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Abstract The recent reported gravitational wave detection
motivates one to investigate the properties of different black
hole models, especially their behavior under (axial) gravita-
tional perturbation. Here, we study the quasinormal modes
of black holes in Weyl gravity. We derive the master equa-
tion describing the quasinormal radiation by using a relation
between the Schwarzschild-anti de Sitter black holes and
Weyl solutions, and also the conformal invariance property
of the Weyl action. It will be observed that the quasinormal
mode spectra of the Weyl solutions deviate from those of the
Schwarzschild black hole due to the presence of an additional
linear r -term in the metric function. We also consider the
evolution of the Maxwell field on the background spacetime
and obtain the master equation of electromagnetic perturba-
tions. Then, we use the WKB approximation and asymptotic
iteration method to calculate the quasinormal frequencies.
Finally, the time evolution of modes is studied through the
time-domain integration of the master equation.

1 Introduction

From theoretical point of view, black hole is one of the most
interesting and important solutions to gravity theories. The
existence of such highly dense object in the cosmos has
been also proved through the detection of gravitational waves
(GWs) of black hole binary mergers [1] by the LIGO and
VIRGO observatories and the captured image of the ‘shadow’
of a supermassive black hole by the Event Horizon Telescope
collaboration [2,3]. In this regard, it is interesting to inves-
tigate the other kinds of black hole solutions such as ones
which are constructed based on higher curvature theories of
gravity.

a e-mail: m.momennia@shirazu.ac.ir
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Weyl gravity, which its Lagrangian is defined by the square
of the Weyl tensor, is one of the successful and interesting the-
ories in higher derivative gravity scenario [4–8]. This model
of gravity is invariant under local scale transformation of the
metric gμν(x) → �2(x)gμν(x), and thus, it is unique up to
the choice of the matter source in order to keep the confor-
mal invariance property. The Weyl gravity suffers the Weyl
ghost that it might be possible to remove it under certain con-
ditions [9–16]. In addition, one can consider this theory of
gravity as a suitable model for constructing quantum gravity
[17,18], since it is a higher-curvature theory of gravity which
is power-counting renormalizable [19,20].

From the viewpoint of high energy physics, it is shown
that the Weyl gravity arises from twister-string theory with
both closed strings and gauge-singlet open strings [21], and
it appears as a counterterm in adS/CFT calculations [22–24].
In addition, this theory can be examined as a possible UV
completion of Einstein gravity [25,26]. It is worthwhile to
mention that there is an equivalence between Einstein grav-
ity and Weyl gravity by considering the Neumann boundary
conditions [27,28].

The discovery of GWs produced by the merger of compact
binary objects [1,29] added a totally different and new type
of observations to the traditional astronomy based on electro-
magnetic waves. The emitted GWs contain a lot of informa-
tion for fundamental physics and one can check the validity
of the alternative theories of general relativity, such as mas-
sive gravity, scalar-tensor theory, and Weyl gravity. The sig-
nal of compact binary merger can be decomposed into three
phases [30]. The first stage of a binary system is the inspiral
phase which the frequency and amplitude of the signal chirp
with time. During this phase, the signal is universal that just
depends on the masses and the spins of compact objects and
does not depend on the nature of source. The post-Newtonian
approximation is a powerful tool for describing the inspiral
phase [30]. The second stage is the merger phase and occurs
after the inspiral phase with a rapid collapse of the two objects
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to form a black hole. The amplitude of GWs has a peak at this
time and numerical relativity is used to compute the merger
phase [31–33]. The ringdown phase is the final stage and
describes the evolution of the new black hole. This new black
hole is highly deformed due to the nonlinear dynamics of the
collision. The perturbed black hole emits GWs in the form
of quasinormal radiation and the perturbation theory can be
used to calculate the quasinormal modes (QNMs) [34].

The ringdown phase of a compact binary merger might
be better to study compared to the inspiral or merger phase
depending on the physics being tested [35]. The nature
of the binary components shows up only at high post-
Newtonian order in the inspiral phase while investigat-
ing the merger phase requires time-consuming and theory-
dependent numerical simulations. On the other hand, the
ringdown phase can be appropriately investigated by pertur-
bation theory and it is relatively simple to model beyond
Einstein gravity. The perturbation theory of black holes
was started by the pioneering work of Regge and Wheeler
[36] and was continued by Zerilli [37]. They have found
the wave equations of axial and polar perturbations of the
Schwarzschild black hole and examined the dynamical stabil-
ity of the black hole under small perturbations. The frequen-
cies of perturbations are called the QN frequencies (QNFs)
and have been calculated by using analytic and semi-analytic
approaches [38–41], and also, several numerical methods
[42–46] (see [47–49] for reviews on QNMs).

The electromagnetic and gravitational perturbations of the
Schwarzschild black holes have been investigated in [50].
Besides, the QNMs for the gravitational and electromagnetic
perturbations in modified gravity are calculated before [51].
In the case of conformal gravity, by imposing perturbations
in Minkowskian spacetime, the GWs have been investigated
and the effective energy-momentum tensor of the gravita-
tional radiation is calculated [52]. The astrophysical GWs
of inspiralling compact binaries have been investigated [53–
55]. Moreover, the scalar, electromagnetic [56], and axial
perturbations [57] of nonsingular black holes in conformal
gravity have been studied. It was shown that it is possible
to find the black hole solutions in Weyl gravity which are
both thermally and dynamically stable under massive scalar
perturbations, and also, the QNMs of this theory of grav-
ity in asymptotically adS spacetime were obtained [58]. In
addition, the nearly extreme black holes in Weyl gravity have
been studied and an exact formula for the QNFs with an upper
bound on them has been found [59].

