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Abstract Kerov Hamiltonians are defined as a set of com-
muting operators which have Kerov functions as common
eigenfunctions. In the particular case of Macdonald polyno-
mials, well known are the exponential Ruijsenaars Hamilto-
nians, but the exponential shape is not preserved in lifting to
the Kerov level. Straightforwardly lifted is a bilinear expan-
sion in Schur polynomials, the expansion coefficients being
factorized and restricted to single-hook diagrams. However,
beyond the Macdonald locus, the coefficients do not celebrate
these properties, even for the simplest Hamiltonian in the set.
The coefficients are easily expressed in terms of the eigenval-
ues: one can build one for each arbitrary set of eigenvalues
{ER}, specified independently for each Young diagrams R. A
problem with these Hamiltonians is that they are constructed
with the help of Kostka matrix instead of defining it, and thus
are less powerful than the Ruijsenaars ones.

1. Symmetric polynomials like Schur and Macdonald poly-
nomials play an increasingly important role in string theory
studies. Modern theory of 6d models and AGT relations [1–
3] is fully formulated in these terms [4–14], as does [15–
21] its emerging extension to Chern–Simons theory [22,23]
and knot polynomials [24–31]. This adds to the prominent
role these polynomials played in description of integrable
structures, i.e. of the properties of generic non-perturbative
partition functions. At the same time, the theory of Mac-
donald polynomials per se [32] still remains more a piece
of art than a solid construction from the first principles. A
part of the problem here is an emphasis on similarity with
more simple Schur polynomials, which are simultaneously
characters of linear groups GLN and thus have a clear repre-
sentation theory interpretation. The Macdonald polynomials
preserve many of these connections to representation theory,
but not all. Moreover, the simplest algebra to which they are
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truly related [4,5,33–35] is the enormously big DIM algebra
[36,37], however they are not generic in this framework, but
instead occupy just a small corner in the set of still under-
investigated MacMahon characters and 3-Schur functions
[38,39]. Thus the true group theory meaning of Macdon-
ald polynomials remains obscure, but concentration on the
representation properties overshadows other aspects of their
story, which can finally be a big mistake.

From this point of view, it is important that Macdonald
polynomials possess a generalization not only in the MacMa-
hon (DIM) direction, but also in a seemingly different one, to
the Kerov functions [40] (see [41–45] for early applications
and [46] for a recent review). The Kerov functions break
direct links to representation theory and leave only those to
Young diagrams: multiplication of the Kerov functions does
not respect peculiar representation theory zeroes, e.g.

˜Ker[4] · ˜Ker[1,1] = α̃ ˜Ker[5,1] + β̃ ˜Ker[4,2]
+γ̃ ˜Ker[3,3] + δ̃ ˜Ker[4,1,1] (1)

The two Kerov–Littlewood–Richardson numbers β̃ and γ̃

vanish only at the Macdonald locus, since the representations
of GLN associated with [4, 2] and [3, 3] do not appear in the
product of [4] and [1, 1]. However, as symmetric polynomi-
als, the Kerov functions are the most natural objects, defined
as a natural deformation of Schur polynomials induced by
a minor change of the scalar product in the space of time-
dependent functions1

1 Throughout this paper, we use the standard group/knot theory
notation: for the Young diagram � = [

δ1 ≥ δ2 ≥ · · · ≥ δl� > 0
] =

[

. . . , 2, . . . , 2
︸ ︷︷ ︸

m2

, 1, . . . , 1
︸ ︷︷ ︸

m1

]

, the size (level) is |�| = ∑l�
i=1 δi =

∑

a ama , the time-monomial is p� := ∏l�
i=1 pδi , and combinatorial

factor is z� = ∏

a a
mama !. Also, {x} := x − x−1. We deal with

the Schur, Macdonald polynomials and the Kerov functions, which are
symmetric polynomials of variables xi as functions of time variables
pk := ∑

i x
k
i , they are labeled by Young diagrams, we use the notation

χR{p} = SchurR{p} for the Schur polynomials.
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〈

p�

∣

∣

∣p�′
〉

= z� · δ�′,� · g� (2)

from gk = 1 to gk �= 1. Moreover, considering gk as a new
set of time variables, the Macdonald locus can be treated
just as a counterpart of the topological locus (a special point
in the space of time variables, where the Schur polynomials
reduce to the quantum dimensions [21]: pk = {qNk}/{qk}),
only this time it is in the space of Kerov times,

gMac
k = {qk}

{tk} (3)

More exactly, a pair of Kerov functions is defined as triangu-
lar combinations of Schur polynomials χR in two different
orderings of Young diagrams,
⎧

⎪

⎨

⎪

⎩

Ker(g)R {p} = χR{p} +∑

R′<R K
(g)
R,R′ · χR′ {p}

̂Ker
(g)
R {p} = χR{p} + ∑

R′∨>R∨ ̂K(g)
R′∨,R∨ · χR′ {p}

(4)

Here we denote R∨ the transposition of the Young diagram
R, the sign < refers to the lexicographical ordering. The
Macdonald–Kostka coefficients K(g)

R,R′ in (4) are defined iter-
atively in R and R′ from the orthogonality conditions
〈

Ker(g)R

∣

∣

∣Ker(g)R′
〉

= ||Ker(g)R ||2 · δR,R′ (5)

w.r.t. the scalar product (2).
Clearly, the study of Kerov functions should provide a new

dimension to understanding of the Macdonald polynomials,
and, given the now-undisputable significance of the latter,
this is already a reason. However, we hope that one day sig-
nificance of the Kerov functions will grow much further. The
very first attempts [46] demonstrate that they are more sophis-
ticated and richer than the Macdonald polynomials, and, at
the same time, possess just the same properties and can be
handled by just the same methods. This feature , direct gen-
eralization, which preserves known properties and technical
tools, but provides considerably heavier answers is a stan-
dard sign of “new physics”, which promises great insights
in the application to the old subjects (representation theory,
knots, integrability, non-perturbative calculations) and gives
hopes to new applications in some unpredictable directions.

Our main concern in this paper will be the long-standing
problem of Kerov Hamiltonians, which we do not truly
resolve, but at least explain what can be achieved easily, and
what can not. Accordingly, the presentation is split into three
parts. In Sects. 2–6, we remind some known facts about the
Kerov functions and the Macdonald Hamiltonians, putting
them in the form which we need for our purposes. Then in
Sects. 7–9, we elaborate on the particular realization of the
naive Hamiltonians (31) in the Kerov case. Finally in Sects.
10–12, we discuss the options and obstacles for construction
of truly interesting Hamiltonians, which can play in the Kerov

case the same role as peculiar exponential Ruijsenaars Hamil-
tonians play in the particular case of Macdonald polynomials.
Section 13 is a brief conclusion, summarizing what we could
and could not achieve so far. The Appendix contains useful
formulas for calculating using hook diagram Schur polyno-
mials and some illustrative examples to the main body of the
text.

