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Abstract The paper deals with cosmological solutions
describing different phases of the Universe for the homo-
geneous and isotropic FLRW model of the Universe with
torsion. Normally, torsion field is not suitable for maximally
symmetric space time model. However, one may use a spe-
cific profile of vectorial torsion field, derived from a scalar
function. By proper choices of the torsion scalar function,
it is shown that a continuous cosmic evolution starting from
the emergent scenario to the present late time acceleration
is possible. Also thermodynamics of the system is analyzed
and equivalence with Einstein gravity is discussed.

1 Introduction

Cartan in 1922 introduced an extension of Einstein’s theory
of gravity [known as Einstein–Cartan theory (ECT)], inter-
preting intrinsic angular momentum (i.e, spin) of the matter
in terms of torsion [1–3]. Later in 1960s introduction of spin
of the mater to general relativity [4,5], showed ECT as the
simplest classical modification of Einstein’s theory [see [6]
for a general review].

In ECT, the space-time contains asymmetric affine con-
nection in contrast to general relativity having symmetric
Christoffel symbols in Riemannian geometry. In particular,
torsion is characterized the antisymmetric part of the affine
(non-Riemannian) connection. As a result, the gravitational
pull is not only described by the metric tensor but also by the
independent torsion field. Geometrically, curvature has the
tendency of bending the space-time while torsion twists it. In
other words, parallel transport of a vector along a closed loop
depends on the path due to the curvature of the space-time
while presence of torsion may even prevent the formulation
of the loop. Further, from the physical point of view, presence
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of matter causes the curvature of the space-time while intrin-
sic angular momentum of matter characterizes the torsion.

On the other hand, the introduction of torsion field does
not allow the space-time to be maximally symmetric (i.e.
homogeneous and isotropic) which is the common choice for
standard cosmology, rather it introduces anisotropic degrees
of freedom. To overcome this unusual situation, a typical
vectorial form of the torsion field has been introduced in
recent past [7]. In this specific profile, the space-time tor-
sion fields [8–10] and the related matter spin are completely
determined by a homogeneous scalar function. Further, this
modified torsion field preserves the symmetry of the associ-
ated Ricci curvature tensor (in FLRW model) and hence the
symmetry of Einstein tensor and energy-momentum tensor.
Phenomenologically, torsion play the role of spatial curva-
ture and it has an input in the terms of cosmological constant/
dark energy. So it is speculated that torsion may be responsi-
ble for accelerated expansion. However, it is observationally
speculated that primordial nucleosynthesis is influenced by
torsion and hence it is possible to constraint torsion field from
observational point of view.

From an alternative view point, the effect of torsion in
space-time can be interpreted as the intrinsic angular momen-
tum of fermionic (i.e. spin) particles [11]. Geometrically, it is
related to the asymmetric affine connection of the space-time
manifold. Hence matter field acts as a source for torsion and
thereby enriching the cosmic descriptions. The well known
Einstein–Cartan–Kibble–Sciama (ECKS) gravitational the-
ory is very useful from the perspective of the invariance of
local gauge in relation to the group of Poincare [12,13]. It is
to be noted that there is no observational evidence in favour
of the existence of torsion field, rather there are suggestions
for some experimental tests.

Moreover, the standard cosmology in FLRW model has
been a debating issue due to a series of observational evi-
dences [14–16] for the last two decades. Attempts to resolve
this issue has been continuing in two directions – introduction
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of exotic matter (known as dark energy) in the frame work
of Einstein gravity or modification of Einstein gravity theory
itself. The second approach modifies the geometric part of
the Einstein field equations and is termed as modified gravity
theories. Essentially, a general form of the Lagrangian den-
sity than the usual Einstein–Hilbert action or some higher
dimensional theories has been considered in this approach.
The present torsion theory is an example of this type of mod-
ified gravity theory.

The present work shows an extensive study of cosmic
evolution in FLRW model with torsion and it is examined
whether torsion can be considered as an alternative to dark
energy. A complete cosmic description has been presented for
a continuous value of the torsion scalar function and thermo-
dynamics of the system has been studied. The paper is orga-
nized as follows: Sect. 2 deals with torsion in FLRW model,
cosmic solutions and choice of torsion scalar function has
been studied in Sect. 3. Section 4 has discussed equivalence
with Einstein gravity and non equilibrium thermodynamical
prescription. The paper ends with a brief discussion in Sect.
5.

