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Abstract In this paper, applying the Hartman–Grobman
theorem we carry out a qualitative late-time analysis of some
unified dark energy-matter Friedmann cosmological mod-
els, where the two interact through linear energy exchanges,
and the dark energy fluid obeys to the dynamical equa-
tion of state of Redlich–Kwong, Modified Berthelot, and
Dieterici respectively. The identification of appropriate late-
time attractors allows to restrict the range of validity of the
free parameters of the models under investigation. In par-
ticular, we prove that the late-time attractors which support
a negative deceleration parameter correspond to a de Sitter
universe. We show that the strength of deviation from an
ideal fluid for the dark energy does not influence the stabil-
ity of the late-time attractors, as well as the values of all the
cosmological parameters at equilibrium, but for the Hubble
function (which represents the age of the universe). Our anal-
ysis also shows that a singularity in the effective equation of
state parameter for the dark energy fluid is not possible within
this class of models.

1 Introduction

Late-time interactions between dark energy and dark mat-
ter do not violate current observational constraints [1,2]. In
particular, it has been proposed that energy flows between
the two dark components of the Universe can alleviate the
“coincidence problem”: why do we live in a special epoch

a e-mail: Mohsen13.8b@gmail.com
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of the evolution of our Universe in which the amounts of
dark energy and dark matter are of the same order of mag-
nitude? [3–5]. Furthermore, they may mitigate as well the
Hubble tension [6], and they have been investigated in light
of the 21-cm line excess at cosmic dawn by one of us [7].
On the other hand, the picture of the dark energy fluid as a
cosmological constant term entering the Einstein equations
is problematic due to many reasons: it violates the causal-
ity principle, its adiabatic speed of sound is ill-defined, there
is no theoretical framework in terms of elementary particles
theories which can account for its physical properties with
in particular its cosmological value being different from the
one estimated from vacuum energy by 120 orders of magni-
tude [8]. These considerations have been making impossible
to develop appropriate technologies for a direct detection of
dark energy, making the “dark energy problem” to be con-
sidered the most urgent open question to answer in a recent
survey conducted among the fifty most prominent cosmol-
ogists [9]. In fact, the idea itself that dark energy should be
a physical component of our Universe has been constantly
challenged suggesting that it may indeed constitute just an
interpretative aspect of the current standard model of cos-
mology which, for example, neglects the gravitational role
that astrophysical objects like galaxies, clusters, voids, and
filaments have on the large scale evolution of the Universe
[10–13].

For addressing the limits of the description of the dark
energy as a cosmological constant, a number of fluid models
based on non-ideal equations of state have been proposed
and tested against observational datasets with the twofold
purpose of accounting for its thermodynamical properties
and modifying the value of its adiabatic speed of sound in
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such a way that it will not violate the causality principle
[14–19]. Moreover, a time evolution of the equation of state
for dark energy does not violate current observations [20–
22], and various possibilities for its parametric reconstruction
have been investigated [23–25]. Exact solutions to the field
equations become scarce when the picture of dark energy
with a cosmological constant is abandoned, and thus dynam-
ical system techniques constitute a valuable tool for predict-
ing the late-time state of the evolution of the models. For
example, they have been employed in Galileon gravity [26],
Horava–Lifshitz gravity [27], modified teleparallel models
[28], Einstein–Aether model [29], inflationary models [30],
for the study of the evolution of instabilities in a Friedmann
universe [31], and by one of us to various modified Chap-
lygin gas scenarios [32] in a Friedmann cosmology includ-
ing interacting cases [33], ghost energies regimes [34], and
frameworks involving evolving both G and � [35].

As a subsequent step, dynamical system techniques are
usually adopted as well for studying the singularity prop-
erties of the cosmological model in hand [36–39]. In fact,
the results known under the name of singularity theorems
prove that under certain conditions on the matter content of
the Universe, a singular state characterized by the divergence
of certain physical quantities can be reached even in a finite
amount of time during the evolution [40–43]. However, the
mathematical demonstration of such results are usually based
on the modeling of dark energy with a cosmological constant,
and the roles of nonideal fluids have not been fully accounted
for.