2. There are two rather different approaches to the definition
of Macdonald polynomials: they are

(a) triangular linear combinations of the Schur polynomials
with respect to the lexicographic ordering of Young dia-
grams that are obtained by orthogonalization procedure
with respect to the scalar product (2) + (3), and

(b) common eigenfunctions of the Ruijsenaars exponential
Hamiltonians [47–51] Ĥm , the simplest of which is (in
fact, just this Hamiltonian is enough to fix the Macdonald
polynomials unambiguously)

Ĥ1 =
∮

dz

z
exp

(

∑

k>0

(1 − t−2k) pkzk

k

)

· exp

(

∑

k>0

q2k − 1

zk
∂

∂pk

)

(6)

Ĥ1 − 1

t2 − 1
MacR {p} =

( lR
∑

i=1

q2ri − 1

t2i

)

· MacR {p} (7)

(see [35,52–54] and Sect. 6 below for higher Hamiltoni-
ans).

The triangularity is not immediately obvious from these
Hamiltonians, at the same time, it is the triangularity (orthog-
onalization procedure), which provides the most efficient
way to calculate. On the other hand, at least one further gener-
alization is known: to generalized functions [10–14], where
the triangularity (definition (a)) is still not enough to provide
the answers [53,54], only a generalization of the Hamilto-
nians (definition (b)) works [6]. Thus, at least to approach
the issue of generalizedKerov polynomials, one needs Kerov
Hamiltonians, i.e. a deformation of (6) to arbitrary gk . This
is a need, but, of course, understanding the Hamiltonians is
a necessary step to make in the course of studying the Kerov
functions, irrespective of any particular needs or applications.

Expected or not, but the exponential shape (6) is violated
by the Kerov deformation. To find Kerov Hamiltonians, one
needs another approach. Moreover, in order to get a perspec-
tive, it is better to return to the level of Schur polynomials,
where we will find three different approaches to the problem,
and one of them will allow a direct lifting to the Kerov case.

3. For the Schur polynomials, the most natural is a set of
commuting cut-and-join operators Ŵ� [55,56], for which
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the Schur polynomials χR are the common eigenfunctions:

Ŵ�χR = ψR(�)χR (8)

The simplest non-trivial of these operators is the celebrated
cut-and-join operator [57]

Ŵ[2] = 1

2

∑

a,b

(

(a + b)pa pb
∂

∂pab
+ abpa+b

∂2

∂pa∂pb

)

(9)

hence the name for the entire family. Eigenvalues ψR(�) are
also interesting: they are characters of the symmetric groups,
with orthogonality properties
∑

R

ψR(�)ψR(�′) = z�δ�,�′

∑

�

ψR(�)ψR′(�)

z�
= δR,R′ (10)

and the Fröbenius formula

χR{p} =
∑

�

ψR(�)

z�
· p� (11)

at |R| = �|, and are naturally continued to |R| > |�| by
adding the necessary number of the unit cycles to � (see
details in [55,56,58,59]).

The operators Ŵ� form a commutative ring with inter-
esting (and still not fully known) structure constants, where
W[m] for symmetric representations R = [m] form a multi-
plicative basis, i.e. W� =: ∏l�

i=1 W[δi ] : + corrections.
Unfortunately, the q, t-deformation of cut-and-join oper-

ators Ŵ even to the Macdonald polynomials is under inves-
tigated, despite these operators can seem closely related to
GLN . Indeed, the simplest realization of Ŵ� is by the matrix

derivative operator : ∏l�
i=1 Tr

(

X ∂
∂X

)δi : (the normal order-
ing here means pushing all derivatives to the right), where
the matrix X is related to the time variables via pk = Tr Xk ,
and there is no direct way to extend this definition to the
Macdonald case, nothing to say about the Kerov one. Still,
the Macdonald deformation seems to exist, but has not yet
been worked out, see [60] for a preliminary description. The
question about Kerov deformation remains open.

Deformable to the Macdonald case is the operator (6) with
q = t , but t-dependence still survives (!). Thus for the Schur
polynomials, which are independent ofq and t , this is a whole
family of operators, which is sufficient to define all of the
Schur polynomials, no higher Hamiltonians are needed.

More important, an origin of (6) remains obscure, includ-
ing the reasons why it has such a spectacular simple expo-
nential shape equivalent to describing it as a shift operator,
which makes the Macdonald polynomials out of solutions of
the difference equations. It is at best unclear, if one can expect
any difference equations for the Kerov functions. As we shall
see below in this paper, the shape (6) implies some kind of
factorization, which is violated by the Kerov deformation,

and this can explain the failure of attempts to generalize (6)
to the Kerov functions directly.

4. Fortunately, at the Schur level, there is still a third
approach, originally discussed in [61] and recently, once
again, in [62,63]. Namely, one can represent any Hamilto-
nian as a bilinear combination of the Schur polynomials:

Ĥ =
∑

X,Y

ξX,Y χX χ̂Y ⇐⇒ ĤχR {p} =
∑

X,Y

ξ H
X,Y

χX {p} χR/Y {p}

(12)

with some coefficients ξ H
X,Y

. Here we use the standard nota-

tion χ̂Y = χY

{

k ∂
∂pk

}

for the Schur polynomial depending on

time derivatives instead time variables, and the fact is that it
acts on the Schur polynomials converting them into the skew
Schur ones:

χ̂Y χR {p} = χR/Y {p} (13)

Putting all pk = 0 in this equality, one gets the orthogonality
condition χ̂Y χR

∣

∣

pk=0 = δR,Y .
Formula (13) follows from the definition of the skew Schur

polynomials,

χR {p + p′} =
∑

Y

χ{p′}χR/Y {p} (14)

and the Cauchy formula

exp

(

∑

k

zk pk p′
k

k

)

=
∑

Y

z|Y |χY {p}χY {p′} (15)

Indeed,

χR {p + p′} = exp
(
∑

k

p′
k

∂

∂pk

)

χR {p}

=
∑

Y

χY {p′}χ̂Y {p}χR {p} (16)

and comparing the r.h.s. of (14) and (16), one obtains (13).
Similarly, from the generalization of the Cauchy formula

exp

(

∑

k

zk pk p′
k

k

)

χP {p′} =
∑

Y

z|Y |χY/P {p}χY {p′} (17)

it follows that

χ̂Y/PχR {p} =
∑

Q

NY
PQχR/Q {p} (18)

where NY
PQ are the Littlewood–Richardson coefficients.

