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Abstract In a series of recent papers, we have introduced
an object that was constructed on the connection but which
was proven to be a tensor: this object, thus called tensorial
connection, has been defined and some of its properties have
been given. In the present paper, we intend to present all the
results found so far, complementing them with some new
ones, in a systematic and organic manner.

1 Introduction

General covariance is the principle stating that any geometry
must be built while respecting some fundamental symme-
tries of the background. Hence, for the space-time general
covariance requires the invariance under the most general
coordinate transformation, and the objects that comply with
this property are the tensors. Nevertheless, differentiation is
not compatible with general covariance unless an additional
structure called connection is introduced. This connection
is defined in terms of a transformation whose non-tensorial
character is specifically given so as to compensate the non-
tensorial character of partial differentiation, thus resulting
into an improved derivation that does respect general covari-
ance. To interpret these facts, we may think that non-linear
coordinates produce artificial distorsion in the tissue of the
space-time which must be straightened before taking the
incremental ratio needed to calculate the derivative, and this
straightening is performed by the connection. Thus, the con-
nection is where we find information about non-linear distor-
sions of the space-time, like inertial acceleration. And when
such distorsions are not artifacts of non-linear coordinates
but real curvatures of the space-time, then the accelerations
are not due to inertial forces but to gravitational ones.

The introduction of ortho-normal bases of tetrad fields
brings some novelty into this picture, because tetrads are
defined by two transformations. As said above, since they are
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vectors, their components have to respect general covariance
under coordinate transformation. But additionally, they are a
basis, so they can be linearly recombined with some Lorentz
transformation. Hence, the existence of bases of tetrads
allows to have general covariance under coordinate trans-
formations converted into general covariance under Lorentz
transformations, or passive transformations converted into
active transformations. In doing so, the connection converts
into the spin connection, being a vector for passive transfor-
mations with non-tensor character for active transformations.
It is within the spin connection that now lies all information
about non-linear distorsions, giving inertial accelerations.
And in the curvature of space-time still are accelerations due
to gravity.

The specific form of the active transformations codified
through the Lorentz group makes it possible to search for
representations different from the real one and the other pos-
sibility is to look for representations that are complex, called
spinorial. Spinorial transformations are what can define
spinorial fields. Derivatives can also be defined in such a
way as to respect spinorial covariance if spinorial connec-
tions are introduced. Spinorial connections can be defined
in most general terms. Nevertheless, they always admit one
decomposition in terms of the spin connection that is unique
up to the addition of specific extra fields, as we are going
to discuss next. Just the same, the spinorial connection is
where we find the information about inertial acceleration.
In its curvature is where we eventually find the information
about accelerations due to gravitation.

This is the general background. However, very recently
some development was added in view of the so-called polar
form of spinorial fields. Spinor fields are almost always
treated in terms of their plane-wave form, but clearly a gen-
eral mathematical study is possible [1–21]. In such a gen-
eral mathematical study, having spinors in polar form means
to have their components written as a real module times a
unitary complex phase while still respecting their spinorial
covariance, with the advantage that the spinor components
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are re-arranged so to manifest what are the degrees of free-
dom [22–24]. But there is more to it, since in polar form all the
components that are not degrees of freedom concur together
with the spin connection to form quantities that, while con-
taining the same information of the connection itself, never-
theless are true tensors. Such a tensorial connection encodes
information of a covariant type of inertial acceleration, since
it is generally non-zero but nevertheless curvatureless [25].
And one can imagine it as some sort of tension of the space-
time that may have effects like the localization of matter
distributions [26].

In [25,26] we have argued that an inertial acceleration that
can never be vanished by a choice of reference system may
not necessarily be a strange concept since we already know
of the existence of an angular momentum that can never be
vanished by a choice of frame. This is the spin, and covariant
inertial accelerations may simply be sorts of accelerations
related to spin. Neither can be vanished by choice, both seem
defined only for a spinor. However, in the following we will
show that it is possible to define tensorial connections in more
general circumstances.

2 Fundamental geometry

To begin, we recall the general mathematical concepts.
The space-time metric gμν is diagonalized in terms of the

tetrad fields eμ
a according to eμ

a eν
bgμν = ηab where ηab is the

Minkowski metric. Matrices γ a verify the relations given by
{γ a, γ b} = 2Iηab (known as Clifford algebra).