In this paper we investigate the asymptotic late-time evo-
lution of a Friedmann universe whose matter content is a
mixture of dark energy and pressure-less dark matter adopt-
ing three descriptions proposed in [44], but allowing also for
interactions between these two constituents modeled as a lin-
ear flow of dark energy, or dark matter, or of their sum, respec-
tively. We will adopt dynamical system techniques which
allow us to compute the attractor equilibrium points in terms
of elementary functions showing explicitly that they can
account for an accelerated expanding Universe, and how this
physical requirement permits to restrict the range of validity
of the free parameters entering our models. The singularity
type of these physical attractors will be presented. Then, the
nine cases (three possible modelings for dark energy times
three possible modelings for dark interactions) will be com-
pared and contrasted with each other in light of their late-time
properties.

The plan of the work is as follows: In Sect. 2, we introduce
three different cosmological interacting models between dark
energy and dark matter with three different nonideal equa-
tions of state for dark energy and provide a formalism to
transform their Friedmann equations into an autonomous
dynamical system. In Sect. 3 we perform the phase-space
analysis for each interacting model and provide a summary

of the obtained results commenting on the patterns which
can be recognized. Section 4 classifies the possible singular-
ities arising in these models by discussing the corresponding
cosmological implications. Finally, in Sect. 5 we summa-
rize our results and make our conclusion. In Appendix A a
brief review will be provided about the approach of dynami-
cal system theory, and the dynamical autonomous equations
for each model that we consider will be derived. Moreover,
Appendix B is devoted for the study of transition between
decelerating and accelerating epochs for each of our model.

2 Basic equations of our cosmological model

In this section we will introduce the notations that we will
follow throughout the paper and review the basic properties
of the Friedmann cosmology under investigation. We adopt
units such that 8πG = 1 = c. ρde denotes the dark energy
density, ρdm the dark matter density, pde the dark energy
pressure, while dark matter is assumed to be pressure-less. e
is the number of Nepero. Let H = ȧ

a be the Hubble function,
H0 its present value, a the scale factor of the universe and a0

its present value. The dimensionless energy-matter parame-
ters on which we will base our dynamical system analysis
are:

x = ρde

3H2 , y = pde

3H2 , z = ρdm

3H2 . (1)

An over dot stands for differentiation with respect to the coor-
dinate time t , and Q will be the interaction term between dark
matter and dark energy. The parameter for the effective dark
energy equation of state is constrained by current astrophys-
ical observations as [20–22]:

− 6

5
= −1.2 ≤ w = y

x
< 0. (2)

We assume that the geometrical properties of the Universe
can be accounted for by the flat Friedmann metric [45]

ds2 = gμνdxμdxν = −dt2 + a2(t)(dr2 + r2dθ2

+r2 sin2 θdφ2). (3)

The matter content is described by the stress-energy tensor
Tμν = (ρ + p)uμuν + pgμν , where uμ = δ

μ
t is the four-

velocity of the reference observer. Introducing the Einstein
tensor Gμν , the equations governing the dynamics of the
model are the Einstein field equations Gμν = Tμν and the
Bianchi identities T μν ;ν = 0, in which a semicolon denotes
a covariant differentiation. Thus, the basic equations can be
reduced to the Friedmann equation, the acceleration equation
and the equations for the conservation of dark energy and
dark matter:
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H2 =
(

ȧ

a

)2

= ρde + ρdm

3
(4)

Ḣ + H2 = ä

a
= −ρde + ρdm + 3pde

6
(5)

ρ̇de = −3H(ρde + pde) + Q (6)

ρ̇dm = −3Hρdm − Q. (7)

In terms of the dimensionless matter parameters (1), the
Friedmann equation can be cast into the constraint

x + z = 1, (8)

and we can observe that its form does not depend on the mod-
eling of the interaction term coupling dark energy and dark
matter that we can choose. Furthermore, physical require-
ments impose the energy densities to be non-negative, and
thus we have the bounded variables 0 ≤ x ≤ 1 and 0 ≤ z ≤ 1
for which dynamical system techniques can be used [36],
while H is the appropriate monotonic function for the Fried-
mann model. The particular cases x = 1 and z = 1 corre-
spond to a dark energy and a dark matter dominated universe
respectively. The deceleration parameter reads as [46,47]:

q = −1 − Ḣ

H2 = 1

2
(1 + 3y), (9)

which must be negative for cosmological meaningful models
[20–22]. Now we need to derive also the remaining evolution
equations in terms of appropriate variables for exploiting the
techniques provided by the theory of dynamical systems. For
this purpose, let a prime denote differentiation with respect
to the number of e-folds of the Universe N = ln a [48]. We
compute the equations of the model using the chain rule

