.

As a general remark, we note that the obtained spectrum
is similar to the results of nonrelativistic and semirelativistic
calculations [43–56]. In this concern, it can be argued that
the high value of the bottom quark mass tends to reduce the
relativistic effects with respect, for example, to the charmo-
nium case. But also, the values of the effective parameters
of the nonrelativistic and semirelativistic calculations can
simulate some relativistic effects. Furthermore, the differ-
ent dynamical details of the various models do not allow for
straightforward and definitive conclusions about this point.

4.1 Υ (4S), Υ (10860) and Υ (11020)

These resonances belong to the family with quantum num-
bers 1−−. They were discovered by means of e+e− collisions
in the mid-eighties [70,71] and were more recently measured
by the Belle collaboration [72]. The Υ (4S) is regarded as a
43S1 state; its experimental mass is MΥ (4S) = 10579.4±1.2
MeV and is not well reproduced by either potential I or II.
This resonance is generally considered as a bb̄ state, but its
mass is overestimated by models that make use of differ-
ent approaches: e.g., the nonrelativistic model in Ref. [43]
provides MΥ (4S) � 10630 MeV, the semirelativistic model
of Ref. [51] finds MΥ (4S) = 10607 MeV, and the non-
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relativistic coupled channels model in Ref. [45] reports
MΥ (4S) = 10603 MeV. Our computations provides approx-
imately 10642 ± 40 MeV, with both potentials. This result
is compatible with the other models, but far away from the
experimental value, even when the uncertainties are taken
into account. Consequently, our result combined with non-
relativistic calculations suggest that there must be beyond
the qq̄ picture effects that need to be included to properly
describe the state.

The Υ (10860) resonance is generally interpreted as a
Υ (53S1), e.g. in [43,45,49,51,52]. However, the theoretical
calculations for the pion emission decay widths, to Υ (1S),
Υ (2S) and Υ (3S) are two orders of magnitude [48] greater
than the measurement [73] leading to different possible inter-
pretations, such as that Υ (10860) is a mixing of a stan-
dard Υ (5S) with a P hybrid state [74], Finally, in Ref. [44]
this state is interpreted as a Υ (6S), and, hence, the Υ (5S)

becomes a missing resonance of the experimental spectrum
In our model, this mass state can be reproduced as a Υ (5S)

(53S1) (see Table 5; Figs. 1 and 2) or as a 43D1 state with
both potentials. We do not find support the Υ (6S) interpreta-
tion. Actually, our predicted mean value mass, with Υ (5S),
is only 5 (1) MeV away from the experimental value with
potential I (II). Consequently, we identify this state as a bb̄
with Υ (5S) quantum numbers. However, any final conclu-
sion requires the explanation of the before mentioned pion
emission decay widths which we leave for a future work.

Finally, the high excitation Υ (11020) state has been suc-
cessfully described in standard calculations as a bb̄ meson in
a 63S1 state. We recall, in particular, Refs. [50,51]. For com-
pleteness, we also mention that in Ref. [44] it is interpreted
as a 73S1 state. Our model gives a slightly higher mass value
to the 63S1 state, with either potential. Our results are simi-
lar to that of the relativized calculation of Ref. [43]. At the
moment, no further conclusions can be drawn for this state
within the present model.

4.2 χb(3P) states

The χb(3P) states have been the focus of several experi-
mental collaborations during the last years. An estimation
of the χb(3P) system barycenter (i.e. spin-weighted mass
average of the χb0(3P), χb1(3P), and χb2(3P) states) was
reported by ATLAS [1] and D0 [2] collaborations, yielding
10,530 ± 5(stat) ± 9(syst) MeV and 10551 ± 14(stat) ±
17(syst) MeV, respectively. More recently, two out of the
three state masses were measured; χb1(3P) by the LHCb
collaboration obtaining 10515.7+2.2

−3.9(stat)
+1.5
−2.1(syst) MeV,

and χb1(3P) and χb2(3P) by the CMS collaboration [7]
yielding 10,513.42 ± 0.41(stat) ± 0.18(syst) MeV and
10,524.02±0.57(stat)±0.18(syst) MeV, respectively. Sev-
eral predictions of these states are available in the literature,
employing different frameworks. For example, in Ref. [60]

a mass of 10,524 MeV is predicted for the χb1(3P) state
employing a screened potential; in Ref. [45], 10,517 MeV
for the same state by means of a coupled channel calculation;
and 10,580 MeV in the unquenched quark model [46]. All
of the results overestimate the mass of χb1(3P). In our cal-
culation (which porpously does not fit this state) we obtain
� 10540±30 MeV with both potentials whose central value
also overestimates the mass of the state. When the uncertain-
ties are taken into account, the experimental mass falls within
our error bars and no indication of the need for additional
physics is called for. This shows how important it is to per-
form a rigorous error estimation when performing a level-by-
level comparison between theory and experiment, as differ-
ences that can be accounted by the error analyses can be mis-
taken by physics beyond the bb̄ picture. Regarding χb2(3P),
10,532.4 MeV is obtained in Ref. [45] using the coupled
channels formalism and 10,578 MeV under the unquenched
quark model [46]. We obtain 10554+25