The r.h.s. of (12) is a bilinear combination of the Schur
and skew Schur polynomials, and one needs to adjust ξX,Y so
that the r.h.s. is again χR {p}. It is not that easy, for instance, if
one puts ξX,Y = δX,Y , then the r.h.s. is

∑

X χX {p} χR/X {p} =
χR {2p} �= χR{p}. Looking at the expansion coefficients ξX,Y

of either the cut-and-join operators or the Ruijsenaars Hamil-
tonians, one can observe a peculiar hook structure. For the
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case of Ŵ , see [61], and now we show how this works [62]
for (6). Applying the Cauchy formula (15) (see [64] for a
recent review) to the two exponentials in (6), one gets

ξ H1
X,Y

= χX {pk = 1 − t−2k} · χY {pk = q2k − 1} · δ|X |,|Y |
(19)

Note that, in accordance with this formula, ξ H1
X,Y

is non-
vanishing only if the two Young diagrams X and Y are of
the same size, and that ξ is factorized into the X - and Y -
dependent pieces. Additionally [62], at the peculiar locus
pk = {tk}, the Schur polynomials are non-vanishing only
for the single-hook diagrams X = [a + 1, 1b]:
χX

{

pk = {tk}
}

=
∑

Z⊂X

χX/Z {pk = tk} · χZ {pk = −t−k}

=
∑

Z⊂X,Z ′
N X

Z ,Z ′ χZ ′ {pk = tk} · (−1)|Z |χ
Z∨ {pk = t−k}

=
∑

a,b

N X
[1b ],[a]

ta · (−1)bt−b

=
∑

a,b

(−)b{t} · ta−b · δX,[a+1,1b] (20)

where we used that χX/Z = ∑

Z ′ N X
Z ,Z ′ χZ ′ and [a] ⊗ [1b] =

[a, 1b] ⊕ [a + 1, 1b−1] for the decomposition of the ten-
sor product of representations of the linear group. Here Z∨
denotes the transposition of the Young diagram Z .

Substituting (20) into (19), one obtains

ξ H1
X,Y

=
∑

a,b,c,d

{q}{t} · (−)b+d · q
2c+1

t2b+1

·δa+b−c−d · δX,[a+1,1b] · δY,[c+1,1d ] (21)

i.e.

t

q
· Ĥ1 − 1

{q}{t} χR

= t2

q2 − 1
· Ĥ1 − 1

t2 − 1
χR = χ[1]χR/[1]

+q

t

(

t χ[2] − χ[1,1]
t

)(

q χR/[2] − χR/[1,1]
q

)

+
(q

t

)2(

t2χ[3] − χ[2,1] + χ[1,1,1]
t2

)

×
(

q2χR/[3] − χR/[2,1] + χR/[1,1,1]
q2

)

+
(q

t

)3(

t3χ[4] − t χ[3,1] + χ[2,1,1]
t

− χ[1,1,1,1]
t3

)

×
(

q3χR/[4] − q χR/[3,1] + χR/[2,1,1]
q

− χR/[1,1,1,1]
q3

)

+ · · ·
(22)

Note that χ[2,2] and χR/[2,2] are absent in the last line.

For q = t , there are interesting sum rules saying that
the r.h.s. is proportional to χR . For q �= t , this remains true
only for antisymmetric χ[1s ]: in this case, only the last terms
in each second bracket contribute, and the q-dependence is
immediately eliminated. A non-trivial sum rule is, however,
still needed:

χ[1]χ[1]s−1 −
(

χ[2] − χ[1,1]
t2

)

χ[1]s−2

+
(

χ[3] − χ[2,1]
t2 + χ[1,1,1]

t4

)

χ[1]s−3

−
(

χ[4] − χ[3,1]
t2 + χ[2,1,1]

t4 − χ[1,1,1,1]
t6

)

χ[1]s−4 + · · ·

= (1 + t−2 + · · · + t2−2s) · χ[1]s = 1 − t−2s

1 − t−2 · χ[1]s

(23)

Note that the empty diagram contributes somewhat differ-
ently, because it is associated with the zero hook, not unit,
and the corresponding contribution is removed from the l.h.s.
of (22).

5. In fact, the factorization of ξX,Y in (12),

ξ exp
X,Y

= ξ L
X

· ξ R
Y

(24)

is a general feature of exponential Hamiltonian. It takes place
at any choice of “background” times αk and βk not obligatory
equal to 1 − t−2k and q2k − 1 (what happens at these par-
ticular values is an additional restriction to the single-hook
diagrams X and Y ). One can increase the rank of the matrix
ξX,Y to an arbitrary value M by taking a sum of exponential
Hamiltonians:

Ĥ =
M
∑

i=1

∮

dz

z
exp

(

∑

k>0

α
(i)
k pkzk

k

)

exp

(

∑

k>0

β
(i)
k

zk
∂

∂pk

)

⇐⇒ ξ Ĥ
X,Y

= δ|X |,|Y | ·
M
∑

i=1

χX {pk = α
(i)
k }

·χY {pk = β
(i)
k } (25)

Another general feature of the exponential Hamiltonians
is that the “chiral components” of ξX,Y are the Schur polyno-
mials and therefore they are constrained by relations

χX {α}χ
X ′ {α} =

∑

Z∈X⊗X ′
N Z
XX ′χZ {α} (26)

More sophisticated constraints of the same origins are
imposed on ξX,Y if Ĥ is a multi-linear combination of expo-
nentials like a higher Ruijsenaars Hamiltonian.

6. The higher Ruijsenaars Hamiltonians Ĥm are acting as
bilinears with only m-hook diagrams contributing. Indeed,
as explained in [53,54], these Hamiltonians are made from
the polylinear combinations of different harmonics of the
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exponential operator

V̂m(z) = exp

(

∑

k>0

(1 − t−2mk) pkzk

k

)

· exp

(

∑

k>0

t2mk − 1

t2k − 1

q2k − 1

zk
∂

∂pk

)

=
∑

X,Y

z|X |−|Y |t (m−1)|Y |−|X |q |Y |

·χX

{

pk = {tk}
}

χY

{

pk = {tmk}{qk}
{tk}

}

· χX χ̂Y

(27)

Now χX

{

pk = {tmk }{qk }
{tk }

}

= 0 for the diagrams X with more

than m hooks and we need a generalization of (20). It can be
obtained using formulas of the Appendix. Then, the higher
Hamiltonians Ĥm are fully localized at diagrams with no
more than m-hooks,

Ĥm =
∑

X,Y :
hookX ,hookY≤m

δ|X |,|Y | · ξX,Y · χX · χ̂Y (28)

For instance, while the main Hamiltonian (6) is just Ĥ1 =
∮ dz

z V̂1(z), the second one is

Ĥ2 =
∮

dz

z
V̂2(z) − {t2}

{t}2

∮

dz1

z1

∮

dz2

z2

× (z1 − z2)
2

(z1 − t2z2)(z1 − t−2z2)
: V̂1(z1)V̂1(z2) : (29)

