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Abstract Bell inequalities are consequences of local real-
ism while violated by quantum mechanics. In particle
physics, entangled high energy particles can be produced
from a common source, and the decay of each particle plays
the role of measurement. However, in a hidden variable the-
ory, the decay could be determined by hidden variables.
This loophole killed such approaches to Bell test in parti-
cle physics. It is a special form of measurement-setting or
free-will loophole, which also exists in other systems. Using
entangled baryons, we present new inequalities of local real-
ism with the explicit assumption of the dependence of the
decays on hidden variables, as well as the consideration of
the statistical mixture of polarizations and the separation of
local hidden variables for objects with spacelike distances.
These violations closes the measurement-setting loophole
once and for all. We propose to use the processes ηc → ΛΛ̄

and χc0 → ΛΛ̄ to test our inequalities, and show that their
violations are likely to be observed with the data already
collected in BESIII.

1 Introduction

Entanglement in particle physics was noticed long ago [1–3],
and has since been studied theoretically and experimentally
[4–16]. The entangled pseudoscalar mesons are very useful in
studying violations of the discrete symmetries [17–34], espe-
cially the time reversal symmetry [35–43]. Moreover, many
endeavours have been made to test Bell’s inequalities (BI)
[44,45] using entangled mesons [46–55] and baryons [56–
61]. For these entangled high energy particles, mostly the
quantum mechanical measurement of each particle is effec-
tively achieved through its decay, which is not a free choice
of the experimentalist. Therefore, in a realistic or hidden vari-
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able theory, the decay could depend on hidden variables at the
creation of the entangled pairs, leading to the violation of BI.
In the derivation of BI, however, it is assumed that the decay
does not depend on hidden variables. Therefore, BI imple-
mented in terms of decays of these entangled high energy
particles cannot serve to distinguish local realistic theories
from quantum mechanics.

Previously it has been noted that an experiment using
decay time as the effective measurement basis cannot serve
as as a genuine test of BI [62–64]. We emphasize that in a
realistic theory, any kind of effective measurement accom-
plished through the decay could be determined by the hid-
den variables. This is actually a special form of the so-called
measurement-setting for free-will loophole, well known in
other systems [65–67].

Recently, we made the dependence of the measurement
setting on hidden variables an explicit assumption in deriv-
ing a new Leggett inequality (LI) [68], which is a conse-
quence of the so-called crypto-nonlocal realism [69,70], and
showed its violation in entangled mesons [68]. Violation of
LI demonstrates that it is not enough to make the realism
even cryotp-nonlocal.

In this paper, in terms of entangled hyperons, a kind of
baryons, we present a new kind of inequalities, which are
consequences of local realism. But it is different from BI,
as it is considered that a physical state is a statistical mix-
ture of subensembles with definite values of observables, and
that the local hidden variables are separated for objects with
spacelike distances, including copies of the same ones from
the past when their light cones overlap. In particular, we take
into account that the possibility that the signals, as the effec-
tive measurement settings, also depend on hidden variables.
Hence our approach closes the measurement setting loop-
holes once and for all. Our inequalities are neither LIs, though
inspired by them, as we consider local realism, rather than
nonlocal realism.
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Specifically our inequalities are constructed for the entan-
gled ΛΛ̄ pairs created in decays of the charmonia ηc and
χc0, which are mesons consisting of charm quark c and its
antiparticle c̄. We estimate the significances of the violations
of our inequities, and find that the violations are likely to
be observed with the data sample collected in BESIII at the
Beijing Electron-Position Collider II.

Our proposal demonstrates that the entangled baryon pairs
provide a new playground of entanglement study in the realm
of particle physics, for relativistic massive particles and with
electromagnetic, weak and strong interactions all involved,
beyond the scopes of optical and nonrelativistic systems. As
our inequalities are sensitive to the polarization of baryons,
it can also serve a new way to study the space-like electro-
magnetic form factors (EMFFs) and polarization effect of
hyperons, which are related to the non-zero phase difference
[71–73], and have been studied intensively [74–84] in order
to investigate the charge and magnetization density distribu-
tions of a hadron [85].