−28 and 10,557+22
−42 with

potentials I and II, respectively. The CMS value falls well
within our uncertainites for potential I and slightly out of
them for potential II, although certainly within 2σ uncertain-
ties. Hence, the individually measured χb(3P) states are well
reproduced by our model. Finally, we obtain the barycenter
mass 10,545+24

−27 MeV for potential I and 10,549+23
−41 MeV

for potential II, both compatible with the previously quoted
ATLAS and D0 estimations. Recalling that not all the indi-
vidual states of the χbJ (3P) system have been measured,
we provide in Tables 6 (potential I) and 7 (potential II) the
n = 1, 2, 3 barycenter masses, given by [75,76]

M̄nP = Mχb0(nP) + 3Mχb1(nP) + 5Mχb2(nP)

9
, (17)

along with the available experimental measurements and esti-
mates from PDG values Given that both potentials produce
similar spectra, the χb(nP) barycenters are very similar. In
summary, we find a good agreement, within errors, between
the models and the experimental barycenters.

Finally, we would like to mention that it has been theorized
that some of the states in the χb(3P) system could be the bot-
tomonia counterparts of the X (3872) charmonium [47,77],
i.e. states closely related to the opening if the B B̄, BB∗, and
Bs Bs thresholds. Our results do not support such hypothesis,
as the model reproduces the χb(3P) system within (large)
uncertainties, contrary to the X (3872) case which was over-
estimated using the same model [57], and whose description
(both mass and width) calls for additional dynamics beyond
the cc̄ picture. Along the same ideas, according to Ref. [78],
the χb1(4P) state could significantly couple to the B B̄∗ and
B∗ B̄∗ channels. The measurement of this particular state
combined with the comparison to quark model calculations,
like the one presented in this work, can provide insight on
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Table 5 Predicted bottomonia for potentials I and II compared to the existing experimental masses with their corresponding uncertainties. Notation
as in Table 1

Name n2S+1L J Mass (MeV)
Potential I Potential II Experiment

ηb(2S) 21S0 10000+21
−17 9999+20

−22 9999.0 ± 3.5+2.8
−1.9[59]

– 11D2 10153+14
−69 10150+16

−14 –

– 13D1 10130+11
−17 10128+14

−12 –

– 13D3 10173+15
−19 10169 ± 17 –

– 21D2 10445+17
−21 10446+15

−16 –

– 23D1 10427+17
−19 10429+14

−26 –

– 23D2 10443+17
−21 10444+15

−28 –

– 23D3 10460+19
−23 10461+18

−20 –

ηb(3S) 31S0 10351+26
−25 10353+16

−19 –

hb(3P) 31P1 10542+24
−26 10546+23

−40 –

χb0(3P) 33P0 10523+28
−26 10528+25

−38 –

χb1(3P) 33P1 10538+26
−27 10541+24

−41 10515.7+2.2 +1.5
−3.9 −2.1 [69]

10513.42 ± 0.41 ± 0.18 [7]

χb2(3P) 33P2 10554+25
−28 10557+22

−42 10524.02 ± 0.57 ± 0.18 [7]

– 33D2 10697+33
−39 10701+59

−32 –

– 31D2 10699+32
−39 10702+32

−32 –

– 33D3 10711+34
−41 10714+35

−32 –

– 33D1 10685+31
−37 10689+33

−29 –

ηb(4S) 41S0 10635+37
−39 10638+22

−44 –

hb(4P) 41P1 10787+41
−43 10792+43

−71 –

χb0(4P) 43P0 10773+42
−44 10779+43

−69 –

χb1(4P) 43P1 10785+43
−42 10790+44

−71 –

χb2(4P) 43P2 10796+42
−45 10801+43

−72 –

– 43D2 10926+49
−56 10929+53

−89 –

– 41D2 10927+49
−56 10930+53

−51 –

– 43D3 10937+51
−58 10940+53

−54 –

– 43D1 10915+48
−54 10920+52

−48 –

Υ (4S) 43S1 10642+36
−39 10646+21

−46 10579.4 ± 1.2 [12]

ηb(5P) 51S0 10878+47
−51 10883+42

−78 –

hb(5P) 51P1 11013+58
−61 11018+62

−101 –

χb0(5P) 53P0 11002+60
−59 11008+62

−99 –

χb1(5P) 53P1 11011+58
−61 11017+63

−101 –

χb2(5P) 51P2 11020+59
−63 11025+63

−103 –

– 53D2 11137+65
−72 11137+73

−116 –

– 51D2 11138+64
−72 11138+73

−63 –

– 53D3 11146+66
−74 11146+74

−74 –

– 53D1 11128+64
−70 11129+72

−69 –

Υ (10860) 53S1 10884+48
−53 10889+43

−79 10889.9+3.2
−2.6 [12]

Υ (11020) 63S1 11107+62
−66 11108+64

−107 10992.9+10.0
−3.1 [12]
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Table 8 Differences ΔSn = n3S − n1S. We observe that these dif-
ferences decrease when n is increased. All the differences reported in
this Table are in MeV. These values have been obtained by mean of
bootstrap technique. The experimental errors, in the fourth column, has
been summed in quadrature

ΔSn Theory Experiment
Potential I Potential II

ΔS1 53+10
−18 51+16

−13 61.3 ± 2.3

ΔS2 18+9
−10 17+31

−5 24.3 ± 4.5

ΔS3 11+4
−31 11+26

−4 –

ΔS4 8+11
−54 8+13

−3 –

ΔS5 6+22
−67 6+19

−8 –

the impact in the masses of the dynamical effects due to the
open bottom thresholds.