X′ = dX

d N
= dX

dt
· dt

da
· da

d N
= Ẋ

H
. (10)

The evolution eq. of the Hubble function does not depend on
the modeling of the interaction term and it reads as:

H ′ = −3H

2
(1 + y). (11)

The evolution equations for the matter parameters become

x ′ = 1

H

[
ρ̇de

3H2 − 2

3
ρde

Ḣ

H3

]
= 3y(x − 1) + Q

3H3 (12)

z′ = 1

H

[
ρ̇dm

3H2 − 2

3
ρdm

Ḣ

H3

]
= 3y(1 − x) − Q

3H3 , (13)

from which we can see that the compatibility condition x ′ =
−z′ which follows from the Friedmann Eq. (8) automatically
applies implying that we can develop the dynamical system
analysis in terms of x or z without any difference [36]. In our
analysis we will focus our attention on the following three
phenomenological types of interactions between dark matter
and dark energy [49–55]:

Q1 = 3Hbρde + γ ρ̇de (14)

Q2 = 3Hbρdm + γ ρ̇dm (15)

Q3 = 3Hb(ρde + ρdm) + γ (ρ̇de + ρ̇dm), (16)

with the physical constraints on the free parameters −1 ≤
b ≤ 1 and −1 ≤ γ ≤ 1. By considering both positive and
negative signs in the model parameters, we allow both the
dark energy to flow into dark matter and viceversa; moreover
the strength of such flows are proportional to the amounts of
dark energy, or dark matter, or a combination of the two,
respectively, for the three cases. We choose to consider these
types for the interaction terms in the dark sector because we
assume that the interaction represents a small contribution
in the whole evolution of the energy budget of the Universe,
and in fact these terms can be interpreted as a first order Tay-
lor expansion. Moreover, they are based on the assumption
that the propagator of the dark particles is energy dependent.
These choices have been shown to be a valid tool for alleviat-
ing the coincidence problem [56]. Letting y = y(H, x) be the
equation of state for the dark energy fluid we can derive the
second differential equation entering the dynamical system:

y′ = 1

H

[
∂y

∂ H
Ḣ + ∂y

∂x
ẋ

]
= −3H

2
(1 + y)

∂y

∂ H
+ ∂y

∂x
x ′.

(17)

The two equations which will constitute our dynamical sys-
tems are thus provided by (x ′, y′) and the equilibrium points
for which (x ′ = 0, y′ = 0) will be (xeq, yeq). We stress the fact
that the Hubble function H is not a good variable for applying
the algorithm of the theory of dynamical systems since it is
not dimensionless and it is not necessarily bounded: it must
be eliminated from the dynamical equations by inverting the
equation of state for the dark energy as H = H(x, y). Then,
the dynamical system analysis will let us estimate this cos-
mological parameter as Heq = H(xeq, yeq). In the current
paper we will consider different equations of state for dark
energy which are known under the name of Redlich–Kwong
[57], Modified Berthelot [58], and Dieterici [59] which read
respectively as:

p(ρ) = 1 − (
√

2 − 1)αρ

1 − (1 − √
2)αρ

βρ (18)

p(ρ) = βρ

1 + αρ
(19)

p(ρ) = βρe2(1−αρ)

2 − αρ
. (20)

We are interested in such equations of state for the model-
ing of the dark energy fluid because of their applicability in
cosmology [44]. We refer the reader to the appendix of such
paper for a review of their microscopic foundation and of
their main thermodynamical properties. Here we just want
to mention that the positive parameter α quantifies the devi-
ations from a perfect fluid behavior expressed in units of
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the present day critical density 3H2
0 because in all the above

cases we reduce to a linear equation of state p ∼ ρ in the limit
α → 0. On the other hand, the parameter β, which must be
negative for accounting for a dark-energy-like fluid (as eas-
ily recognized from the limit at small α), can be removed in
favor of cosmologically meaningful quantities as