If we expand it into characters as before, at most two-hook
diagrams contribute in the both terms. Indeed, this is the case
for the first term because of (27). As for the second term, we
note that

: V̂1(z1)V̂1(z2)

:=
∑

X1,Y1,X2,Y2

z|X1|−|Y1|
1 z|X2|−|Y2|

2 q |Y1|+|Y2|t−|X1|−|X2|

×χX1

{

pk = {tk}
}

χX2

{

pk = {tk}
}

χY1

{

pk = {qk}
}

×χY2

{

pk = {qk}
}

· χX1
χX2

χ̂Y1
χ̂Y2

=
∑

ai ,bi ,ci ,di

(−1)d1+d2+1za1+b1−c1−d1
1 za2+b2−c2−d2

2

×q2c1+2c2+2(−t−2)b1+b2+1{q}2{t}2

×N X

[a1+1,1b1 ],[a2+1,1b2 ]
NY

[c1+1,1d1 ],[c2+1,1d2 ]
χX χ̂Y (30)

Since the tensor product of two representations associated
with 1-hook Young diagrams contains not more than 2-hook
Young diagrams, X and Y in this formula are also not more
than 2-hook. However, though in each of the two terms ξX,Y

in (12) is factorized to the product ξ L
X

· ξ R
Y

, in the sum, it is
not. One can use formulas (68) and (68) from the Appendix

in order to evaluate the first term in (29), and (30) and integral
(69) in the Appendix in order to evaluate the second term and
obtain ξX,Y .

7. After these examples, we can return to (12) and ask how
to find ξX,Y if the Hamiltonian is a priori unknown. We begin
from the question, what is the Hamiltonian if the eigenfunc-
tions �I are already known. The formal answer is

Ĥ =
∑

I

EI · �I �̂I ⇐⇒ Ĥ�I = EI · �I (31)

where �̂I is a dual operator with the property �̂I�J = δI J .
Our goal in Sects. 7–10 is to make this formula a little more
explicit for the case of symmetric functions.

This question makes sense already at the Schur level, but
we consider it directly for the Kerov functions, because there
is no much difference: in any case, we need to return to the
Schur case in Sect. 10. We remind from [46] that

KerR{p} =
∑

R′
K(g)

R,R′ · χ
R′ {p} (32)

The sum is actually triangular and goes over R′ ≤ R w.r.t.
lexicographic or inverse lexicographic ordering. The two
orderings are not equivalent beyond the Macdonald locus
(3) and define two dual sets of Kerov functions, Ker{p} and
˜Ker{p} (they actually deviate from each other starting from
level 6, where, for example, γ in (1) vanishes for Ker, but
not for ˜Ker). Concrete entries of the triangular Kostka–Kerov
matrices K(g) and ˜K(g) can be easily calculated by orthogo-
nalization method w.r.t. the scalar product (2), and they have
interesting properties as functions of Kerov times {gk}. We
assume them known, see [65] for some examples. Then what
we need are the relations

ĤKerR = ER · KerR

⇐⇒
∑

R′,X,Y

K
R,R′ ·

(

ξX,Y · χX χ
R′/Y − ER · χR′

)

= 0

(33)

If we assume that the sizes of X and Y remain the same, as
it was in the case of (6), ξX,Y ∼ δ|X |,|Y |, then at each level
n, where we have σn Young diagrams of the size n (σ ’s can
be obtained from

∑

n σnqn = ∏

n(1 − qn)−1), there are σ 2
n

coefficients ξX,Y and exactly the same number of equations
from (33). Indeed, there are σn choices for R, and the equa-
tion is a polynomial of p, i.e. the coefficients in front of all
the σn monomials p� should vanish. Actually, counting is
a little less direct, because (33) contains contributions from
ξX,Y with |X |, |Y | ≤ |R|, but ξX,Y with smaller X and Y
are defined in consideration of smaller R. In result, we have
equal numbers of variables and equations, and this means
that ξX,Y can be unambiguously deduced from (33). This
can be done for any given set of eigenvalues {ER}, i.e. we
have an

∑

n σn-parametric set of Hamiltonians ĤQ labeled

123
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essentially by Young diagrams rather than just by an integer:

ĤQ KerR = KerR · δR,Q (34)

The multiplicity nicely matches that of Ŵ operators. In terms
of these operators, the Hamiltonian (33) with a given set of
eigenvalues is

Ĥ =
∑

Q

EQĤQ (35)

An explicit example of this construction for the first three
levels can be found in the Appendix.

8. Hamiltonians ĤQ explicitly respect triangularity of the
expansion (32). To see this, introduce the set of g-independent
operators ĥQ with the property

ĥQχR = δR,Q (36)

which are actually counterparts of ĤQ for the Schur polyno-

mials, ĥQ = χ−1
Q

· ĤQ

∣

∣

∣

gk=1
. Now, the triangularity implies,

for instance, that χ[r ] in symmetric representation [r ] appears
only in the highest Kerov function Ker[r ], and does not con-
tribute to the expansion of all other KerQ at the same level
|Q| = r . Therefore

Ĥ[r ] = Ker[r ] · ĥ[r ] (37)

since it is sufficient for the operator ĥ[r ] to annihilate all
Schur polynomials, except for χ[r ] , thus it can be (and is)
independent of the g-variables. However, the next operator
Ĥ[r−1,1] should annihilate not just χ[r ] but a g-dependent
combination of χ[r ] and χ[r−1,1] , which enters Ker[r ], and thus
it needs to depend on g. However, the only Kerov func-
tion, which contains χ[r−1,1] , and differs from Ker[r−1,1] is

Ker[r ] = χ[r ] + K(g)
[r ],[r−1]χ[r−1,1] + · · · , thus

Ĥ[r−1,1] = Ker[r−1,1] ·
(

ĥ[r−1,1] − K(g)
[r ],[r−1] · ĥ[r ]

)

(38)

An explicit example of this phenomenon is the coincidence
of two underlined operators in (79), as well as the coefficient
in front of the last term in the second expression for Ĥ[2,1]. In
general, HQ are related to ĥQ by an upper triangular trans-
formation with the transposed inverse of the Kostka–Kerov
matrix:

ĤQ = KerQ ·
∑

S≥Q

K−1
SQ ĥS (39)

Indeed, then

ĤQKerR = KerQ ·
∑

S,T

K−1
SQKRT ĥSχT

= KerQ
∑

S

K−1
SQKRS = KerR · δR,Q (40)

One can substitute expansion (32) into (39), which provides

ĤQ =
∑

S,T

K−1
SQKQT · χT ĥS (41)

There is no sum over Q. Performing the sum, one gets the
identity operator
∑

Q

ĤQ =
∑

S

χS ĥS (42)

which leaves every Schur polynomial, and hence every Mac-
donald and Kerov ones, intact:
∑

S

χS ĥS KerR = KerR (43)

For the dual Kerov functions, one gets their own Hamiltoni-
ans

ˆ̃HQ = ˜KerQ ·
∑

S

K−1
SQ ĥS (44)

and there are obvious operators which convert Ker into ˜Ker
and back:

T̂Q = ˜KerQ ·
∑

S

K−1
SQ ĥS

⇐⇒ T̂Q KerR = δR,Q · ˜KerR
ˆ̃T Q = KerQ ·

∑

S

K̃−1
SQ ĥS

⇐⇒ ˆ̃T Q ˜KerR = δR,Q · KerR (45)

9. Our next task is to construct the g-independent operators
ĥS explicitly. Note that ĥ S = χ̂S + · · · with non-trivial cor-
rections, because we do not put all pk = 0 in (36), thus
the standard orthogonality condition, mentioned in the first
paragraph of Sect. 4 is not enough.