2 Inequalities for spin-entangled baryons

We start with the angular distributions [72,73]

dσ(Λ → pπ−)

dΩp
= 1

4π

(
1 + αΛsΛ · np

)
,

dσ(Λ → p̄π+)

dΩ p̄
= 1

4π

(
1 − αΛsΛ̄ · n p̄

)
,

(1)

for definite momentum directions np (n p̄) of proton (antipro-
ton) in the rest frame of Λ ( Λ̄) with definite spin sΛ (sΛ̄),
as shown in Fig. 1, where αΛ = 0.750 ± 0.010 is a constant
[72], CP violation is ignored.

The angular distribution provides a way to determine sΛ
(sΛ̄) by measuring np (n p̄). Here we use it as a constraint on
the hidden variable theories, similar to Malus’ law in defining
the polarization vectors existing prior to measurement, valid
for photons [69] and mesons [68].

We consider a local realistic theory. As Eq. (1) implies
that the average of np equals αΛsΛ/3 and that of n p̄ equals

y

x
z

Λ

θΛ

e+e−

Λ̄

Fig. 1 We first consider the rest frame of the center of mass of the ΛΛ̄

pair, where z direction is the direction of the momentum pΛ of Λ, y
direction is the direction of pe− × pΛ. By boosting this frame, the rest
frames of Λ and Λ̄ can be obtained respectively

−αΛsΛ̄/3, we assume that in the local realistic theory, the
unit vector signal A (B) corresponds to np (n p̄), and defi-
nite polarization vector u (v) corresponds to sΛ (sΛ̄), with
Ā = αΛu/3 (B̄ = −αΛv/3), where the overline denotes the
average over all values of the local hidden variables.

Consider two particles, specifically a pair of Λ and Λ̄,
with spacelike distances. Indeed, there are plenty of spacelike
events in the ΛΛ̄ experiments. We assume that for each of
them, the effect of the polarization on np (n p̄) is the same as
in the single-particle case. Thus for each subensemble with
definite polarizations of Λ and Λ̄, we have

Ā =
∫

dλAdλBρA(λA)ρB(λB)A(λA) = αΛ

3
u,

B̄ =
∫

dλAdλBρA(λA)ρB(λB)B(λB) = −αΛ

3
v, (2)

where we have separated LHVs to λA determining A and λB

determining B with independent distribution functions ρA

and ρB . In case A and B share some hidden variables from
the past when their light cones overlap, in their creation as a
pair, there are copies of these same hidden variables within
λA and λB .

For two arbitrary unit vectors a and b, we have

A · aB · b =
∫

dλAdλBρA(λA)ρB(λB)

× A(λA) · aB(λB) · b = −α2
Λ

9
u · av · b, (3)

where Eq. (2) has been used.
A physical state is a statistical mixture of subensembles

with definite polarization vectors, with distribution function
F(u, v) in the case of pairs. Thus the correlation function is

E(a,b) ≡ −〈A · aB · b〉 = −
∑

i j

ai b j 〈Ai B j 〉

= −
∫

dudvdλAdλB F(u, v)ρA(λA,u, v)ρB(λB,u, v)

× A(λA,u, v) · aB(λB,u, v) · b

= α2
Λ

9

∫
dudvF(u, v)u · av · b, (4)

where a negative sign is used for technical reason, the depen-
dence of the LHV distributions and signals on the polariza-
tions are explicitly indicated.