In terms of all these objects, it is possible to define

(σab)
i
j = δiaη jb − δibη ja (1)

as the generators of the Lorentz algebra in real representation,
so that with parameters θab = −θba we build

� = e− 1
2 θabσ

ab
(2)

as Lorentz transformation in real representation. In very sim-
ilar ways we can prove that

σ ab = 1

4

[
γ a, γ b

]
(3)

are the generators of the Lorentz algebra in complex repre-
sentation, with the same θab = −θba we get

S = e− 1
2 θabσ

ab
(4)

as Lorentz transformation in complex representation, or
spinorial representation, and it is easy to prove that this repre-
sentation is reducible since all generators commute with the
π matrix defined as 2iσ ab = εabcdπσ cd (we stress that this
matrix is what is usually indicated as a gamma with an index
five which is meaningless in the space-time, and therefore
we prefer to use a notation with no index).

Clifford matrices verify the relationships

γ iγ jγ k = γ iη jk − γ jηik + γ kηi j + iεi jkqπγ q (5)

from which it is possible to prove that

{γ a, σ bc} = iεabcdπγ d (6)

[γ a, σ bc] = ηabγ c − ηacγ b (7)

and then deduce that also

{σ ab, σ cd} = 1

2
[(ηadηbc − ηacηbd)I + iεabcdπ] (8)

[σ ab, σ cd ] = ηadσ bc − ηacσ bd + ηbcσ ad − ηbdσ ac (9)

are valid as general geometric spinorial matrix identities.
Given the spinor field ψ its complex conjugate spinor field

ψ is defined in such a way that bi-linear quantities


ab = 2ψσ abπψ (10)

Mab = 2iψσ abψ (11)

with

Sa = ψγ aπψ (12)

Ua = ψγ aψ (13)

as well as

� = iψπψ (14)

� = ψψ (15)

are all real tensors and they verify


ab = −1

2
εabi j Mi j (16)

Mab = 1

2
εabi j
i j (17)

together with

Mab� − 
ab� = U j Skε jkab (18)

Mab� + 
ab� = U[a Sb] (19)

alongside to

MikU
i = �Sk (20)


ikU
i = �Sk (21)

Mik S
i = �Uk (22)


ik S
i = �Uk (23)

and with the orthogonality relations

1

2
MabM

ab = −1

2

ab


ab = �2 − �2 (24)

1

2
Mab


ab = −2�� (25)
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and

UaU
a = −SaS

a = �2 + �2 (26)

UaS
a = 0 (27)

as it is straightforward to demonstrate, called Fierz identities,
and which will turn out to have a great importance in the
classification of spinors we will do in the following.

From the metric, we define the symmetric connection as
usual with �σ

αν from which, with the tetrads, we define the
spin connection �dbπ = ηadξ

ν
b ξaσ (�σ

νπ − ξσ
i ∂πξ iν) which

turns out to verify �abπ = −�baπ in general. The spinorial
connection can always be written according to the form

�μ = 1

2
�ab

μσ ab + iq AμI + pCμI (28)

in terms of two real vectors still totally general.
To see this, compute the spinorial covariant derivatives

of the gamma matrices and exploit their constancy to get
the relation γ c�caμ − [�μ, γ a] = 0 and assume the gen-
eral expression �μ = a�acμσ ac + Aμ to plug into it. Once
this is done and using (7) one gets that a = 1/2 and that
the vectorial matrix must verify [Aμ, γ s] = 0 which tells
that it has to commute with all gamma matrices. Because
the gamma matrices and their products generate the space
of complex 4 × 4 matrices, then Aμ commutes with every
matrix, and this implies that in its most general form it is pro-
portional to the identity matrix. The proportionality factor is
in general complex and therefore it is given with the form
Aμ = (iq Aμ + pCμ)I in terms of two real vectors that are
so far still undetermined. However, it is easy to observe that
Aμ is the gauge field arising from a unitary phase transfor-
mation with charge q and that Cμ is the field arising from
conformal transformations σ of weight p in general. This
demonstrates that the spinor connection is written as in (28)
in the most general way. Therefore, the most general spinor
connection naturally contains a term describing the structure
of the space-time, another term describing structure of the
gauge potential and one term describing the scaling proper-
ties of the space-time.