Already the very first operator ĥ[1] has quite an inspiring
form clearly seen in the first line of (79):

ĥ[1] =
∑

X

(−)|X |χX ·
⎛

⎝

∑

Y∈X∨⊗[1]
χ̂Y

⎞

⎠ (46)

Generalization is obvious, and it is indeed true: for arbitrary
Q

ĥQ =
∑

X

(−)|X |χX ·
⎛

⎝

∑

Y∈X∨⊗Q

χ̂Y

⎞

⎠ (47)

To prove (36), one can apply the Cauchy formula (15) in the
form

exp

(

−
∑

k

pk
∂

∂p′
k

)

=
∑

X

(−)|X |χX {p}χ̂
X∨ {p′} (48)

123
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to

χR {p + p′ + p′′} =
∑

Y

χR/Y {p}χY {p′ + p′′}

=
∑

Y,Q

χR/Y {p}χY/Q {p′}χQ {p′′} (49)

Then at the l.h.s., we get a shift of p′ by −p, and putting
p′ = 0 afterwards reduces it to χR {p′′}. Comparison with
the r.h.s. gives:

χR {p′′} =
∑

X,Y,Q

(−)|X |χX {p}χR/Y {p}χQ {p′′}

×
(

χ̂
X∨ {p′}χY/Q {p′}

)∣

∣

∣

p′=0
(50)

The last bracket imposes the condition thatY ∈ Q⊗X∨, and,
comparing the terms with χQ {p′′} at both sides, we obtain
the desired relation

ĥQ χR {p} =
∑

X

(−)|X |χX {p}
∑

Y∈X∨⊗Q

χR/Y {p} = δQ,R

(51)

Note that the contributing to the sum at Q = R is just the
term with X = ∅.

Equations (39) and (47) give a complete explicit construc-
tion of Hamiltonians for the Kerov functions (and in fact for
any system of symmetric functions defined by a linear trans-
formation of Schur polynomials with the matrix K).

This is, however, not yet the case when the dream came
true. The naive Hamiltonians (39) depend explicitly on the
Kostka–Kerov matrix, and can not be used to derive it. At
the same time, in the Macdonald case, there were very spe-
cial Ruijsenaars Hamiltonians (6), which do not refer to the
Kostka matrix, and could be used for its derivation. Despite
this is technically much harder than using the orthogonal-
ization procedure, still it is conceptually important that such
Hamiltonians exist. We do not discuss here what is so special
about (6) and what are the chances to find their counterparts
in the Kerov case.
10.The Ruijsenaars Hamiltonian (6) was described by a max-
imally degenerate (factorized) matrix ξX,Y , but instead it had
no free parameters in the set of eigenvalues, i.e. even in Mac-
donald case it was some peculiar combination of our Hamil-
tonians ĤQ . In fact, to get the exponential Hamiltonian (6),
one should just substitute the eigenvalues (7) into (35) and
(41) and restrict the Kostka–Kerov matrix K to the Mac-
donald locus. However, since eigenvalues depend on Q, one
needs a generalization of the sum rule (42). Our next goal
is to reveal in the simplest example of the Appendix what is
a peculiar combination of ĤQ leading to (6), and to explain
why the same factorizability (rank one) condition can not
be imposed outside the Macdonald locus (3). We can also
look at the weakened, say, rank-two condition and find what
is the corresponding extension of the Macdonald locus. In

fact, matrix ξX,Y is not of rank 1 already at level 2, see (74).
However, one can make it degenerate by adjusting one of the
three eigenvalues:

E[1,1] = 2g2
1E[2]E[1]

(g2 + g2
1)E[2] − 2g2E[1]

(52)

One can repeat this trick at level 3, then all the three eigen-
values get expressed through E[1] and E[2]:

E[1,1,1] = 3g1(g2
1 + g2)E[1]

(2g3 + 3g2g1 + g3
1)E[2] + (g3

1 − 3g2g1 − 4g3)E[1]
·E[2,1]

E[2,1] = (g2
1 + g2)E2[2] + (g2

1 − 3g2)E[2]E[1] + 2g2E2
1

(g2
1 + g2)E[2] − 2g2E1

E[3] =
3g1(g2

1 + g2)
(

(g2
1 + g2)E2[2] + (g2

1 − 3g2)E[2]E[1] + 2g2E2
1

)

(g3g2
2 − 4g2

2g
3
1 + 3g3g4

1)E[2] + (6g3g2g2
1 − 2g3g2

2 + 8g2
2g

3
1)E[1]
(53)

Moreover, at this locus (in E-space) we get quite a nice fac-
torized formula

ξ fact
[a+1,1b ],[c+1,1d ]

?= (−)c+d · E[1b+1] − E[1b]
E[1]

·(E[c+1] − E[c]) (54)

which reproduces (6) at the Macdonald locus (3) in the g-
space, but does not work beyond it, starting from level 4,
where a two-hook diagram emerges for the first time. Let us
emphasize again that (54) should be considered not freely,
but for the eigenvalues restricted by conditions (52), (53),
etc, which, on the Macdonald locus, reduce to (7). We do
not know how to deform such a simple formula as Eq. (54)
beyond the Macdonald locus, at least the Kerov functions are
not the eigenfunctions of the operators that one can build from
this ξ fact. Note also that even if (54) would be true, it satisfies
(25) with the sum upper limit M = 1 but not obligatory (26),
i.e. the necessary conditions for an exponential Hamiltonian
to exist would not be fulfilled.
11. The question, however, remains, if one can get an expo-
nential Hamiltonian with M > 1. One option here is to look
for generalizations of the Macdonald locus (3) with the hope
that some factorization properties survive. Indeed, since the
vanishing property (20) played a role in construction of expo-
nential Hamiltonians, it is instructive that it has a generaliza-
tion to other loci:

χR

{

pk = {tmk}
{tk} · {qk}

}

= 0 for hookR > m

χR

{

pk =
m
∏

a=1

{qka }
}

= 0 for hookR > 2m−1 (55)

which is a simple corollary of the general theorem: the Schur
polynomial χR is non-zero at pk = ∑N

i=1 x
k
i − ∑N

i=1 y
k
i

iff R has no more than N hooks. One of the simplest
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ways to prove this theorem is to realize such a Schur poly-
nomial as a fermionic average of a product of fermions:

χR =
〈

∏N
i=1 ψ∗(yi )ψ(xi ) · ∏N

a ψ∗−μa
ψνa

〉

, where μa are

lengths of the vertical hook legs, and νa + 1 are lengths of
the horizontal ones [66]. One can also prove the theorem
using the hook determinant formula from the Appendix.