2 Torsion and FLRW model

The Einstein–Cartan theory which is based on the asymmet-
ric affine connection of the space-time, instead of the Rie-
mannian space, is the gravity theory with torsion. In partic-
ular, torsion tensor is described by the antisymmetric part of
the affine connection, termed by

Sabc = �a
[bc], (1)

which vanishes in absence of torsion. Since the metric ten-
sor is covariantly constant (i.e, ∇cgab = 0), a generalized
connection can be decomposed into a symmetric and an anti-
symmetric part as

�a
bc = �̃a

bc + Ka
bc, (2)

where the symmetric part �̃a
bc is the usual Christoffel symbols

and the antisymmetric part Ka
bc is termed as the contortion

tensor with Kabc = K[ab]c. This contortion tensor is related
to the torsion tensor as

Kabc = Sabc + 2S(bc)a . (3)

Thus one can think torsion as a connecting tool between
the intrinsic angular momentum (spin) of the matter and the
geometry of the space-time.

Due to antisymmetric nature of the torsion tensor one can
define torsion vector as

Sa = Sbab

(
= −Sbba

)
, (4)

and consequently, for the contortion tensor we have

Kb
ab = 2Sa = −K b

ab (5)

In this work we consider homogeneous and isotropic
FLRW space-time having line element

ds2 = −dt2 + a2(t)

[
dr2

1 − Kr2 + r2
(
dθ2 + sin2 θdϕ2

)]
,

(6)

where a(t) is the scale factor with H = ȧ
a , H is the Hubble

parameter and ‘ · ’ represents differentiation with respect to
cosmic time t and K is the curvature index. Also it is assumed
that the Universe is consisting of perfect fluid with barotropic
equation of state given by p = ωρ and ω = γ − 1.

For spatially homogeneous and isotropic FLRW space-
time torsion vector fully characterize the torsion tensor (and
hence the contortion tensor). For this space-time the torsion
vector can be written as [18–21]

Sa = −3φua, (7)

where φ = φ(t) is a scalar function, hab is the metric of the
three space and ua is the four velocity field along the tangent
to a congruence of time like curves and the torsion tensor and
the contortion tensor can be expressed as

Sabc = 2φha[buc], (8)

Kabc = 4φu[ahb]c, (9)

Clearly the torsion vector is a time like vector [17] and (the
sign of) the scalar function φ indicates the relative orientation
between the torsion and the 4-velocity (i.e, torsion vector is
future directed for φ < 0 , while it is past directed for φ > 0).

Further, the matter conservation equation in FLRW model
takes the form [18]

T b
a;b = −4φTabu

b, (10)

which for perfect fluid has the explicit form

ρ̇ + 3(H + 2φ)(p + ρ) = 4φρ, (11)

where as usual ρ is the energy density and p is the thermo-
dynamic pressure of the perfect fluid. Hence, the modified
Friedmann equations due to torsion can be written as

3H2 = κρ − 3
K

a2 − 12φ2 − 12Hφ, (12)

2Ḣ = −κ(p + ρ) + 2
K

a2 − 4φ̇ + 8φ2 + 4Hφ. (13)
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3 Cosmic solutions and choices of torsion scalar
function

In this section, it is found that with proper choices of tor-
sion scalar function, several cosmological solutions are pos-
sible in the present modified gravity theories. Throughout the
work, the torsion scalar function is chosen in a typical (but
general) form as

φ = −λ(a)H, (14)

where λ(a) is an arbitrary function of the scale factor. For
simplicity, choosing K = 0 i.e, flat space-time, the modified
Friedmann equations (12) and (13) with the above choice
(14) for φ takes the form,

3H2(1 − 2λ)2 = κρ, (15)

2Ḣ(1 − 2λ) = κρ

[−3γ (1−2λ)2+4(aλ′+2λ2 − λ)

3(1−2λ)2

]
,

(16)

where ‘ ′ ’ denotes differentiation with respect to scale factor
a.

Now, combining Eqs. (15) and (16) to eliminate ρ, one
obtains the cosmic evolution equation as,

2Ḣ

3H2 = 4aλ′

3(1 − 2λ)
+ 2λ

(
γ − 2

3

)
− γ. (17)

3.1 Emergent scenario: non singular universe

In this section it will be examined whether it it is possible to
have an emergent scenario (non-singular cosmological solu-
tion) for this theory. Now choosing λ in such a way so that

2aλ′

(1 − 2λ)
+ 3λ

(
γ − 2

3

)
= μ

H
, (18)

where μ is an arbitrary constant.
Equation (17) takes the following form

Ḣ = μH − 3γ

2
H2, (19)

Now depending on the signs of μ the possible solutions
are as follows.