For arbitrary real numbers −1 ≤ u · a ≤ 1 and −1 ≤
v · b ≤ 1, one has u · av · b ≤ 1 − |u · a − v · b|, therefore

9

α2
Λ

E(a,b) ≤ 1 −
∫

dudvF(u, v)|u · a − v · b|, (5)

the RHS of which first appeared in a proof of LI [69,70]. On
the plane spanned by a and b, a and b can be characterized
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in terms of the azimuth angles as a = (cos(φa), sin(φa), 0)

and b = (cos(φb), sin(φb), 0). In terms of ξ ≡ (φa + φb)/2
and ϕ ≡ φb − φa , the average correlation function to be
measured is Eab

N (ϕ) ≡ ∑N
n=1 E(2nπ/N , ϕ)/N , where N is

an integer and N ≥ 2, the superscript ab indicates the plane.
This definition of discrete average avoids the assumption of
rotational symmetry [86]. In a way similar to a proof of LI
[70], we obtain

∣∣
∣Eab

N (ϕ) + Eab
N (0)

∣∣
∣ +

∣∣
∣Ecd

N (ϕ) + Ecd
N (0)

∣∣
∣

≤ α2
Λ

9

(
4 − 2uN

∣
∣∣sin

ϕ

2

∣
∣∣
)

, (6)

where uN ≡ cot (π/2N ) /N , the superscript cd represents
a plane orthogonal to plane ab. Note that this inequality for
local realistic theories is not based on the dependence of non-
local variables, as LI does. Neither is it BI, as our inequality
additionally assumes polarization vectors and the separation
of LHVs, and it combines various aspects of BI and LI.

We can also obtain an inequality for the correlation func-
tion defined as Êab

N ≡ ∑N
n=1 E(ξ, 4nπ/N )/N . Writing

u = (cos(φu) sin(θu), sin(φu) sin(θu), cos(θu)), and simi-
larly for v, we rewrite Eq. (5) as

9

α2
Λ

E(ξ, ϕ) ≤ 1 − 2
∫ 2π

0
sin θudθu

∫ 2π

0
dψ

∫ π

0
sin θvdθv

×
∫ 2π

0
dχF(θu, θv, χ, ψ)

×
∣∣
∣∣a2 cos

ϕ−χ

2
cos(ξ−ψ)−a1 sin

ϕ−χ

2
sin(ξ − ψ)

∣∣
∣∣ ,

(7)

in a way similar to Eq. (27) in the supplement of Ref.
[70]. With a1 ≡ (sin θu + sin θv)/2, a2 ≡ (sin θu −
sin θv)/2, ψ ≡ (φu + φv)/2 and χ ≡ φu − φv , we
have

∣∣a2 cos ϕ−χ
2 cos(ξ − ψ) − a1 sin ϕ−χ

2 sin(ξ − ψ)
∣∣ =√

a2
2 cos2(ξ − ψ) + a2

1 sin2(ξ − ψ)
∣∣cos

(ϕ−χ
2 + α

)∣∣, where
α is some constant real number. Consequently

9

α2
Λ

1

N

N∑

n=1

E

(
ξ,

4nπ

N

)
≤1−2uN

∫ 2π

0
sin θudθu

∫ 2π

0
dψ

×
∫ π

0
sin θvdθv

∫ 2π

0
dχF(θu, θv, χ, ψ)

×
√
a2

2 cos2(ξ − ψ) + a2
1 sin2(ξ − ψ). (8)

Then following the method in Ref. [70], we obtain
∣∣
∣Êab

N (ξ) + Êab
N (0)

∣∣
∣ +

∣∣
∣Êcd

N (ξ) + Êcd
N (0)

∣∣
∣

≤ α2
Λ

9
(4 − 2uN |sin ξ |) , (9)

where the superscripts ab and cd indicate orthogonal
planes.

Note that in the local realistic theory leading to our
inequalities, the state of two particles are generically a sta-
tistical mixture of subensembles with definite polarizations.
The case with definite polarizations is only a special case.
In contrast, a previous BI for Λ and Λ̄ was based on the
assumption of definite polarizations [61].