In this paper, our main goal is studying the axial gravita-
tional perturbations of singular black holes in Weyl gravity in
order to investigate the QN radiation of the ringdown phase.
We first obtain a master wave equation for an arbitrary metric
which is conformally related to the Schwarzschild-(anti) de
Sitter (Schwarzschild-(a)dS) spacetime. Then, by using the
Weyl invariance property of the action, and also, the rela-

tion between the Schwarzschild-(a)dS black holes and Weyl
solutions, we derive the wave equation of the axial gravita-
tional perturbations of black holes in Weyl gravity. In addi-
tion, we consider both the scalar and electromagnetic per-
turbations in the background spacetime of these black holes.
Then, we calculate the QNMs by employing the sixth order
WKB approximation and the asymptotic iteration method
(AIM). The time evolution of modes is also investigated by
using the discretization scheme.

2 Four-dimensional black holes in Weyl gravity

Here, we give a brief review on the four-dimensional black
holes in Weyl gravity and the connection between these solu-
tions and the Schwarzschild-(a)dS black holes. The action of
Weyl gravity is given by [60]

I = 1

16π

∫
d4x

√−gCμνρσCμνρσ , (1)

whereCμνρσ is the Weyl conformal tensor with the following
explicit form

Cλμνκ = Rλμνκ + 1

6
Rα

α

[
gλνgμκ − gλκgμν

]

−1

2

[
gλνRμκ − gλκ Rμν

−gμνRλκ + gμκ Rλν

]
, (2)

and the field equations can be obtained by taking a variation
with respect to the metric tensor gμν

Wρσ =
(

∇μ∇ν + 1

2
Rμν

)
Cρμνσ = 0, (3)

which Wμν is the Bach tensor. It is straightforward to show
that the following 4-dimensional line element satisfies all
components of Eq. (3)

ds2 = − f (r)dt2 + f −1(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (4)

where the metric function is as follows

f (r) = c + d

r
+ c2 − 1

3d
r + br2, (5)

in which b, c, and d are three integration constants. It is
notable that in contrast with the Einstein gravity that the cos-
mological constant should be considered in the action by
hand, it is present as an integration constant in the Weyl
gravity solutions. It is also worthwhile to mention that one
can recover the Schwarzschild-(a)dS black hole by setting
c = 1, d = −2M , and b = −�/3.

On the other hand, the line element describing the
Schwarzschild-(a)dS spacetime in the radial coordinate ρ is
given by

ds̃2 = −g(ρ)dt2 + g−1(ρ)dρ2 + ρ2 (dθ2 + sin2 θdϕ2) , (6)
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in which the metric function is

g (ρ) = 1 − 2M

ρ
− �

3
ρ2, (7)

where M denotes the total mass of the black hole and �

is the cosmological constant. One can show that there is
a conformal relation between the black hole spacetimes in
Weyl gravity (4) and Einstein theory (6). Indeed, these two
spacetimes can be connected to each other by introducing
a conformal factor S(ρ) so that ds2 = S(ρ)ds̃2. Every
spacetime like Schwarzschild-(a)dS case which is confor-
mally related to (4) is also a solution of the field equa-
tions of Weyl gravity (3) since all the metrics that transform
conformally are equivalent. By considering the conformal
factor S(ρ) = (1 + qρ)−2 [60], one can find the relation
ρ = r (1 − qr)−1 between the radial coordinates ρ and r .
Multiplying (6) by the conformal factor S(ρ) and replacing
ρ by r , we can obtain the following relations between the
parameters [60]

b = q2 (1 + 2Mq) − �

3
; c = 1 + 6Mq; d = −2M, (8)

where q is an arbitrary constant and we used ∂ρ =
(1 − qr)2 ∂r . Therefore, we have a spectrum of conformal
solutions depending on the values of q. We shall use these
relations to obtain the axial perturbation of Weyl gravity in
the coming section.

3 Gravitational perturbations of Weyl gravity

Here, we are going to obtain a master equation for the
axial gravitational perturbations of black holes described by
the metric function (5). First, one may note that there is
a conformal relation between the line element (4) and the
Schwarzschild black holes in asymptotically adS spacetime.
Indeed, the spacetime of Weyl solutions and the spacetime
of Schwarzschild-(a)dS solutions are related to each other as
ds2 = S(ρ)ds̃2 so that ds2 is the line element of Weyl grav-
ity (4 ), ds̃2 is the line element of the Schwarzschild-(a)dS
black holes (6), and S(ρ) is the conformal factor. Thus, if
we obtain the master equation of black holes conformally
related to the Schwarzschild-(a)dS black holes, it can also
describe the gravitational perturbations of Weyl solutions by
replacing the explicit form of S(ρ) . In other words, if we
construct the axial perturbations of S(ρ)ds̃2 (for the general
form of S(ρ)), it is equivalent to the master equation of Weyl
solutions. It is worthwhile to mention that it is not possible
to construct a second-order master wave equation by consid-
ering small perturbations in (4) and using the field equations
(3) because there is fourth-order differential in the field equa-
tions and the linearized field equations are fourth-order. Here,
since our goal is to find a second order wave equation for

Weyl solutions, we shall use the conformal relation between
Schwarzschild-(a)dS black holes and Weyl solutions.

The gravitational perturbations of black holes conformally
related to the Schwarzschild-(a)dS spacetime, i.e. the pertur-
bations of S(ρ)ds̃2, is derived in the Appendix 1. The master
equation of the axial perturbations of the following spacetime
(see Appendix 1)

ds2 = S(ρ)ds̃2 = S(ρ)

[
−g(ρ)dt2 + dρ2

g(ρ)
+ ρ2

×
(
dθ2 + sin2 θdϕ2

) ]
, (9)

is given by

d2�(−) (ρ∗)
dρ2∗

+
[
ω2 − Vg (ρ∗)

]
�(−) (ρ∗) = 0, (10)

where ω is the QN frequency, ρ∗ = ∫
g−1 (ρ) dρ is the

tortoise coordinate, and the effective potential Vg (ρ∗) reads

Vg (ρ∗) = g (ρ)

[
� (� + 1)

ρ2 − 2

ρ2 − Z
d

dρ

(
g (ρ)