For the dynamics, we will be focusing on the vectorial
field equations given by

∇σ (∂V )σμ + M2Vμ = �μ (29)

with (∂V )σμ = ∂σVμ − ∂μVσ as usually done. We will also
be interested in the spinor differential field equations

iγ μ∇μψ − XWμγ μπψ − mψ = 0 (30)

with X the spinor–torsion coupling constant and Wμ the tor-
sion axial-vector added for generality. Notice that for discrete
transformations ψ → πψ and m → −m equations (30) are
invariant. Finally we also notice that conformal invariance
would require m = 0 to hold identically.

It is important to notice that if we multiplying on the left
by I, γ a , σ ab, γ aπ , π and by the complex conjugate spinor
field, splitting real and imaginary parts gives

i

2
(ψγ μ∇μψ − ∇μψγ μψ) − XWσ S

σ − m� = 0 (31)

∇μU
μ = 0 (32)

i

2
(ψγ μπ∇μψ − ∇μψγ μπψ) − XWσU

σ = 0 (33)

∇μS
μ − 2m� = 0 (34)

i(ψ∇αψ − ∇αψψ) − ∇μM
μα

−XWσ Mμνε
μνσα − 2mUα = 0 (35)

∇α� − 2(ψσμα∇μψ − ∇μψσμαψ)

+2X�Wα = 0 (36)

∇ν� − 2i(ψσμνπ∇μψ − ∇μψσμνπψ)

−2X�Wν + 2mSν = 0 (37)

(∇αψπψ − ψπ∇αψ) − 1

2
∇μMρσ ερσμα

+2XWμMμα = 0 (38)

∇μSρεμραν + i(ψγ [α∇ν]ψ − ∇[νψγ α]ψ)

+2XW[αSν] = 0 (39)

∇[αU ν] + iεανμρ(ψγ ρπ∇μψ − ∇μψγ ρπψ)

−2XWσUρεανσρ − 2mMαν = 0 (40)

as it is direct to see, and called Gordon decompositions.

3 The polar forms

In treating spinors, a possible way to simplify the study is to
write them in polar form, where each component is expressed
as a module times a unitary phase, while still respecting their
spinorial covariance. In doing this, a first advantage is that
the spinor formalism is converted into one in which all rele-
vant quantities are real tensors, but more importantly, of all
these quantities it is possible to tell apart the physical degrees
of freedom from all other non-physical components. It may
then be interesting to ask whether a similar decomposition is
possible also for fields that are not spinors, as for instance for
the case of vectors. Although vectors are already real, so that
there is no actual polar form, nevertheless it would still be
very interesting to write them in a way that isolates all of the
degrees of freedom from all the non-physical components.

We will therefore proceed in recalling the polar decompo-
sition for spinors as done in [22–24]. Then we apply when-
ever possible the same arguments for vectors.
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3.1 Spinor fields

We split two cases, when both � and � are identically equal
to zero and when at least one of them is not.

In the latter case, called regular, identity (26) tells that Ua

is time-like, and so we can always perform up to three boosts
in order to bring its spatial components to vanish identically.
Then it is in general always possible to take advantage of up
to two rotations to bring the space part of Sa aligned along
the third axis, eventually employing the last rotation to iso-
late a unitary phase. Because the unitary phase has already
been isolated, gauge transformations have no effect that can-
not be already attributed to a rotation around the third axis.
However, conformal transformations σ can also be used for
the normalization of the overall spinor field. If we call the set
of all Lorentz transformations times the gauge phase collec-
tively S−1 then it is easy to see that the most general spinorial
field can always be written in terms of the polar form

ψ = φe− i
2 βπ S

⎛

⎜
⎜
⎝

1
0
1
0

⎞

⎟
⎟
⎠ (41)

with β and φ called Yvon–Takabayashi angle and module,
respectively. With conformal transformations σ we may pick
the scale factor to be σ = φ2/3 and by including also the scale
factor within S−1 then we would reduce to

ψ = e− i
2 βπ S

⎛

⎜
⎜
⎝

1
0
1
0

⎞

⎟
⎟
⎠ (42)

in terms of the Yvon–Takabayashi angle alone. It is very
important to remark that in the most general case these
spinors are fields, that is point-dependent, and therefore
any transformation bringing them in polar form must be
local transformations, so also point-dependent. When we will
compute the derivatives, the local parameters in the transfor-
mations will give rise to connection-like terms.