The properties (55) support the hope for factorization. As

already mentioned in Sect. 6, the first series pk = {tmk }
{tk } ·

{qk} appears in study of the higher Ruijsenaars Hamiltonians.
The second series pk = ∏m

a=1{qka } is naturally relevant for
considerations at the Freund–Zabrodin [41] locus

gFZ
k = {qka }

{tka } (56)

in the space of Kerov times gk . We leave a detailed analysis
of this possibility for the future.
12. Another question which we mentioned in the beginning
of this text is if one can define generalized functions with
the help of ĤQ? Of course, for any system of, say, two-point
generalized functions

KerQ,Q′ {p, p′}
=

∑

(S,S′)≤(Q,Q′)
KQ,Q′|S,S′ · χS {p}χS′ {p′} (57)

defined by a triangular transformation of the bi-linear Schur
basis, there is a direct generalization of (35) and (39):

Ĥ =
∑

Q,Q′
EQ,Q′ · ĤQ,Q′ (58)

ĤQ,Q′ = KerQ,Q′
∑

(S,S′)≥(Q,Q′)
K−1

S,S′|Q,Q′ ĥS{p}ĥS′ {p′} (59)

which defines a Hamiltonian for arbitrary set of the eigen-
values:

ĤKerQ,Q′ = EQ,Q′ · KerQ,Q′ (60)

The question is, however, to find a restricted sub-set of Hamil-
tonians which could be described with no explicit reference
to the generalized Kostka–Kerov matrix K and thus could be
used to define it.

In the Macdonald case, such interesting Hamiltonians
exist [53,54], and are given by simple sums of Ruijsenaars
exponential Hamiltonians with a simple triangular mixing
of time sets {p} and {p′}. More precisely, the first one is
obtained from (6) and (19) by the transformation

Ĥ1{p} =
∑

X,Y

ξ H1
X,Y

χX {p}χ̂Y −→ Ĥ1{p, p′|Q}

=
∑

X,Y

ξ H1
X,Y

(

χX {p}χ̂Y {p} + 1

A2 · χX {p′ + εp}χ̂Y {p′}
)

(61)

with the deformation parameter A−2. At the Macdonald

locus, the mixing is p′
k + εk pk with εk = 1 −

(

t
q

)2k
made

from the third item of the DIM triple q, t−1, tq−1 [34].
13. To conclude, in this paper we constructed a full set of
Hamiltonians for Kerov functions. This is a superficially
large set, and it can not help to define the functions per
se, because our Hamiltonians explicitly contain the Kostka–
Kerov matrix, i.e. they use it as an input rather than serve
as a tool to define the Kerov functions. In other terms, they
demonstrate super-integrability, but lack the advantage of (6)
and its relatives, which formed a smaller set of operators
depending on parameters q and t in a simple explicit way,
not through the Kostka–Macdonald matrix, and thus could
serve its definition. The fact that the peculiar properties of the
Hamiltonians in the Schur case have generalizations to other
loci gives a hope to lift the construction, say, to the Freund–
Zabrodin generalizations of the Macdonald locus, but this is
beyond the scope of the present paper. Our main goal was
to demonstrate that the notion of Kerov Hamiltonians has a
clear meaning, and to make a setting for the next attacks on
this interesting problem.
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Appendix

Schur polynomials as determinants of the hook con-
stituents.Here we write down the determinant representation
of the Schur polynomials in terms of hook constituents fol-
lowing [66,67]. These formulas are convenient for dealing
with diagrams with a restricted number of hooks.

First of all, let us note that, as follows from the Cauchy
formula (15),

exp

(

∑

k

pkzk

k

)

=
∑

n

χ[n]zn (62)
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On the other hand, since N X
[a],[1] = δX,[a,1b] + δX,[a+1,1b−1]

and χX {pk} = (−1)|X |χ
X∨ {−pk},

χ[a,1b] = (−1)b+1
∑

j≥0

χ[ j+b+1]{−pk}χ[a− j−1]{pk} (63)

Then, for the Young diagram R consisting of n hooks with
vertical leg length bi + 1, and horizontal leg lengths ai , i =
1 . . . n, the Schur polynomial reads

χR = det
1≤i, j≤n

χ[ai ,1b j ] (64)

An example: the second Macdonald Hamiltonian. Here
we demonstrate in detail how the formulas work in the case
of the second Macdonald Hamiltonian (29).

In the first term of (29), non-vanishing are contributions
of 1-hook diagrams with2

χ[a1+1,1b1 ]

{

pk = (tk + t−k){qk}
}

= (−)b1+1qa1−b1

{qt}{q/t}
(

ta1+b1+1 + t−a1−b1−1
)

− {q}
(

{qt}ta1−b1 + {q/t}t−a1+b1

)

{t}2

and of the two-hook diagrams with (using (64))

χ[a1+1,a2+1,2b2 ,1b1−b2−1]

{

pk = (tk + t−k){qk}
}

= (−)b1+b2qa1+a2−b1−b2−3{q}2{qt}{q/t}
×{ta1−a2}{tb1+1−b2}

{t}2 (68)

As for the second term, the product of two V1 is

: V̂1(z1)V̂1(z2)

: =
(

1 + {t}
(

z1

t
χ[1] + z2

1

t2

(

t χ[2] − 1

t
χ[1,1]

)

+ · · ·
))

2 It can be obtained using (63) from

χ[a]
{

pk = (tk + t−k){qk}
}

= qa
{ta+1} − t+t−1

q2 {ta} + q−4{ta−1}
{t}

(65)

In the simplest way, this latter is obtained from the generating function
of symmetric Young diagrams in this case:

∑

a

za · χ[a]
{

pk =
∑

i

(xki − yki )
}

=
∏

i

1 − yi z

1 − xi z
(66)

i.e.

χ[a]
{

pk =
∑

i

(xki − yki )
}

(67)

= xa1 (x1 − (y1 + y2) + y1y2/x1) − xa2 (x2 − (y1 + y2) + y1y2/x2)

x1 − x2

with x1 = qt , x2 = q/t , y1 = t/q, y2 = 1/(qt).