Z2

dZ

dρ

)]
, (11)

in which Z = ρ
√
S (ρ). Note that the right-hand side of

(9) is exactly equal to the Weyl gravity spacetime (4) under
the conditions (8) whenever we consider the conformal fac-
tor S(ρ) = (1 + qρ)−2. As a result, if we consider a coor-
dinate transformation (in (9)-(11)) obeying this conformal
factor, we can obtain the axial perturbations of singular
black holes in Weyl gravity. Thus, we apply the coordi-
nate transformation ρ to r so that S(ρ) = (1 + qρ)−2 and
ρ = r (1 − qr)−1. By considering ∂ρ = (1 − qr)2 ∂r and
∂r∗ = g (ρ) (1 − qr)2 ∂r , one can find the wave equation
(10) converts into

d2�(−) (r∗)
dr2∗

+
[
ω2 − Vg (r∗)

]
�(−) (r∗) = 0, (12)

where r∗ is the new tortoise coordinate as dr/dr∗ =
(1 − qr)2 f̄ (r) with

f̄ (r) = 1 − 2M (1 − qr)

r
− �r2

3 (1 − qr)2 . (13)

The effective potential (11) now is given by

Vg (r∗) = (1 − qr)2 f̄ (r)

×
[
� (� + 1)

r2 − 2

r2 − r
d

dr

(
f̄ (r)

r2 (1 − qr)2
)]

, (14)

which we used Z = r and ∂ρ = (1 − qr)2 ∂r . Therefore,
Eq. (12) is the master equation of the axial perturbations of
black holes in the Weyl gravity (5). In addition, Eq. (14) is the
effective potential of perturbations and the free parameters b,
c, and d of (5) are related to the parameters of (13) through
the conditions (8). It is worthwhile to mention that for q = 0,
the potential (14) reduces to
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Vg (r∗) =
(

1 − 2M

r
− �r2

3

)[
� (� + 1)

r2 − 6M

r3

]
, (15)

which is the effective potential of the axial perturbations of
the Schwarzschild-(a)dS black hole [61], as we expected.

In order to get rid of the free parameter q in (14), one
can apply the conditions (8) in (14) to obtain the following
effective potential

Vg (r∗) = f (r)

[
� (� + 1)

r2 − 2

r2 − r
d

dr

(
f (r)

r2

)]
(16)

= f (r)

[
� (� + 1)

r2 + 2 (c − 1)

r2 + c2 − 1

3rd
+ 3d

r3

]
, (17)

which is a function of the free parameters of conformal grav-
ity ( r∗ = ∫ f −1 (r) dr being the tortoise coordinate). Now,
we can recover the axial perturbations of the Schwarzschild-
(a)dS black hole (15) by setting c = 1, d = −2M , and
b = −�/3 in (17).

4 Scalar perturbations

Now, in order to ensure that our calculations of obtaining the
axial perturbations of Weyl gravity are correct, we compare
the effective potential of the massless scalar perturbations of
black holes in Weyl gravity obtained by two methods; one is
considering the evolution of a scalar field in the spacetime
background (4) directly, and the other one is multiplying
the Schwarzschild spacetime by a conformal factor (9) and
obtaining the related effective potential.

The wave equation and the effective potential of a massless
scalar perturbation in the spacetime background (4) are given
by [59]

d2� (r∗)
dr2∗

+
[
ω2 − Vs (r∗)

]
� (r∗) = 0, (18)

Vs (r∗) = f (r)

[
� (� + 1)

r2 + f ′ (r)
r

]
, (19)

where r∗ = ∫
f −1 (r) dr is the tortoise coordinate. On the

other hand, the wave equation and the effective potential
of the perturbative conformally related Schwarzschild-(a)dS
black holes in ρ coordinate are as follows [56]

d2� (ρ∗)
dρ2∗

+
[
ω2 − Vs (ρ∗)

]
� (ρ∗) = 0, (20)

Vs (ρ∗) = g (ρ)

[
� (� + 1)

ρ2 + 1

Z

d

dρ

(
g (ρ)

dZ

dρ

)]
, (21)

where Z = ρ
√
S (ρ) and ρ∗ = ∫

g−1 (ρ) dρ is the tor-
toise coordinate. Now, we apply the coordinate transforma-
tion ρ to r so that S(ρ) = (1 + qρ)−2 and ρ = r (1 − qr)−1,
as was described. Thus, the effective potential (21) reduces
to

Vs (r∗) = (1 − qr)2 f̄ (r)

×
[
� (� + 1)

r2 + 1

r

d

dr

(
f̄ (r) (1 − qr)2

)]
. (22)

It is straightforward to show that (1 − qr)2 f̄ (r) is equal
to the metric function of Weyl gravity (5) with the help of
obtained conditions (8), and thus the effective potential (22)
is equal to Eq. (19). Therefore, this comparison of scalar
perturbations shows that our calculations of obtaining the
axial perturbations of Weyl solutions given in the previous
section are indeed correct.

5 Electromagnetic perturbations

The wave equation and effective potential of electromagnetic
perturbation in the spacetime background (4) are given by
(see Appendix 2)

d2� (r∗)
dr2∗

+
[
ω2 − Ve (r∗)

]
� (r∗) = 0, (23)

Ve (r∗) = f (r)
� (� + 1)

r2 , (24)

where r∗ = ∫
f −1 (r) dr is the tortoise coordinate. On the

other hand, the master equation of the perturbative confor-
mally related Schwarzschild-(a)dS black holes in ρ coordi-
nate is [56]

d2� (ρ∗)
dρ2∗

+
[
ω2 − Ve (ρ∗)

]
� (ρ∗) = 0, (25)

with

Ve (ρ∗) = g (ρ)
� (� + 1)

ρ2 , (26)

where ρ∗ = ∫
g−1 (ρ) dρ is the tortoise coordinate. By

applying the coordinate transformation ρ to r such that
S(ρ) = (1 + qρ)−2 and ρ = r (1 − qr)−1, the effective
potential (26) reduces to

Ve (r∗) = (1 − qr)2 f̄ (r)
� (� + 1)

r2 , (27)

which (1 − qr)2 f̄ (r) is equal to the metric function of Weyl
gravity (5) by considering the conditions (8). Therefore, the
effective potentials (24) and (27) are the same.