For the case of the regular spinorial fields, we have that
the two antisymmetric tensorial bi-linear quantities given by

ab and Mab can always be written according to


ab = 2φ2(cos βu[asb] − sin βu j skε
jkab) (43)

Mab = 2φ2(cos βu j skε
jkab + sin βu[asb]) (44)

in terms of the two vectors defined as

Sa = 2φ2sa (45)

Ua = 2φ2ua (46)

and with the scalars

� = 2φ2 sin β (47)

� = 2φ2 cos β (48)

having the consequence that all the Fierz identities reduce to
be trivial with the exception of the normalization relation-
ships and the orthogonaly relationships given by

uau
a = −sas

a = 1 (49)

uas
a = 0 (50)

as it is easy to see. These last expressions also show that
the two vectors are not free leaving the Yvon–Takabayashi
angle and the module as the only two physical degrees of
freedom, and that Yvon–Takabayashi angle and module are
a pseudo-scalar and a scalar. Notice that the spinorial field in
its polar form is fixed up to reversals of the third axis and up
to discrete transformations β → β + π as it is quite clear.
We remark that the Yvon–Takabayashi angle would remain
the only physical degree of freedom, in case the module is
normalized by conformal transformations.

For the instance of regular spinor fields, recalling that we
adopted the convention of including the gauge transformation
within the S matrix, we have that

S∂μS−1 = i∂μαI + 1

2
∂μθi jσ

i j (51)

where α is the generic complex phase and θi j = −θ j i are the
six parameters of the Lorentz group. So we can define

∂μα − q Aμ ≡ Pμ (52)

∂μθi j − �i jμ ≡ Ri jμ (53)

which can be proven to be tensors and invariant under a gauge
transformation simultaneously. Phase and parameters do not
alter the information within gauge potential and spin connec-
tion, but the non-physical components of spinors encoded
by phase and parameters combine with the non-covariant
properties of gauge potential and spin connection in order to
ensure covariance of Pμ and Ri jμ eventually. For this rea-
son, expressions (52, 53) are called gauge-invariant vector
momentum and tensorial connection, and we may simply
refer to them altogether as tensorial connections. With them
we can finally compute

∇μψ =
(

− i

2
∇μβπ + ∇μ ln φI − i PμI − 1

2
Ri jμσ i j

)
ψ

(54)

as spinorial covariant derivative. When conformal transfor-
mations σ are included within the S matrix

S∂μS−1 = i∂μαI + 1

2
∂μθi jσ

i j − 3/2∂μ ln σ (55)

where σ is the scale factor. With pCμ = −3/2∇μ ln σ we
can still assume the same (52, 53) to compute the spinor
covariant derivative. It is then given by

∇μψ = (− i
2∇μβπ − i PμI − 1

2 Ri jμσ i j
)
ψ (56)
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as spinorial conformal covariant derivative. Either way

∇μsi = R jiμs
j (57)

∇μui = R jiμu
j (58)

are general identities. From the commutators we have

qFμν = −(∇μPν − ∇ν Pμ) (59)

Ri
jμν = −(∇μR

i
jν − ∇νR

i
jμ + Ri

kμR
k
jν − Ri

kνR
k
jμ)

(60)

which tell us that the parameters defined in (51) do not gen-
erate any curvature tensor of their own, and therefore gauge
potential and spin connection transfer only physical informa-
tion into Fμν and Ri

jμν , respectively. Objects (59, 60) are the
Maxwell and Riemann curvature, and as such they encode
electrodynamic and gravitational information as usual. How-
ever, absence of physical fields, and that is vanishing of
these curvatures, does not necessarily imply the vanishing of
gauge-invariant vector momentum and tensorial connection,
which can still be different from zero in general. Hence, the
tensorial connections encode information of covariant type
about inertial and gravitational accelerations, or about iner-
tial acceleration alone when their curvatures are identically
equal to zero [25].