(

1 + {t}
(

z2

t
χ[1] + z2

2

t2

(

t χ[2] − 1

t
χ[1,1]

)

+ · · ·
))

·
(

1 + {q}
(

q

z1
χ̂[1] + q2

z2
1

(

q χ̂[2] − 1

q
χ̂[1,1]

)

+ · · ·
))

(

1 + {q}
(

q

z2
χ̂[1] + q2

z2
2

(

q χ̂[2] − 1

q
χ̂[1,1]

)

+ · · ·
))

When this operator acts on particular χR only a few terms
in the last two brackets contribute, providing a polynomial
in z−1

1 and z−1
2 of the common degree |R|. For example, the

action on χ[1,1] = Mac[1,1] gives

(

1 + {q}
(

q

z1
χ̂[1] + q2

z2
1

(

q χ̂[2] − 1

q
χ̂[1,1]

)

+ · · ·
))

(

χ[1,1] + {q}
(

q

z2
χ[1] + q2

z2
2

·
(

− 1

q

)

))

= χ[1,1] + {q}
(

q

z2
χ[1] + q2

z2
2

·
(

− 1

q

)

)

+q{q}
z1

(

χ[1] + q{q}
z2

)

+ q2{q}
z2

1

·
(

− 1

q

)

= χ[1,1] + q{q}χ[1]

(

1

z1
+ 1

z2

)

−q{q}
(

1

z2
1

+ 1

z2
2

)

+ q2{q}2

z1z2

Now we need to multiply by the first two brackets, but pick
up only the terms of total grading zero, since they will be
selected by the contour integrals over z1 and z2:

: V̂1(z1)V̂1(z2) : χ[1,1]

−→
(

1 + {t}
t

(z1 + z2)χ[1] + {t}2

t2 (z1z2)χ
2
[1]

+{t}
t2 (z2

1 + z2
2)

(

t χ[2] − 1

t
χ[1,1]

))

·
(

χ[1,1] + q{q}χ[1]

(

1

z1
+ 1

z2

)

−q{q}
(

1

z2
1

+ 1

z2
2

)

+ q2{q}2

z1z2

)

−→ χ[1,1] + q{q}{t}
t

(z1 + z2)
2

z1z2
χ2

[1]

−q{q}{t}2

t2

z2
1 − q{q}z1z2 + z2

2

z1z2
χ2

[1]

−q{q}{t}
t2

(z2
1 − q{q}z1z2 + z2

2)(z
2
1 + z2

2)

z2
1z

2
2

×
(

t χ[2] − 1

t
χ[1,1]

)
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It remains to substitute the integrals

{t2}
{t}2

∮

dz1

z1

∮

dz2

z2

(z1 − z2)
2

(z1 − t2z2)(z1 − t−2z2)

(

z1

z2

)m

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{t2m} for m > 0

{t2}
{t}2 for m = 0

0 for m < 0

(69)

to get

{t2}
{t}2

∮

dz1

z1

∮

dz2

z2

(z1 − z2)
2

(z1 − t2z2)(z1 − t−2z2)

: V̂1(z1)V̂1(z2) : χ[1,1] = {t2}
{t}2 · χ[1,1]

+q{q}{t}
t

(

{t2} + 2 · {t2}
{t}2 + 0

)

χ2
[1]

−q{q}{t}2

t2

(

{t2} − q{q} {t
2}

{t}2 + 0
)

χ2
[1]

−q{q}{t}
t2

(

{t4} − q{q}{t2} + 2
{t2}
{t}2 + 0 + 0

)

(

t χ[2] − 1

t
χ[1,1]

)

This answer contains both χ[2] and χ[1,1] , thus χ[1,1] =
Mac1,1] is not an eigenfunction of integrated : V̂1(z1)V̂1(z2) :
This is cured by adding

∮ dz
z V̂2(z):

∮

dz

z
V̂2(z) χ[1,1]

=
{

1 + {q}{t2}q
t

(

t + 1

t

)

χ[1] χ̂[1]

+{q}{t2}
(q

t

)2
(

tχ[2] − 1

t
χ[1,1]

)(

(

q[3]t − 1

q

)

χ̂[2]

−
( [3]t

q
− q

)

χ̂[1,1]

)

+ · · ·
}

χ[1,1]

= χ[1,1] + {q}{t2}q
t

(

t + 1

t

)

χ2
[1]

+{q}{t2}
(q

t

)2(

q − [3]t
q

)

(

t2χ[2] − 1

t2 χ[1,1]

)

(70)

Together they provide an answer, proportional to χ[1,1] =
Mac1,1] :

Ĥ2 χ[1,1]

= −
2
(

q4(t8 − t6 − t4 + t2) + q2(t6 + t4 − t2 − 1) + 1
)

t9{t} · χ[1,1]

(71)

An example: Hamiltonians HQ at the first three lev-
els.Here we consider the first three levels in order to illustrate
the construction of the Hamiltonians HQ . Note that (33) are
formulated entirely in terms of skewSchurpolynomials, what
makes the calculations easy (once the Kostka–Kerov matrix
is available from [68]).

• Level 1. Here R = 1, Ker[1] = p1 and ξ[1],[1] = E[1]
• Level 2. This example is already informative. We have

two Kerov functions Ker[1,1] = p2+p2
1

2 = χ[1,1] and

Ker[2] = χ[2] + g2−g2
1

g2+g2
1

· χ[1,1] = −g2
1 p2+g2 p2

1
g2+g2

1
. Thus the

two equations in (33) are:

(Ĥ − E[1,1])Ker[1,1] = ξ[1],[1]χ
2
[1] + ξ[2],[1,1]χ[2]

+(ξ[1,1] − E[1,1])χ[1,1],[1,1] = 0

(Ĥ − E[2])Ker[2] =
(

ξ[1],[1]χ
2
[1] + (ξ[2],[2] − E[2])χ[2]

+ξ[1,1],[2]χ[1,1]
)

+g2 − g2
1

g2 + g2
1

(

ξ[1],[1]χ
2
[1] + ξ[2],[1,1]χ[2]

+(ξ[1,1],[1,1] − E[2])χ[1,1]
) = 0 (72)

We used here the fact that χ[2]/[1] = χ[1,1]/[1] and can fur-
ther use χ2

[1] = χ[2] + χ[1,1] . Moreover, the first equa-
tion implies that, in the last line, we can substitute the
bracket for just (E[1,1] − E[2])χ[1,1] , i.e. a non-trivial g-
dependence appears only in the coefficient of χ[1,1],[1,1] ,
not of χ[2] . In other words, we get a system

ξ[1,1],[1,1] = E[1,1] − ξ[1],[1] = E[1,1] − E[1]

ξ[2],[1,1] = −ξ[1],[1] = −E[1]

ξ[1,1],[2] = g2 − g2
1

g2 + g2
1

(E[2] − E[1,1]) − E[1]