It is worthwhile to mention that scalar, electromagnetic,
and gravitational perturbations of Weyl gravity can be col-
lected and described by the following master equation

d2� (r∗)
dr2∗

+
[
ω2 − V� (r∗)

]
� (r∗) = 0, (28)

with the potential

V� (r∗) = f (r)

[
� (� + 1)

r2 +
(

1 − s2
)
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×
⎛
⎝
(

4 − s2
)
b

2
− d

r3 − s (c − 1)

3r2

⎞
⎠+ (1 − s)2 c2 − 1

3rd

⎤
⎦ ,

(29)

where s = 0, 1, 2 is the spin of the perturbing field and we
used the effective potentials given in Eqs. (17), (19), and (24)
to obtain this equation. By inserting c = 1, d = −2M , and
b = −�/3 into ( 29), one can obtain

V� (r∗) = f (r)

[
� (� + 1)

r2 + (1 − s2)
(

2M

r3 −
(
4 − s2

)
�

6

)]
, (30)

for the Schwarzschild-(a)dS black holes [48].

6 Quasinormal modes

Here, we consider the master equation (28) with the effec-
tive potential (29) for s = 0, 1, 2 as the results of perturba-
tions of Weyl gravity. The spectrum of QNMs is the solution
of the wave equation (28) and this spectrum becomes dis-
crete when we impose some proper boundary conditions.
The boundary conditions are applied to the modes � (r∗) at
r∗ → ±∞ which can be obtained by studying the flux of
radiation detected by physical observers near the event hori-
zon and cosmological horizon. The observers detect outgoing
waves at the cosmological horizon and incoming radiation at
the event horizon{

� (r∗) ∼ e−iωr∗ , r∗ → −∞ (r → re)
� (r∗) ∼ eiωr∗ , r∗ → +∞ (r → rc)

, (31)

where re is the event horizon and rc denotes the cosmological
horizon.

Now, we concentrate our attention on the conformal-dS
solutions (b < 0) and calculate the QN frequencies by using
the WKB formula as a semi-analytic approach and AIM as a
numerical method. The WKB approximation is based on the
matching of WKB expansion of the modes � (r∗) at the event
horizon and cosmological horizon with the Taylor expansion
near the peak of the potential barrier. This method can be used
for an effective potential that forms a potential barrier with a
single peak. It was first applied to the problem of scattering
around black holes [39], and then extended to the 3rd order
[40], 6th order [41], and 13th order [63]. The WKB formula
is given by

ω2 = V0 +
∑
j=1

�2 j − i

(
n + 1

2

)√
−2V ′′

0

⎛
⎝1 +

∑
j=1

�2 j+1

⎞
⎠ , (32)

where n is the overtone number, V0 is the value of the effec-
tive potential at its local maximum, and �k’s denote the kth
order of the approximation and depend on the value of the
effective potential and its derivatives at the local maximum.
It is notable that the explicit form of the WKB corrections

is given in [40,41]. We shall use this formula up to the sixth
order as a semi-analytical approach to obtain the QNFs of
perturbations.

On the other hand, the AIM has been employed for solv-
ing the eigenvalue problems and second-order differential
equations [64,65]. It was also shown that the improved AIM
can be used as an accurate numerical method for calculat-
ing the QNMs [45,66]. Here, we will use this method up to
15 iterations as a numerical approach to obtain the QNFs of
perturbations.

In addition, we can investigate the contribution of all
modes by using the time-domain integration of the wave-
like equation (28). The time-domain profile of modes shows
the time evolution of modes at the ringdown stage and the
behavior of the asymptotic tails at late times. In order to
obtain the time evolution of modes, we follow the discrimi-
nation scheme given in [67]. The perturbation equation (28)
takes the following form

− 4
∂2� (u, v)

∂u∂v
= V� (u, v) � (u, v) , (33)

in terms of the light-cone coordinates u = t−x and v = t+x ,
and� assumed to have time dependence e−iωt . We can obtain
the time-domain profile of modes by integrating this equation
on the small grids from the two null surfaces u = u0 and
v = v0. One can obtain the evolution equation in the light-
cone coordinates by applying the time evolution operator on
� (u, v) and expanding this operator for sufficiently small
grids

� (u + �, v + �) = � (u + �, v)

+� (u, v + �) − � (u, v)

−�2

8
[V� (u + �, v) � (u + �, v)

+V� (u, v + �)� (u, v + �)] , (34)

which � is the step size of the grids. We shall obtain the time
evolution of perturbations with a Gaussian wave packet on
the surfaces u = u0 and v = v0 as initial data.

The QNFs of scalar (s = 0), electromagnetic (s = 1), and
gravitational (s = 2 ) perturbations are presented in Tables 1,
2, 3 and 4. We calculated the lowest frequencies (Tables 1,
2) and the second overtone (Tables 3, 4) for some values of
the free parameters b, c, d, and �. The frequencies are writ-
ten as ω = ωr − iωi where ωr (ωi ) is the real (imaginary)
part of the frequencies. The obtained frequencies for gravi-
tational perturbation show that the WKB formula and the AI
method are in a good agreement. The modes of gravitational
perturbation live longer with lower frequency compared to
the scalar and electromagnetic perturbations. In addition, the
all kinds of perturbations decay faster with more oscillations
by increasing d and/or b. However, the effective potential is
positive and all frequencies have a negative imaginary part
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which indicates that these kinds of perturbations will decay
with time, and thus, the spacetime is stable.

The time-domain profile of modes for different perturba-
tions is presented in Figs. 1 and 2 for some fixed values of
the free parameters. According to the Fig. 1, we can observe
that the QN oscillations of the wave function � (t, r) at the
ringdown phase of gravitational perturbations for early and
intermediate times. This figure confirms that the wave func-
tion oscillates with a frequency that increases and decay faster
with increasing b and/or d. In addition, the time evolution of
modes for scalar and electromagnetic perturbations is illus-
trated in Fig. 2. This figure shows that the QN oscillations of
gravitational perturbation live longer with lower frequency
compared to the scalar and electromagnetic perturbations.