4.3 Missing resonances

Besides reproducing the experimentally established states,
in Table 5 we provide predictions of states both above and
below the open bottom thresholds (≈ 10.6 GeV). In total,
we predict 38 states up to 11.3 GeV for 0, 1, 2 (with either
± combinations for P and C) and 3−− quantum numbers.
These predicted states are of interest for future analyses at
LHCb [15,79,80] and Belle II [13,14,81–83]. In particular,
pinning down the Υ (6S) would provide further insight on
bottomonium-like states [83].

The missing ηb(nS) sector (n1S0 states) can be studied
through their relation to their angular momentum partners
Υ (nS) (n3S1) –known from experiment–, by computing the
ΔSn = n3S − n1S mass splitting. This difference should
decrease as n increases in the potential model context [84].
The experimental data forΔS1 andΔS2 shown in Table 8 sup-
port this theoretical results. Thereby, we consider our mass
estimations for both ηb(nS) and Υ (nS) reasonable.

We also provide predictions for states of the n1,3D1,2,3

family, which remain undetected except for the 13D2 res-
onance. The predicted missing states (with uncertainties)
provide useful information to guide the forthcoming spec-
troscopy programs in Belle II [13,14] and LHC [15,16].
However, the production rate of these states should be low,
hence, difficult to detect [79].

5 Conclusions

We have developed a relativistic quark model in momentum
space to study the bottomonium spectrum. The model closely
follows the one used in Ref. [57] to study charmonium. It
combines vector and scalar interactions with a momentum
dependent screening factor to account for the effects due to

virtual pair creation that appear close to the decay thresholds.
We fitted our model to all the known states of each J PC below
the B B̄ threshold except for the recently measured χb1(3P)

and χb2(3P) which we prefer to predict in order to gain
insight on their nature and the ηb(2S) which we exclude of
our fit owing to the disagreement between CLEO and Belle
measurements. Our prediction for ηb(2S) mass agrees with
the Belle result.

We have performed a full statistical error analyses using
the bootstrap technique, that provides a rigorous treatment of
the statistical uncertainties. In this way we obtain the uncer-
tainties of the parameters and their correlations and we can
propagate both to the predicted spectrum. Previous error anal-
yses within phenomenological models have been very lim-
ited and incomplete. The rigorous error estimations allow us
to assess if the inclusion of a new effect in the phenomeno-
logical model is necessary or not, and the correlations pro-
vide insight on how independent are the different pieces of
the model among them. A full error analyses is mandatory
to identify which deviations from experimental data can be
absorbed into the statistical uncertainties of the models and
which can be related to physics beyond the bb̄ picture, guid-
ing future research. We find that the model reproduces very
well the fitted states as well as the nonfitted ones within uncer-
tainties.

To asses the importance of a confining term in the scalar
interaction, i.e. βs �= 0 in Eq. (7b), we fitted the data with
and without such contribution. The results obtained with the
two potentials are very similar for the fitted and the pre-
dicted states, both in the low and the high parts of the spec-
trum. Therefore, such confining contribution to the scalar
interaction can be disregarded in a bottomonium relativistic
model. Even so, the correlations found among the parameters
belonging to the scalar interaction and the rest of the model
parameters, show that the scalar interaction A in Eq. (7b) is
strictly necessary to reproduce the spectrum. The screening
factor Fs(p) included in the interaction Hamiltonian begins
to impact the predictions in significant way at ≈ 11200 MeV,
i.e. further away from the open bottom decay thresholds.
Hence, the screening effect is not particularly intense and
has a slight impact on the bottomonium spectrum, contrary
to what it was found for the charmonium one [57].

We have also studied the χb(3P) resonances. In particular
we have calculated the mass of each state of this system and
its barycenter. The experimental mass value of the χb1(3P)

falls into the theoretical uncertainty calculated with both
potentials. Whereby, we conclude that the model is able to
properly predict this state. Also, the model, with both poten-
tials, reproduces the χb1(3P) state. Our result indicates that
the χb1,2(3P) states are more likely to be bb̄ mesons than the
hypothetical Xb states.

Our model overestimates the Υ (4S) mass and is consistent
with results obtained by semirelativistic quark models, within
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errors. This is an indication of physics beyond the bb̄ picture
for this state. We identify the Υ (10860) as a 53S1 state. The
model fails to reproduce accurately the Υ (11020), although it
was well reproduced by nonrelativistic calculations. Further
investigation, within our model, should be performed for this
high excitation state.

Finally, we report some states that, up to now, have not
been observed experimentally but the confirmation of their
existence is part of the experimental plans at LHC B factories
and Belle II.
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