Plugging into (30) the polar form gives

Bμ − 2P ιu[ιsμ] + (∇β − 2XW )μ + 2sμm cos β = 0

(61)

Rμ − 2Pρuνsαεμρνα + 2sμm sin β + ∇μ ln φ2 = 0 (62)

with R a
μa = Rμ and 1

2εμανιRανι = Bμ and which can be
proven to imply the spinor differential field equations, so that
(30) and (61, 62) are fully equivalent. To prove this, have the
polar form, together with all bi-linear quantities, plugged into
decompositions (36, 37), getting

1

2
∇α ln φ2 cos β − (

1

2
∇αβ − XWα) sin β

+Pμ(uρsσ ερσμα cos β + u[μsα] sin β)

+1

2
R μ

αμ cos β + 1

4
Rρσμερσμα sin β = 0 (63)

1

2
∇ν ln φ2 sin β + (

1

2
∇νβ − XWν) cos β

+Pμ(uρsσ ερσμν sin β − u[μsν] cos β)

−1

4
Rρσμερσμν cos β + 1

2
R μ

νμ sin β + msν = 0 (64)

which can be diagonalized into

1

2
εμανιR

ανι − 2P ιu[ιsμ]
−2XWμ + ∇μβ + 2sμm cos β = 0 (65)

R a
μa − 2Pρuνsαεμρνα

+2sμm sin β + ∇μ ln φ2 = 0 (66)

while the converse is proven by considering these as well as
the general identities given by

2σμνuμsνπψ + ψ = 0 (67)

isμγ μψ sin β + sμγ μπψ cos β + ψ = 0 (68)

to work out

iγ μ∇μψ − XWσ γ σ πψ − mψ

= [iγ μPρuνsαεμρνα

+P ιu[ιsμ]γ μπ + Pμγ μ (69)

−isμγ μm sin β − sμγ μπm cos β − mI]ψ = 0 (70)

showing that the spinorial differential field equations are
valid in polar form and therefore in general. Notice that the
spinor equation, being 4 complex equations, amounts to 8
real equations, which are as many as those provided by the
2 vector equations. Such pair of vector equations give all
derivatives of the two physical degrees of freedom, given by
Yvon–Takabayashi angle and module. It is also important to
remark that β → β + π requires that m → −m in order
for (61, 62) to be invariant. We notice also that for confor-
mal invariance the module must be normalized to unity and
m = 0 with the consequence that (61) would remain one
field equation while (62) would convert into one constraint.
We observe that in (61, 62) the tensorial connections act as
some tension of the space-time which may have effects on
Yvon–Takabayashi angle and module, even if in some cases
it is not rich enough to give rise to either electrodynamics or
gravitation at all [26].

In the complementary case, called singular, by writing
M0K = EK and MI J = εI J K BK identities (24, 25) convert
into E2 = B2 and E · B = 0 so that we can always employ
boosts and rotations to bring the two three-dimensional vec-
tors aligned along given axes. By collecting the gauge phase
and Lorentz transformations into a single S−1 we can write
the most general spinorial field in this case as

ψ = S

⎛

⎜⎜
⎝

cos θ
2

0
0

sin θ
2

⎞

⎟⎟
⎠ (71)

with θ a generic angle still unspecified. Notice that there is
no way to factor it out from the structure of the spinor.

For singular spinors, the only relation we have is

Sa = − cos θUa (72)

showing that θ is a function that describes the projection of
the spin axial-vector onto the velocity vector, and thus the θ

angle can be interpreted as the helicity. It may be interesting
to recall that this type of spinor is named flag di-pole spinor,
when subject to the constraint θ = ±π/2 it is the Majorana
spinor and θ = 0, π it is the Weyl spinor.
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For singular spinor fields, we still have that (51) holds,
along with (52, 53), so that we can still write the spinorial
covariant derivative according to