In order to obtain the deviations of Weyl solutions from the
Schwarzschild-dS black holes, we compare the QNM spectra
of the both cases. To do so, we first consider d = −2M and
b = −�/3 in the metric function (5), and then calculate the
gravitational QN modes. In this way, the metric function of
conformal gravity takes the form

f (r) = c − 2M

r
− c2 − 1

6M
r − �

3
r2, (35)

and thus, the value of c characterizes the deviation. As c
gets away from 1, both the real and imaginary parts of fre-
quencies decrease which shows that the perturbations in the
conformal black holes’ background live longer compared to
the Schwarzschild ones (see Fig. 3). It is notable that in order
to have black hole solutions, the value of c cannot be chosen
from c ≤ −0.5 and c ≥ 2, and also, the allowed range for
nearly extreme black holes is −1 < c < 2 [59].

In addition, the exact relation for QNFs in the eikonal limit
(� → ∞) can be obtained by the first order WKB formula
(32)

ω2 = V0 − i

(
n + 1

2

)√
−2V ′′

0 , (36)

and in this regime, the effective potential (29) is given by

V� (r∗) ∼ f (r)
�2

r2 , (37)

which is still a function of c due to the presence of f (r).
Interestingly, we find that these black holes, unlike the non-
singular black holes in conformal gravity [57], can be dis-
tinguished from the Schwarzschild ones even in the eikonal
limit.

6.1 Error estimation of QN frequencies

Although the WKB formula gives the best accuracy at � > n
and gives us an accurate and economic way to compute the
QN frequencies, this method does not always give a reliable
result and neither guarantees a good estimation for the error

[41,68]. In addition, we cannot always increase the WKB
order to obtain a better approximation for the frequency.
In practice, there is some order that the WKB formula (32)
provides the best approximation, and the error increases as
the order of the formula increases. On the other hand, since
the AIM relies upon a specialized barrier function, there is
no systematic way to estimate the errors or to improve the
accuracy [45]. In order to estimate the error of the WKB
approximation, we can compare two sequential orders of the
formula (32). However, since each WKB order correction
affects either real or imaginary part of the squared frequen-
cies, we should use the following quantity

�k = |ωk+1 − ωk−1|
2

, (38)

for the error estimation of ωk that is calculated with the WKB
formula of the order k. This quantity allows determining the
WKB order in which the error is minimal. In the case of the
Schwarzschild black holes, it is shown that the error estima-
tion (38) provides a very good estimation of the error order,
satisfying [68]

�k � |ω − ωk | , (39)

where ω is an accurate value of the QN frequency calculated
by using numerical methods. Thus, we can use the error esti-
mation (38) to find the order of the absolute error and deter-
mine the order which gives the most accurate approximation
for the QN mode.

In the Tables 5 and 6, we summarize the error estimation
of the WKB formula for the fundamental and first overtone
QNMs of fixed � = 2, b = −0.08, c = 0.3, and d = −1
(related to the last line of Tables 1 and 3). From Table 5, we
can see that the best order of the WKB formula for calculating
the QN frequency of gravitational perturbations is 7th-order
whereas the QN frequency of electromagnetic perturbations
has the best accuracy with the help of 12th-order. In the case
of scalar perturbations, the error of the WKB formula of 10th-
order is minimal. Table 6 shows the same results for the first
overtone frequency, except for gravitational perturbations.
The QN frequency of gravitational perturbations has the best
accuracy with the help of 8th-order. If we assume that the
band (39 ) is also correct for the Weyl solutions, since the
maximum estimation of the error for the 6th-order WKB
formula is of order 10−6 and 10−5 , up to 4 (3) digits of
the frequency in the last line of Table 1 (3) are reliable. Our
calculations based on (39), not shown here due to economic
reason, show that the frequencies given in Tables 1, 2, 3 and
4 are reliable up to a minimum of 3 digits.
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Table 1 The fundamental QNMs for � = 2, calculated by using the AIM method (first row) and WKB formula (second row)

b c d s = 2 s = 1 s = 0

−0.10 0.30 −1.0
0.155204 − 0.0397912i
0.155204 − 0.0397909i

0.191879 − 0.0399914i
0.191879 − 0.0399918i

0.192944 − 0.0404160i
0.192944 − 0.0404143i

−0.10 0.30 −0.9
0.344680 − 0.0863702i
0.344684 − 0.0863653i

0.424112 − 0.0882848i
0.424111 − 0.0882865i

0.433858 − 0.0911394i
0.433857 − 0.0911551i

−0.10 0.30 −0.8
0.502599 − 0.123024i
0.502617 − 0.122989i

0.615836 − 0.128076i
0.615836 − 0.128079i

0.639933 − 0.133019i
0.639943 − 0.133023i

−0.10 0.35 −1.0
0.206948 − 0.0528026i
0.206948 − 0.0528016i

0.255592 − 0.0532524i
0.255592 − 0.0532532i

0.257955 − 0.0541371i
0.257953 − 0.0541365i

−0.10 0.40 −1.0
0.246709 − 0.0626906i
0.246710 − 0.0626885i

0.304454 − 0.0634129i
0.304454 − 0.0634139i

0.308203 − 0.0647413i
0.308199 − 0.064744i

−0.09 0.30 −1.0
0.248847 − 0.0630602i
0.248849 − 0.0630587i

0.306884 − 0.0639179i
0.306884 − 0.0639190i

0.311359 − 0.0654485i
0.311355 − 0.0654544i

−0.08 0.30 −1.0
0.316319 − 0.0791611i
0.316323 − 0.0791561i

0.389118 − 0.0809956i
0.389118 − 0.0809973i

0.398428 − 0.0836725i
0.398427 − 0.0836869i

Table 2 The fundamental QNMs for � = 3, calculated by using the AIM method (first row) and WKB formula (second row)