3 Violations of our inequalities

Now we show that the above two inequalities are violated
by quantum mechanics and the standard model of particle
physics. For simplicity, we set N = 4. The significance of
the violation is estimated by using a violation ratio defined
as r ≡ (∣∣LQM

∣∣ − |R|) /
∣∣LQM

∣∣, where LQM is the quantum
mechanical result of the LHS of the inequality, R represents
the RHS of the inequality. For example, for the first inequality
Eq. (6), R = α2

Λ (4 − 2uN |sin (ϕ/2)|) /9, and if we choose
ab on to be xy plane and cd to be the xz plane, then LQM =∣∣Exy

4 (ϕ) + Exy
4 (0)

∣∣ + ∣∣Exz
4 (ϕ) + Exz

4 (0)
∣∣. Obviously r ≤ 0

means that the inequality is satisfied.

3.1 The process with ηc and χc0

Consider ηc and χc0 processes, where ηc and χc0 are spinless.
They are indicated as superscripts in various quantities below.
Using the decay amplitude given in Ref. [61],

Mηc = MΛū(pΛ, sΛ)γ5v(pΛ̄, sΛ̄)MΛ̄,

Mχc0 = MΛū(pΛ, sΛ)v(pΛ̄, sΛ̄)MΛ̄,

MΛ = ū(pp, sp) (1 + cΛγ5) u(pΛ, sΛ),

MΛ̄ = v̄(pΛ̄, sΛ̄)
(
1 − cΛ̄γ5

)
v(pp̄, s p̄),

where the notations are standard, we find the joint angular
distributions

dσηc

dΩpΩ p̄
∝ 1 + α2

Λnp · n p̄,

dσχc0

dΩpΩ p̄
∝ 1 − α2

Λ

(
n pxn p̄x + n pyn p̄y − n pzn p̄z

)
. (10)

Then we find that for ηc processes, the correlation function
Eηc (a,b) is independent of the plane we choose, while for
χc0 processes, we can choose the xz and yz planes such that
the correlation functions are of a same form,

Eηc (ξ, ϕ) = Eηc
4 (ϕ) = −α2

Λ

9
cos(ϕ),

Eχc0(ξ, ϕ) = Êχc0
4 (ξ) = α2

Λ

9
cos(2ξ). (11)
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Fig. 2 The violation ratio r for the first (second) inequality, as a func-
tion of ϕ (2ξ ) for ηc (χc0 )

Consider the ηc process. The first inequality Eq. (6) implies
Lηc = 2α2

Λ |cos(ϕ) + 1| /9, thus the maximum of the vio-
lation ratio is rm = u2

N/
(
16 − u2

N

) ≈ 0.0233, at ϕm =
2 tan−1

(
uN/

√
16 − u2

N

)
≈ 0.303, as depicted in Fig. 2.

Similarly, consider the χc0 process. For the violation of the
second inequality Eq. (9), the maximal violation ratio rm is
same as ηc, at ξm = ϕm/2. We also note that the first inequal-
ity cannot be violated in the χc0 process while the second
inequality cannot be violated in the ηc process.

3.2 The process with polarization effects

Now we consider the process e+e− → ΛΛ̄ → pπ0 p̄π+
and e+e− → J/Ψ → ΛΛ̄ → pπ0 p̄π+, with polarizations.
The joint angular distribution can be parameterized as [72,
73]

dσ

dΩΛdΩpdΩ p̄
∝ 1 + η cos2 θΛ

− α2
Λ

(
sin2 θΛ

(
n pxn p̄x − ηn pyn p̄y

)

+
(

cos2 θΛ + η
)
n pzn p̄z

)

− α2
Λ

√
1 − η2 cos(ΔΦ) sin θΛ cos θΛ

(
n pxn p̄z + n pzn p̄x

)

+ αΛ

√
1 − η2 sin(ΔΦ) sin θΛ cos θΛ(n py − n p̄y),

(12)

wheren px is the x-component ofn p , and so on, θΛ is the angle
between momenta of Λ and e−, as shown in Fig. 1, η and
ΔΦ are parameters related to polarization effects. It has been
noticed that, the maximal violation of BI is related to degree
of entanglement [87]. We find that the violation of BI given