Case 1, μ > 0,

H

H0
= μ

3γ
2 H0 −

(
3γ
2 H0 − μ

)
e−μ(t−t0)

,

a

a0
=

[
1 + 3γ H0

2μ

(
eμ(t−t0) − 1

)] 2
3γ

. (20)

Case 2, μ = 0,

H0

H
= 1 + 3γ

2
H0(t − t0),

a

a0
=

[
1 + 3γ

2
H0(t − t0)

] 2
3γ

. (21)

Case 3, μ < 0 ,

H

H0
= ν2

(
ν2 + 3γ

2 H0

)
eν2(t−t0) − 3γ

2 H0

,

a

a0
=

[
1 + 3γ H0

2ν2

(
1 − e−ν2(t−t0)

)] 2
3γ

, (22)

with μ = −ν2.
In the above solutions λ0, t0, a0 and H0 are integration

constants with λ = λ0, a = a0, H = H0 at t = t0.
Note that Eq. (20) represents big bang singularity for μ <

3γ
2 H0, while for μ >

3γ
2 H0 the solution (20) represents the

emergent scenario of the universe and μ = 3γ
2 H0 represents

only the inflationary era (i.e. the exponential expansion). The
asymptotic limit for emergent scenario are the following:

(i) a → a0

(
1 − 3γ H0

2μ

) 2
3γ

, H → 0 as t → −∞,

(ii) a ∼ a0

(
1 − 3γ H0

2μ

) 2
3γ

, H ∼ 0 as t � t0,

(iii) a ∼ a0

(
3γ H0

2μ

) 2
3γ

e
2μ
3γ

(t−t0), H ∼ 2μ
3γ

as t � t0.

and the parameter λ can be explicitly written (for μ = 3
γ H0) as

1

1 − 2λ
= aH

H0

[
1

a0(1 − 2λ0)
+

(
3γ

2
− 1

)
H0

∫ t

t0

dt

a(t)

]

Also (21) and (22) represent the big bang singularity and
the big bang singularity occurs at the time t = ts given by,

ts = t0 + 1
μ

ln
∣∣∣1 − 2μ

3γ H0

∣∣∣ for the equation (20),

ts = t0 − 2
3γ H0

for the equation (21),

ts = t0 − 1
μ

ln

∣∣∣∣ H0

H0− 2μ
3γ

∣∣∣∣ for the equation (22).

3.2 Different cosmological solutions and continuous
cosmic evolution

Let t1 be the time instant in which the universe evolves from
inflationary era to matter dominated era. Similarly t2(> t1)
is the time instant at which the universe transits into late time
acceleration era [22].

Inflationary era (t < t1)
The choice for λ is

1

1 − 2λ
=1+ H

H1

[
a

a1

(
1

1−2λ1
−1+ 3γμ1

2

)
− 3γμ1

2

]
,
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and the cosmic solution is given by

H = H1

μ1 + (1 − μ1)
(

a
a1

) 3γ
2

,

i.e, H = H1

[
μ1

{
LambertW

(
1 − μ1

μ1
exp

×
{

2(1 − μ1) + 3γ H1(t − t1)

2μ1

})
+ 1

}]−1

,

a = a1

[
μ1

1 − μ1
LambertW

(
1 − μ1

μ1
exp

×
{

2(1 − μ1) + 3γ H1(t − t1)

2μ1

})] 2
3γ

,

q = 3γ

2
− 1 − μ1

H

H1
, (23)

where LambertW (x)eLambertW (x) = x and q = −(
1 + Ḣ

H2

)
is the deceleration parameter.

Matter dominated era (t1 < t < t2)
The choice for λ is
1

1 − 2λ
= 3γ − 2

3γ (1 − μ2) − 2

+ aH

a1H1

[
1

1 − 2λ1
− 3γ − 2

3γ (1 − μ2) − 2

]
,

and the cosmic solution can be written as

H = H1

(
a

a1

)− 3γ
2 (1−μ2)

,

i.e, H = H1

[
1 + 3γ

2
H1(1 − μ2)(t − t1)

]−1

,

a = a1

[
1 + 3γ

2
H1(1 − μ2)(t − t1)

] 2
3γ (1−μ2)

,

q = 3γ

2
− 1 − μ2. (24)

Late time acceleration (t > t2)
The choice for λ is

1

1 − 2λ
= aH

H2

[
1

a2(1 − 2λ2)
−

(
3γ

2
− 1

)
H2

∫ t

t2

dt

a(t)

]
,

and the cosmic solution is in the form of

H = H2

[
μ2 + (1 − μ2)