b c d s = 2 s = 1 s = 0

−0.10 0.30 −1.0
0.249970 − 0.0398942i
0.249970 − 0.0398943i

0.274336 − 0.0400070i
0.274336 − 0.0400071i

0.275107 − 0.0402185i
0.275107 − 0.0402184i

−0.10 0.30 −0.9
0.553216 − 0.0873844i
0.553216 − 0.0873848i

0.606668 − 0.0884178i
0.606668 − 0.0884180i

0.613560,−0.0898396i
0.613569 − 0.0898409i

−0.10 0.30 −0.8
0.804179 − 0.125785i
0.804179 − 0.125785i

0.881325 − 0.128389i
0.881325 − 0.1283893i

0.898233 − 0.130873i
0.898234 − 0.130874i

−0.10 0.35 −1.0
0.333071 − 0.0530388i
0.333071 − 0.0530390i

0.365476 − 0.0532890i
0.365476 − 0.0532891i

0.367175 − 0.0537292i
0.367175 − 0.0537291i

−0.10 0.40 −1.0
0.396847 − 0.0630772i
0.396847 − 0.0630774i

0.435398 − 0.0634744i
0.435398 − 0.0634745i

0.438083 − 0.0641348i
0.438083 − 0.0641349i

−0.09 0.30 −1.0
0.400063 − 0.0635081i
0.400063 − 0.0635083i

0.438876 − 0.0639809i
0.438876 − 0.0639810i

0.442073 − 0.0647420i
0.442072 − 0.0647424i

−0.08 0.30 −1.0
0.507603 − 0.0801345i
0.507604 − 0.0801349i

0.556626 − 0.0811223i
0.556626 − 0.0811225i

0.563213 − 0.0824560i
0.563213 − 0.0824572i

Table 3 The QNMs for n = 1 and � = 2, calculated by using the AIM method (first row) and WKB formula (second row)

b c d s = 2 s = 1 s = 0

−0.10 0.30 −1.0
0.154934 − 0.119369i
0.154934 − 0.119368i

0.191502 − 0.119978i
0.191503 − 0.119979i

0.192318 − 0.121313i
0.192313 − 0.121311i

−0.10 0.30 −0.9
0.342039 − 0.258939i
0.342060 − 0.258873i

0.420737 − 0.264990i
0.420737 − 0.264993i

0.431318 − 0.274284i
0.431374 − 0.274289i

−0.10 0.30 −0.8
0.495174 − 0.368250i
0.495149 − 0.367803i

0.607537 − 0.384809i
0.607535 − 0.384817i

0.636672 − 0.399495i
0.636579 − 0.399406i

−0.10 0.35 −1.0
0.206263 − 0.158394i
0.206265 − 0.158390i

0.254695 − 0.159773i
0.254696 − 0.159774i

0.256703 − 0.162615i
0.256695 − 0.162638i

−0.10 0.40 −1.0
0.245478 − 0.188046i
0.245482 − 0.188033i

0.302929 − 0.190277i
0.302930 − 0.190279i

0.306359 − 0.194596i
0.306362 − 0.194640i

−0.09 0.30 −1.0
0.247683 − 0.189134i
0.247689 − 0.189124i

0.305322 − 0.191793i
0.305322 − 0.191795i

0.309593 − 0.196795i
0.309608 − 0.196847i

−0.08 0.30 −1.0
0.313782 − 0.237311i
0.313803 − 0.237242i

0.385897 − 0.243122i
0.385897 − 0.243124i

0.396113 − 0.251816i
0.396163 − 0.251809i
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Table 4 The QNMs for n = 1 and � = 3, calculated by using the AIM method (first row) and WKB formula (second row)

b c d s = 2 s = 1 s = 0

−0.10 0.30 −1.0
0.249738 − 0.119682i
0.249738 − 0.119682i

0.274064 − 0.120023i
0.274064 − 0.120023i

0.274748 − 0.120672i
0.274747 − 0.120672i

−0.10 0.30 −0.9
0.550996 − 0.262139i
0.550997 − 0.262138i

0.604256 − 0.265327i
0.604256 − 0.265327i

0.611367 − 0.269787i
0.611371 − 0.269791i

−0.10 0.30 −0.8
0.798271 − 0.377357i
0.798268 − 0.377350i

0.875436 − 0.385472i
0.875436 − 0.385473i

0.893985 − 0.392979i
0.893982 − 0.392971i

−0.10 0.35 −1.0
0.332501 − 0.159116i
0.332501 − 0.159116i

0.364830 − 0.159876i
0.364830 − 0.159876i

0.366401 − 0.161240i
0.366400 − 0.161242i

−0.10 0.40 −1.0
0.395853 − 0.189233i
0.395853 − 0.189234i

0.434304 − 0.190444i
0.434304 − 0.190444i

0.436862 − 0.192505i
0.436862 − 0.192508i

−0.09 0.30 −1.0
0.399070 − 0.190519i
0.399071 − 0.190519i

0.437755 − 0.191964i
0.437755 − 0.191965i

0.440857 − 0.194347i
0.440857 − 0.194351i

−0.08 0.30 −1.0
0.505476 − 0.240390i
0.505477 − 0.240388i

0.554326 − 0.243440i
0.554326 − 0.243440i

0.561149 − 0.247621i
0.561153 − 0.247624i

b, d
0.10, 1.0
0.10, 0.8
0.09, 1.0

0 10 20 30 40 50
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0.10, 1.0
0.10, 0.8
0.09, 1.0
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0.1

t
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Fig. 1 This figure evaluated at r = 2 (re < 2 < rc) for � = 2 and c = 0.3. The left (right) panel indicates the (absolute) value of the wave function
� (t, r) of gravitational perturbations as a function of time

s
2
1
0

0 50 100 150 200 25010 9
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t

t,r

d 1 s
2
1
0

0 50 100 150 200 25010 18
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0.001