∇μψ =
(

− i

2
∇μθSγ 2S−1π − i PμI − 1

2
Ri jμσ i j

)
ψ (73)

but we see that in it a strange Sγ 2S−1 term has appeared
and which seems to break Lorentz symmetry by selecting
the second axis as privileged. We remark that this θ angle is
supposed to be a physical degree of freedom for flag di-pole
spinors, and this adds another weird feature because as such it
can freely move from all possible values ranging from those
defining a Majorana spinor to those defining a Weyl spinor.
Thus it seems always possible for a Weyl spinor to mutate into
a Majorana spinor, although such an occurrence has never
been observed to happen. A way out of this situation may
be to assume θ constant, which would remove the frame-
dependent term in the derivative while forbidding a Weyl
spinor and a Majorana spinor to transmute into one another.
However, in this case, a flag di-pole remains without any
physical degree of freedom.

So, employing the Gordon decompositions to get polar
field equations would result into constraints.

3.2 Vector fields

Compared to the case of spinors, where many bi-linear quan-
tities and their identities helped in classifying fields, in the
case of vector we lack all this, so the classification will turn
out to be different, and instead of a classification of different
types of spinors, it will results into a splitting into different
behaviour of the vector field. We thus split three cases, given
by V 2 > 0, V 2 = 0 or V 2 < 0 in general.

In the case V 2 > 0 we can recover the same derivation
done above, because since V a is time-like then it is always
possible to perform up to three boosts to bring its spatial
components to vanish. Collecting these transformations into
�−1 we can always write the vector in polar form

V = φ�

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ (74)

with φ as module, which is proven to be scalar, and it is
the only physical degree of freedom in general. Conformal
transformations remove the module, leaving such a vector
with no physical degree of freedom. In the case V 2 = 0
it is always possible to perform rotations to align the space
part of the vector along the third axis. Because for such case
the zeroth and the third components are equal, they can be
factored and then a boost along the third axis can be used to
normalize them to unity. So in this case

V = �

⎛

⎜⎜
⎝

1
0
0
1

⎞

⎟⎟
⎠ (75)

with no physical degree of freedom. In the case V 2 < 0
it is always possible to perform up to three boosts to bring
the time components to zero and some rotations to have the
space part aligned along the third axis. By collecting the
transformations into �−1 the vector in polar form is

V = φ�

⎛

⎜⎜
⎝

0
0
0
1

⎞

⎟⎟
⎠ (76)

with φ as the module, still a scalar, and the only physical
degree of freedom. A conformal transformation removes the
module by normalizing it to unity, and therefore there is no
physical degree of freedom left in the vector.

In the following, it will be simpler to define

V a = φva (77)

in terms of vb such that v2 = 1, v2 = 0 or v2 = −1 for the
three cases above since it is just the normalized vector.

The in any of these cases we have that we can write

(�)ik∂μ(�−1)k j = ∂μθ i j (78)

where θ i j = θ ikηk j are the six parameters of the Lorentz
group as above. Therefore we can define

∂μθ i j − �i
jμ ≡ Ri

jμ (79)

again as above. So as before (53) is the expression of the
tensorial connection. With it we can compute

∇μV
a = (δab∇μ ln φ − Ra

bμ)V b (80)

as covariant derivative. Then we have

∇μva = Rbaμvb (81)

as general identities. The commutator still gives

Rα
ρμν =−(∇μR

α
ρν −∇νR

α
ρμ + Rα

kμR
k
ρν − Rα

kνR
k
ρμ)

(82)

as the expression for the Riemann curvature in general.
When (29) we plug the polar form we get

(gαν∇2φ − ∇ν∇αφ

−Rν∇αφ + Rνασ ∇σ φ + Rν[ασ ]∇σ φ

+∇σ R
ν[ασ ]φ + Rσ [απ ]Rν

σπφ + M2gανφ)vν = �α

(83)

as the polar form of the field equations for vector fields.
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4 Non-locality

Thus far, we have worked out the details of the general theory.
We have seen that for spinor fields as well as for vector fields,
it is possible to employ active local Lorentz transformations,
possibly complemented by gauge shifts, and conformal scal-
ings, in order to write the most general of these fields in
special forms, called polar forms. These polar forms have
the advantage of isolating the physical degrees of freedom
in order to keep them separated from the non-physical com-
ponents, which can be used together with the connections
to define objects that still contain the same information of
connections but which are also proven to be tensors. Such
tensorial connections, defined by (52, 53), contain informa-
tion about a covariant type of accelerations. They may remain
non-zero even if their curvatures vanish identically. In such
a case, they contain information about a covariant type of
sourceless accelerations since no physical fields are present.
Just the same, there are physical effects in these covariant
sourceless accelerations, which can be pictured as some ten-
sion of the space-time that may have effects even if not rich
enough to generate curvatures that can couple to a source
[26].