(
a

a2

)−3γ
] 1

2

,

i.e, H = √
μ2H2 coth

{
3γ

2
√

μ2H2(t − ti )

}

a = a2

[√
1 − μ2

μ2
sinh

{
3γ

2
√

μ2H2(t − ti )

}] 2
3γ

,

q = 3γ

2
− 1 − μ2

(
H2

H

)2

. (25)

Fig. 1 The Hubble parameter H(t) is plotted against t

where ti is the constant of integration. Here (λ1, a1, H1)

and (λ2, a2, H2) are the values of parameter λ, scale factor
and Hubble parameter respectively at the transition points
t = t1 and t = t2.

It will be now examined whether this cosmic evolution
across these three phases is continuous or not. Then continu-
ity of the deceleration parameter at the transition time t = t1
and t = t2, gives

μ1 = μ2.

Continuity of physical parameters (i.e Hubble parameter,
scale factor) at t = t1 is obvious while the continuity at t = t2
provides the following relations:

3γ

2
(1 − μ2)(t2 − t1) = 1

H2
− 1

H1
,

(
a1

a2

) 3γ (1−μ2)

2 = H2

H1
, (26)

1

1 − 2λ2
= 3γ − 2

3γ (1 − μ2) − 2

+a2H2

a1H1

[
1

1 − 2λ1
− 3γ − 2

3γ (1 − μ2) − 2

]
, (27)

sinh(η2) =
√

μ2

1 − μ2
, (28)

where

η2 = 3γ

2
√

μ2H2(t2 − ti ).

Also let t = t0(< t1) be the time instant in which the uni-
verse makes a transition from emergent scenario to inflation.
Then from the continuity across the transition time t = t0,
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Fig. 2 The evolution of the scale factor with respect to time t

Fig. 3 The deceleration parameter q is plotted against t

we have

1

1 − 2λ0
= 1+ H0

H1

[
a0

a1

(
1

1−2λ1
−1+ 3γμ1

2

)
− 3γμ1

2

]
,

H0

H1
= μ1 + (1 − μ1)

(
a0

a1

) 3γ
2

, (29)

where λ0, H0 and a0 are the values of parameter λ, Hubble
parameter and scale factor at t = t0 respectively. Also the
smoothness of physical parameters H , a, q ans φ are shown
graphically in Figs. 1, 2, 3 and 4 for the parameter values
μ1 = 0.4, γ = 4

3 , H1 = 2, a1 = 1
3 , H2 = 1.29, t1 = 0.5,

t0 = 1
6 , λ1 = 3

4 and μ = 3γ H0.

Fig. 4 The evolution of the modulus of torsion φ with respect to time
t

4 Equivalence to Einstein gravity and non-equilibrium
thermodynamical prescription

In this section the thermodynamics of the gravity theory with
torsion has been discussed in FLRW model. Also it is checked
that, is this theory equivalent to the particle creation in Ein-
stein gravity and temperature of the fluid particles is evalu-
ated. Equation (12) and (13) can be written as

3H2 = κρ − 12φ2 − 12Hφ

= κ(ρ + ρe) = κρT , (30)

2Ḣ = −κγρ − 4φ̇ + 8φ2 + 4Hφ

= −κ [(p + ρ) + (pe + ρe)] = −κ(pT + ρT ), (31)

where ρe, pe are energy density and thermodynamic pressure
of the effective fluid particles and are defined as,

κρe = −12φ2 − 12Hφ, (32)

κpe = 4φ2 + 8Hφ + 4φ̇. (33)

From the field equations (30) and (31) due to Bianchi
identity one has,

ρ̇T + 3H(pT + ρT ) = 0. (34)

From Eqs. (11) and (34) one have the individual matter
conservation equations as,

ρ̇ + 3H(p + ρ) = Q, (35)

ρ̇e + 3H(pe + ρe) = −Q. (36)

Thus the modified Friedmann equations can be interpreted
as Friedmann equations in Einstein gravity for an interact-
ing two fluid system of which one is the usual normal fluid
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under consideration and other is the effective fluid and the
interaction term is given by Q = −2(ρ + 3p)φ.

For interacting two fluid system the interacting term Q
should be positive as the energy is transferred to usual fluid.
In this case Q > 0 
⇒ φ < 0.

One can write the above conservation Eqs. (35) and (36)
in terms of state parameter as

ω(e f f ) = ω + 2(1 + 3ω)
φ

3H
, (37)

ω
(e f f )
e = ωe − 2(1 + 3ω)

φ

3H
r, (38)

where r = ρ
ρe

is coincidence parameter and ωe = pe
ρe

is
equation of state parameter of effective fluid.