1

t

t,r

d 0.8

Fig. 2 This figure evaluated at r = 2 for � = 2, b = −0.1, and c = 0.3
. It shows the QN modes of scalar (s = 0) and electromagnetic (s = 1)
perturbations alongside the gravitational ones (s = 2). By comparing

the left panel and right panel we find that the modes of all perturbations
decay faster with more oscillations by increasing d
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ω

Fig. 3 Re[ω] and Im[ω] as a function of c for � = 0.02 and unit mass calculated by using the sixth order WKB formula. The vertical line indicates
the frequencies of the Schwarzschild-dS black hole. Both the real and imaginary parts of QN frequencies decrease whenever c deviates from one

7 Conclusions

We have investigated the effects of both the axial gravita-
tional and electromagnetic perturbations on a black hole sys-
tem in Weyl gravity. We have derived the master equation,
describing the QN radiation, from the conformal invariance
property of the Weyl action, and also, a relation between
the Schwarzschild-(a)dS black holes and Weyl solutions. We
have found that the QNM spectra of the Weyl solutions devi-
ate from those of the Schwarzschild black hole due to the
presence of a linear r -term in the metric function. We have
seen that, unlike the non-singular black holes in conformal
gravity, this deviation was present even in the eikonal regime.
Thus, it will be possible to test the Weyl solutions (or at least
find a constraint on the free parameter c in order to recover
the present universe after a phase transition where the confor-
mal symmetry is broken) with the help of future gravitational
wave detectors. Moreover, it was shown that the perturba-
tions in the conformal black holes’ background live longer
compared to the Schwarzschild ones.

In addition, we have calculated the QN frequencies
of scalar, electromagnetic, and gravitational perturbations
through both the sixth order WKB approximation and the
improved AIM after 15 iterations. For the obtained frequen-
cies, the effective potential was positive and all the frequen-
cies had a negative imaginary part. Therefore, one can obtain
some stable black hole solutions in conformal gravity under
these kinds of perturbations.

We have found that the QN modes of gravitational per-
turbations live longer with lower frequency compared to
the scalar and electromagnetic perturbations. In addition, all
kinds of perturbations decay faster with more oscillations
by increasing the free parameters d and/or b. Furthermore,

the time evolution of different perturbations for early and
intermediate times is studied by using the time-domain inte-
gration of the master equation. The time-domain profile of
modes confirmed the previous results mentioned above.
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Appendix A: Gravitational perturbations of black holes
conformally related to the Schwarzschild-(a)dS solutions

Assume a black hole spacetime is conformally related to the
Schwarzschild-(a)dS solutions so that

ds2 = S(ρ)ds̃2 = ĝμνdx
μdxν . (40)

Multiplying the Schwarzschild spacetime by a conformal
factor can be described by an anisotropic fluid with the fol-
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lowing effective energy-momentum tensor [57]

Tμν = (ρ̂ + p2
)
uμuν + (p1 − p2) xμxν + p2 ĝμν, (41)

where p1 and p2 are, respectively, the radial pressure and the
tangential pressure, and ρ̂ is the energy density measured by
a comoving observer. The explicit expressions of ρ̂, p1, and
p2 are functions of ρ and they can be derived by calculating
the corresponding field equations constructed from the line
element (40). In addition, uμ is the timelike four-velocity and
xμ is the spacelike unit vector (orthogonal to uμ and angular
directions) and they satisfy

uμu
μ = −1; xμx

μ = 1, (42)

in which the indices are raised and lowered by the metric
ĝμν , and we also assumed uμ = [

ut , 0, 0, 0
]

and xμ =
[0, xρ, 0, 0] in the comoving frame.

In order to obtain the master wave equation and the effec-
tive potential of the line element (40), we follow Chan-
drasekhar and his notation is used [69]. The axial pertur-
bations are characterized by introducing the non-vanishing
parameters σ , q2, and q3 in the unperturbed spacetime in the
following form

ds2 = −e2νdt2 + e2ψ
(
dϕ − σdt − q2dx

2 − q3dx
3
)2

+e2μ2
(
dx2
)2 + e2μ3

(
dx3
)2

, (43)

in which ν, ψ , μ2, μ3, σ , q2, and q3 are functions of t , x2

(radial coordinate ρ), and x3 (polar angle θ ) so that σ , q2, and
q3 are small quantities. The components of the unperturbed
metric (σ, q2, q3 = 0 ) are as follows

eν = √S(ρ)g(ρ); eμ2 =
√

S(ρ)

g(ρ)
;

eμ3 = ρ
√
S(ρ); eψ = ρ sin (θ)

√
S(ρ), (44)

g (ρ) = 1 − 2M

ρ
− �ρ2

3
. (45)

The proper field equations, describing this unperturbed
metric, are

Gμν + �gμν = Tμν, (46)

where Gμν is the Einstein tensor. Here, following [57],
we use the tetrad formalism to derive the master equa-
tion because the axial components of the perturbed energy-
momentum tensor in the tetrad frame also vanish in this case,
and thus, ρ̂ , p1, and p2 have nothing to do with the master
equation. The tetrad basis corresponding to the line element
(43) is defined as follows

eμ

(a) =

⎛
⎜⎜⎝
e−ν σe−ν 0 0

0 e−ψ 0 0
0 q2e−μ2 e−μ2 0
0 q3e−μ3 0 e−μ3

⎞
⎟⎟⎠ , (47)

where the Greek letters (labelling the columns) are the tensor
indices and Latin letters enclosed in parentheses (labelling
the rows) are the tetrad indices run from 0 to 3. Based on this
formalism, any vector or tensor field can be projected onto
the tetrad frame to obtain its tetrad components
{
A(a) = eμ

(a)Aμ; A(a) = η(a)(b)A(b); Aμ = eμ

(a)A
(a),

T(a)(b) = eμ

(a)e
ν
(b)Tμν; Tμν = e(a)

μ e(b)
ν T(a)(b),

(48)

in which η(a)(b) = eμ

(a)eμ(b) is a constant symmetric matrix.
In the tetrad frame, the perturbed field equations (46) read