0.95 0.96 0.9689 0.98 0.99 1
-0.05

0

0.05

0.1

Fig. 3 The maximum rm of the violation ratio r , as a function of the
parameter η, for entangled ΛΛ̄ pairs with polarization effects

in Ref. [61] reaches the maximum when θΛ = π/2, where
the polarization effect is minimal. Therefore we consider this
region, where incidentally the event number is found to be
large in experiments [72,73]. Hence we only consider these
events, for which

dσ(θΛ = π
2 )

dΩpdΩ p̄
∝ 1

−α2
Λ

(
n pxn p̄x − ηn pyn p̄y + ηn pzn p̄z

)
(13)

Therefore we find

Êxy
4 (ξ) = −α2

Λ

9
η cos(2ξ), Êzy

4 (ξ)

= −α2
Λ

9

1 + η

2
cos(2ξ). (14)

If our second inequality Eq. (9) is violated, the violation

is maximal at ξ = π − tan−1
(
uN/

√
(1 + 3η)2 − u2

N

)
. For

this maximal violation ratio to be positive, the necessary con-

dition is η >

(
1 +

√
4 − u2

N

)
/3 ≈ 0.97, as shown in Fig. 3.

However, it is known from the experiments that η = 0.46 for
e+e− → J/ψ → ΛΛ̄ [73], and η = 0.12 for e+e− → ΛΛ̄

[72]. Therefore this inequality cannot be violated in either
case. Besides, for any η, the first inequality Eq. (6) cannot be
violated.

4 Summary and discussions

In this Letter, we consider local realistic theories with the
specifications that the local hidden variables for different
objects with spacelike distances are separated and that the
physical states are statistical mixtures of subensembles with
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definite polarizations. We present two inequalities that are
shown to be violated by entangled baryons.

In the usual BI test using entangled spins or polarizations,
one needs to choose the guide axis of the measurement. When
the choices of the two guild axes are not independent, or only
limited choices of the axes are allowed, or the guide axes
are determined by hidden variables, it is possible that even
a local realistic theory can violate BI. This measurement-
setting or free-will loophole has been a general defect in
most of the previous approaches to BI based on decays of
high energy particles. In using Λ → pπ− (Λ̄ → p̄π+),
where the momentum direction of the proton (antiproton)
acts as an effective guide axis for the the spin of Λ ( Λ̄), the
momentum of the proton (antiproton) cannot be freely set
by the experimentalists, and could be determined by hidden
variables carried over from the generation of the entangled
particle. All these possibilities are different manifestations
of measurement or free-will setting loophole.

In the local realistic theories considered here, the depen-
dence of the guide axes, or the momenta of the protons and the
antiprotons, on the hidden variables is taken as an assump-
tion in deriving the inequalities. Therefore the violations of
these inequalities close the measurement-setting or free-will
loophole once and for all.

We find that for ηc → ΛΛ̄ and χc0 → ΛΛ̄, our inequali-
ties can be violated. For e+e− → ΛΛ̄ and e+e− → J/Ψ →
ΛΛ̄, the inequalities are sensitive to the polarization effect,
and cannot be violated.

We propose to test our inequalities in experiments. The
relative significance of the violation of the first inequality is
rm ≈ 0.0233. Typically, to observe a relative significance
at the order of 10−2, the number of events are required to
be at the order of 1/r2

m ∼ 104. For example, the ηc can be
produced from J/Ψ → γ ηc at BESIII, with the branch ratio
Br

(
J/Ψ → γ

(
ηc → ΛΛ̄ → pπ− p̄π+)) = 9.8 ± 2.6 ×

10−6 [61]. A data sample of 10 billion J/Ψ events has been
collected by BESIII [88], updating the 1.31×109 events used
in the previous analysis [73]. ηc and χc processes, with event
numbers up to millions and tens of thousands respectively,
are also under analyses in BESIII [88]. It is likely that the
violation of our inequalities can be tested using these data.
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