Equations (35) and (36) can also be written as

ρ̇ + 3H(p + ρ + pc) = 0, (39)

ρ̇e + 3H(pe + ρe + pce) = 0, (40)

with

pc = 2φ

3H
(ρ + 3p) = −pce, (41)

where pc, pce are the dissipative pressure of the fluid com-
ponents.

In non-equilibrium thermodynamics this dissipative pres-
sure may be caused by particle creation process. So the par-
ticle number conservation equations take the form,

ṅ + 3Hn = �n, (42)

ṅe + 3Hne = �ene. (43)

Here n denotes the normal fluid particles density and ne
represents the number density of effective fluid particles.

If we assume the non-equilibrium thermodynamical pro-
cess to be adiabatic then the dissipative pressures are related
to the particle creation rate linearly as [23],

pc = − �

3H
(p + ρ),

pce = �e

3H
(pe + ρe). (44)

Comparing Eqs. (41) and (44) we have,

� = −2φ
ρ + 3p

ρ + p
, (45)

�e = 2φ
ρ + 3p

ρe + pe
. (46)

Thus the particle creation rate directly related to φ. It is
also clear that � > 0 i.e, usual fluid particles are created and
�e < 0 i.e, effective particles are annihilated. Also pct =
pc + pce = 0 so the particle creation rate for resulting fluid
particles vanishes identically. Hence resulting fluid forms a
closed system.

Further, because of particle creation mechanism there is
an energy transfer between the two fluid systems. So these
two systems may have different temperatures.

Using Euler’s thermodynamical equation, the evolution of
the temperature of the individual fluid is given by [24],

Ṫ

T
= −3H

(
ω(e f f ) + �

3H

)
+ ω̇

1 + ω
, (47)

Ṫe
Te

= −3H

(
ω

(e f f )
e − �e

3H

)
+ ω̇e

1 + ωe
, (48)

where ω(e f f ) and ω
(e f f )
e defined in Eqs. (37) and (38) can be

written in terms of particle creation rate as,

ω(e f f ) = ω − �

3H
(1 + ω), (49)

ω
(e f f )
e = ωe + �e

3H
(1 + ω). (50)

Integrating eqs (47) and (48) we have,

T = T0(1 + ω)exp

[
−3

∫ a

a0

ω

(
1 − �

3H

)
da

a

]
, (51)

Te = T0(1 + ωe)exp

[
−3

∫ a

a0

ωe

(
1 + �e

3H

)
da

a

]
, (52)

where T0 is the common temperature of the two fluids in
equilibrium phase and a0 is the scale factor in the equilibrium
state. In particular, using Eqs. (45) and (51), the temperature
of the normal fluid for constant ω can be written explicitly in
the following form,

T = T0(1 + ω)

(
a

a0

)−3ω

exp

[
−2

∫ t

t0

ω(1 + 3ω)

1 + ω
φdt

]
.

(53)

In general, at very early phases of the evolution of the
universe Te < T and then when the cosmic fluid attain equi-
librium i.e, a = a0, one has T = Te = T0. In the next
phase of evolution of universe one has a > a0 and Te > T
because energy flows from effective fluid to the usual fluid
continuously and hence the thermodynamical equilibrium is
violated. Now, from thermodynamical consideration, equi-
librium temperature T0 can be considered as the (modified)
Hawking temperature [25] i.e,

T0 = H2Rh

2π

∣∣∣∣
a=a0

, (54)

where Rh is the geometric radius of the horizon, bounding
the universe.
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5 Brief discussions and concluding remarks

A detailed cosmological study for gravity with torsion is done
in present work. At first it is examined that whether a non-
singular universe model is possible or not and it is found that
for a particular choice of torsion field an emergent scenario is
possible. Further it is shown that this gravity model is equiva-
lent to the Einstein gravity with particle creation mechanism.
Also it is possible to have a complete cosmic evolution start-
ing from inflationary era to present late time accelerating era
through the matter dominated era. Further it is shown that the
modified Friedmann equations for this gravity can be consid-
ered as the Friedmann equations for the Einstein gravity with
interacting two fluid system of which one is the usual fluid
and other is effective fluid. The former is created and latter is
annihilated in course of cosmic evolution. Also from thermo-
dynamical consideration the temperature of individual fluid
particles are evaluated and are found to be distinct. Lastly,
different choices of hypothetical fluid component give rise
to different cosmic solutions.
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