δG(a)(b) + �η(a)(b) = δT(a)(b), (49)

where the perturbed energy-momentum tensor is as follows

δT(a)(b) = (ρ̂ + p2
)
δ
(
u(a)u(b)

)+ (δρ̂ + δp2
)
u(a)u(b)

+ (p1 − p2) δ
(
x(a)x(b)

)
+ (δp1 − δp2) x(a)x(b) + δp2η(a)(b). (50)

By considering the constraints (42) and uμxμ = 0, we
find that the axial components of the perturbed energy-
momentum tensor in the tetrad frame vanish

δT(1)(0) = δT(1)(2) = δT(1)(3) = 0. (51)

Since the axial components of the perturbed energy-
momentum tensor vanish, the master equation of the axial
perturbations can be derived from

δG(a)(b) + �η(a)(b) = 0. (52)

By substituting the line element (43) into (52), one can find
(1, 2) and (1, 3) components as
[
e3ψ+ν−μ2−μ3 Q23

]
,3 = e3ψ−ν−μ2+μ3

(
q2,0 − σ,2

)
,0 , (53)[

e3ψ+ν−μ2−μ3 Q23
]
,2 = −e3ψ−ν+μ2−μ3

(
q3,0 − σ,3

)
,0 , (54)

where x0 = t and x1 = ϕ, and we used QAB = qA,B −qB,A.
Considering the unperturbed values of ψ and μ3 from (44),
we obtain the pair of equations

eν+μ2

S2 (ρ) ρ4 sin3 (θ)

∂Q

∂θ
= (q2,0 − σ,2

)
,0 , (55)

eν−μ2

S (ρ) ρ2 sin3 (θ)

∂Q

∂ρ
= − (q3,0 − σ,3

)
,0 , (56)

which we used the new variable Q with the definition

Q = Q (t, ρ, θ) = e3ψ+ν−μ2−μ3 Q23. (57)

By differentiating Eqs. (55) and (56) and eliminating σ ,
we obtain

eν+μ2

S2 (ρ) ρ4

∂

∂θ

(
1

sin3 (θ)

∂Q

∂θ

)
+ 1

sin3 (θ)

∂

∂ρ(
eν−μ2

S (ρ) ρ2

∂Q

∂ρ

)
= 1

S (ρ) ρ2 sin3 (θ) eν−μ2

∂2Q

∂t2 . (58)
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We now consider the following decomposition

Q = e−iωt Q (ρ)C−3/2
�+2 (θ) , (59)

where C−3/2
�+2 (θ) is the Gegenbauer function governed by the

following differential equation
[
d

dθ

(
sin2α (θ)

d

dθ

)
+ n (n + 2α) sin2α (θ)

]
Cα
n (θ) = 0. (60)

Using (59) and (60), equation (58) reduces to

d

dρ

(
eν−μ2

S (ρ) ρ2

dQ

dρ

)
+
(

ω2

S (ρ) ρ2eν−μ2
− eν+μ2 L

S2 (ρ) ρ4

)
Q = 0, (61)

in which L = (� − 1) (� + 2). By introducing Q = Z�(−),
one can find that this equation converts to

d2�(−)

dρ2∗
+
(

ω2 − g (ρ)

[
� (� + 1)

ρ2 − 2

ρ2

−Z
d

dρ

(
g (ρ)

Z2

dZ

dρ

)])
�(−) = 0, (62)

where Z = ρ
√
S(ρ) and ρ∗ = ∫ e−ν+μ2dρ = ∫ g−1 (ρ) dρ

is the tortoise coordinate. Therefore, this is the master wave
equation for axial gravitational perturbations of black holes
conformally related to the Schwarzschild-adS spacetime by
the conformal factor S(ρ). One may note that for S(ρ) = 1
(or Z = ρ), this equation reduces to

d2�(−)

dρ2∗
+
[
ω2 − g (ρ)

(
� (� + 1)

ρ2 − 6M

ρ3

)]
�(−) = 0, (63)

which is the wave equation of axial perturbations of the
Schwarzschild-adS black holes [61], as it should be.

Appendix B: Electromagnetic perturbations of Weyl
gravity

Here, we consider the evolution of the Maxwell field in Weyl
gravity with the line element (4). The evolution is governed
by Maxwell equations

∇μF
μν = 0; Fμν = Aν,μ − Aμ,ν, (64)

where Fμν is the Faraday tensor and Aμ is the electromag-
netic potential. The four-potential Aμ can be expanded in
4-dimensional vector spherical harmonics as [61]

Aμ (t, r, θ, ϕ) =
∑
�,m

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0
0

a(t,r)
sin(θ)

∂ϕY�m (θ, ϕ)

−a (t, r) sin (θ) ∂θY�m (θ, ϕ)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

f (t, r)Y�m (θ, ϕ)

h(t, r)Y�m (θ, ϕ)

k(t, r)∂θY�m (θ, ϕ)

k(t, r)∂ϕY�m (θ, ϕ)

⎤
⎥⎥⎦

⎞
⎟⎟⎠ , (65)

where Y�m (θ, ϕ) denotes the spherical harmonics. The first
term in the right-hand side has parity (−1)�+1 (axial sector of
the expansion) and the second term has parity (−1)� (polar
sector of the expansion). By substituting this expansion into
the Maxwell equations (64), one can find a second-order dif-
ferential equation for the radial part as (see [56] for details
of calculations)

d2� (r∗)
dr2∗

+
[
ω2 − Ve (r∗)

]
� (r∗) = 0, (66)

Ve (r∗) = f (r)
� (� + 1)

r2 , (67)

for both axial and polar sectors, and r∗ = ∫ f −1 (r) dr being
the tortoise coordinate. The mode � (r∗) is a linear combi-
nation of the functions a(t, r), f (t, r), h(t, r), and k(t, r),
but a different functional dependence based on the parity; for
axial sector the mode is given by � (r∗) = a(t, r) whereas
for polar sector it is � (r∗) = r2

�(�+1)
[∂t h(t, r) − ∂r f (t, r)].
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