ξ[2],[2] = E[2] − ξ[1],[1] = E[2] − E[1] (73)

and

ξ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

E[1,1] − E[1] −E[1]

g2−g2
1

g2+g2
1
(E[2] − E[1,1]) − E[1] E[2] − E[1]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(74)

Thus, at this level, we can already collect all the terms
proportional to E[1], and reveal the structure of the sim-
plest Hamiltonian (34):
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Ĥ[1] = χ[1] χ̂[1] − (χ[2] + χ[1,1])(χ̂[2] + χ̂[1,1]) + · · · = χ[1] ·
(

χ̂[1] − χ[1] · (χ̂[2] + χ̂[1,1]) + · · · (75)

associated with the eigenvalue E[1]: it annihilates all χR

except for χ[1] ,

Ĥ[1]χR = χR · δR,[1] (76)

Also seen at level two are the two other Hamiltonians, but
only the first terms can be defined:

Ĥ[1,1] = χ[1,1]
(

χ̂[1,1] − g2−g2
1

g2+g2
1

χ̂[2] + · · ·
)

= Ker[1,1] ·
(

χ̂[1,1] − g2−g2
1

g2+g2
1

χ̂[2] + · · ·
)

Ĥ[2] = χ[2] χ̂2 + g2−g2
1

g2+g2
1

χ[1,1] χ̂[2] + · · · = Ker[2] · χ̂[2] + · · ·
(77)

Note that, while Ĥ[2] annihilates χ[1,1] = Ker[1,1],
the other Hamiltonian Ĥ[1,1] annihilates not χ[2], but

Ker[2] ∼ χ[2] + g2−g2
1

g2+g2
1

χ[1,1] .

• Level 3. Now

Ker[1,1,1] = χ[1,1,1]

Ker[2,1] = χ[2,1] + 2(g3 − g3
1)

2g3 + 3g2g1 + g3
1

χ[1,1,1]

Ker[3] = χ[3] + 2g2(g3 − g3
1)

g3g2 + 3g3g2
1 + 2g2g3

1

χ[2,1]

+g3g2 − 3g3g2
1 + 2g2g3

1

g3g2 + 3g3g2
1 + 2g2g3

1

χ[1,1,1] (78)

From these formulas, one can calculate the level-3 block
of the matrix ξX,Y :

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

E[1,1,1] − E[1,1] E[1] − E[1,1] + (g2−g2
1)(E[1,1]−E[2])
g2+g2

1
+ E[1] + (g2−g2

1)(E[1,1]−E[2])
g2+g2

1
+ (2g3−3g2g1+g3

1)(E[1,1,1]−E[2,1])
2g3+3g2g1+g3

1
+

+ 2(g3−g3
1)(E[2,1]−E[1,1,1])

2g3+3g2g1+g3
1

+ (g2g3−3g3g2
1+2g2g3

1)(E[3]−E[2,1])
g2g3+3g3g2

1+2g2g3
1

E[1] − E[1,1] E[2,1] + 2g2
1(E[1]−E[1,1])+2g2(E[1]−E[2])

g2+g2
1

−(g2−g2
1)(E[1]−E[1,1])+2g2(E[1]−E[2])

g2+g2
1

+ 2g2(g3−g3
1)(E[3]−E[2,1])

g2g3+3g3g2
1+2g2g3

1

E[1] E[1] − E[2] E[3] − E[2]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Now one can read off the level-three contributions to the
Hamiltonians:

Ĥ[1] = χ[1] χ̂[1] − (χ[1,1] + χ[2])(χ̂[1,1] + χ̂[2])

+(χ[2,1] + χ[3])χ̂[1,1,1]
+(χ[1,1,1] + 2χ[2,1] + χ[3])χ̂[2,1]
+(χ[1,1,1] + χ[2,1])χ̂[3] + · · ·

= Ker[1] ·
(

χ̂[1] − χ[1] · (χ̂[2] + χ̂[1,1])

+χ[1,1](χ̂[2,1] + χ̂[3])

+χ[2](χ̂[1,1,1] + χ̂[2,1]) + · · ·
)

Ĥ[1,1] = χ[1,1]
(

χ̂[1,1] − g2 − g2
1

g2 + g2
1

χ̂[2]
)

−(χ[1,1,1] + χ[2,1])
(

(χ̂[1,1,1] + χ̂[2,1])

+ g2 − g2
1

g2 + g2
1

(χ̂[2,1] + χ̂[3])

)

+ · · ·

= Ker[1,1]
·
((

χ̂[1,1] − χ[1](χ̂[1,1,1] + χ̂[2,1]) + · · ·
)

− g2 − g2
1

g2 + g2
1

·
(

χ̂[2] − χ[1](χ̂[2,1] + χ̂[3]) + · · ·
)

)
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Ĥ[2] =
(

χ[2] + g2 − g2
1

g2 + g2
1

χ[1,1]

)

χ̂[2]

−
(

(χ[2,1] + χ[3]) + g2 − g2
1

g2 + g2
1

(χ[1,1,1] + χ[2,1])

)

(χ̂[1,2] + χ̂[3]) + · · ·
= Ker[2] ·

(

χ̂[2] − χ[1] · (χ̂[1,2] + χ̂[3]) + · · ·
)

Ĥ[1,1,1] = χ[1,1,1] ·
(

χ̂[1,1,1] − 2(g3 − g3
1)

2g3 + 3g2g1 + g3
1

χ̂[2,1]

+2g3 − 3g2g1 + g3
1

2g3 + 3g2g1 + g3
1

χ̂[3]

)

+ · · · Ĥ[2,1] = χ[2,1] χ̂[2,1]

+ 2(g3 − g3
1)

2g3 + 3g2g1 + g3
1

χ[1,1,1] χ̂[2,1]

− 2g2(g3 − g3
1)

g2g3 + 3g3g2
1 + 2g2g3

1

χ[2,1] · χ̂[3]

−
(

2g3 − 3g2g1 + g3
1

2g3 + 3g2g1 + g3
1

+ g2g3 − 3g3g2
1 + 2g2g3

1

g2g3 + 3g3g2
1 + 2g2g3

1

)

χ[1,1,1] · χ̂[3] + · · ·

= Ker[2,1]

·
(

χ̂[2,1] − 2g2(g3 − g3
1)

g2g3 + 3g3g2
1 + 2g2g3

1

χ̂[3] + · · ·
)

Ĥ[3] =
(

g2g3 − 3g3g2
1 + 2g2g3

1

g2g3 + 3g3g2
1 + 2g2g3

1

χ[1,1,1]

+ 2g2(g3 − g3
1)

g2g3 + 3g3g2
1 + 2g2g3

1

χ[2,1] + χ[3]

)

·χ̂[3] + · · · = Ker[3] · χ̂[3] + · · · (79)
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