A specific case of such effects can be seen after we have
manipulated field equations (30) and (29) written in their
polar form. To this purpose, we consider (30) and apply a
second time the derivative so to go at the second-order deriva-
tive, where the polar form gives

∇μ(φ2∇μβ/2) − 1
2 (∇μKμ + KμGμ)φ2 = 0 (84)

|∇β/2|2 − m2 − ∇2φ/φ + 1
2 (∇μGμ + 1

2G
2 − 1

2 K
2) = 0

(85)

with vector potential Gμ = −Rμ + 2Pρuνsαεμρνα and
with axial-vector potential Kμ = 2XWμ − Bμ + 2P ιu[ιsμ]
defined for simplicity. We remark that the field equation for
the Yvon–Takabayashi angle (84) is in the form of a conti-
nuity equation while the field equation for the module (85)
has the structure of the Hamilton-Jacobi equation. We could
do the same procedure for (29) by extracting its primary con-
straint M2∇V = ∇� and substituting it back into the original
field equation (29) therefore getting

∇2Vμ − RμρVρ + M2Vμ = �μ + M−2∇μ∇� (86)

which in polar form is

(gσα∇2φ − 2Rσαμ∇μφ − ∇μR
σαμφ − Rσ

νμR
ανμφ

−Rσαφ + M2gσαφ)vα = �σ + M−2∇σ ∇� (87)

in general. In particular, contracting with the vector

∇2φ + (vσ R
σ
νμvαR

ανμ + vσ vαR
σα + M2)φ

= −(vσ �σ + M−2vσ ∇σ ∇�) (88)

which is an equation that is similar to (85).
Taking (85) without internal dynamics nor torsion and

considering only the tensorial connection Ri jμ and taking
(88) in the free case we have that they become

−∇2φ/φ = m2 + 1

2
(∇μR

μ − 1

2
R2 + 1

2
B2)

−∇2φ/φ = M2 + vσ R
σ
νμvαR

ανμ + vσ vαR
σα (89)

isolating the quantum potential −∇2φ/φ in both expressions.
Since the tensorial connection Ri jμ cannot be vanished in
general, then there will always be corrections to the mass
term, keeping the quantum potential from vanishing. The
presence of the non-trivial quantum potential makes up for
the non-local properties in the dynamics of elementary par-
ticles. And while this is known in the case of spinors now we
see that the same is true for vectors.

5 Conclusion

In this paper, we have recalled recent developments on the
role of the polar decomposition of spinor fields for the proce-
dure of having the components re-arranged to keep isolated
real degrees of freedom from the components due to the non-
trivial structure of the tetradic frame, and we have seen that
these last can be combined with the spin connection to form
quantities that contain the same information of the connec-
tion but which are tensors. Such tensorial connection encodes
information about a covariant type of acceleration that can be
either inertial if the curvature vanishes or inertial and gravi-
tational if the curvature is generally different from zero. Very
interestingly, the tensorial connection may remain non-zero
even if its curvature vanishes, so there can be effects even for
accelerations due to no external source. They can be regarded
as tensions of space-time itself. This construction is now very
well-known in the case of the spinorial fields.

In this paper we have extended it to the case of vectorial
fields. We have found a way to split the real degrees of free-
dom from the components due to the tetradic frame and we
had these last combined with the spin connection to form the
tensorial connection exactly as above.

The difference between spinor and vector fields is that the
former are complex and thus also the gauge-invariant vector
momentum could eventually be defined.

The form of a relativistic version of the quantum potential
has been found for the second-orde r derivative field equa-
tions in both situations.
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are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
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