β = (2q0 − 1)[1 − (1 − √
2)x0]

3(1 − z0)[1 − (
√

2 − 1)x0]
(21)

β = (2q0 − 1)(1 + x0)

3(1 − z0)
(22)

β = (2q0 − 1)(2 − x0)e2(x0−1)

3(1 − z0)
, (23)

respectively, where q0 denotes the present-day value of the
deceleration parameter q = − äa

ȧ2 and x0 = αx(z̄ = 0), and
z0 = z(z̄ = 0), z̄ denoting the redshift. These equations
of state have been proposed as improved and more realis-
tic approaches to fluidodynamics than the Van der Waals
equation of state still accounting for the internal forces act-
ing between the molecules constituting a gas. They have
been used for modeling liquid-vapor phase transitions with
the most important difference from the Van der Waals the-
ory being that the attractive force term has been allowed
to be temperature-dependent avoiding the oscillations in the
isotherm curves below the critical temperature, and they con-
stitute an analytical alternative to the use of virial expansions
[60,61]. For applying dynamical system techniques in cos-
mology, these equations of state must be recast as:

y = 1 − 3(
√

2 − 1)αH2x

1 − 3(1 − √
2)αH2x

βx (24)

y = βx

1 + 3H2αx
(25)

y = βxe2(1−3αH2x)

2 − 3H2αx
. (26)

From the equations of state (24)–(26) we can compute respec-
tively:

H = ±
√

(βx − y)(1 + √
2)

3αx(βx + y)
(27)

H = ±
√

βx − y

3αxy
(28)

H = ±

√√√√W
(
− 2βx

e2 y

)
+ 4

6αx
, (29)

in which the double sign corresponds to the cases of expand-
ing or contracting universes respectively, and where W (X)

denotes the Lambert function which is the inverse of XeX.
Once evaluated at the equilibrium point, the requirement of
having a positive argument for the square root will impose

a further restrictions on the numerical values of the free
parameters of the models we are considering. We note that
in the evolution equation for y below, H will appear always
squared, so that its sign does not affect our analysis.

3 Phase space analysis

In this section we perform phase space analysis, then report-
ing the values of the equilibrium points, exhibiting the restric-
tions they impose on the parameters of the models α, β, b,
and γ , and discussing their stability and whether they are cos-
mologically acceptable for the nine combinations equation
of state for the dark energy – interaction term. Together with
a basic review on dynamical system theory, the autonomous
dynamical systems equation for each of these combinations
have been derived in the Appendix A.

3.1 Redlich–Kwong: interaction term Q1

The dynamical system to consider is formed by the two Eqs.
(A7) and (A9). In this case we get three mathematical equi-
libria (xeq, yeq) which read as:

(
1

1 − b
, −1

)
,

(
γ − b − β

β(γ − 1)
,

b + β − γ

γ − 1

)
,

(
b − β − γ

β(γ − 1)
,

b − β − γ

γ − 1

)
. (30)

However only the first point is relevant for cosmology
because the second and third imply a divergent and a vanish-
ing Heq respectively. For such a physical attractor we get:

(Heq, zeq, qeq, weq)

=
⎛
⎝
√

(b − β − 1)(1+√
2)(b−1)

3α(b+β − 1)
,

b

b − 1
, −1, b − 1

⎞
⎠ .

(31)

From the values of such physical quantities we can restrict
− 1

5 ≤ b ≤ 0, where the case b = 0 corresponds to a single
fluid pure dark energy pictured as a cosmological constant
universe. Moreover the relation (b − β − 1)(b + β − 1) < 0
must hold. Since the second factor is always negative for
our choice of the model parameters, we can further restrict
β < b − 1.

The Jacobian matrix associated to the dynamical system
when specified to such equilibrium point reads as:

J =
⎛
⎝ 3(1−b)

γ−1 3
(

1
1−b + 1

γ−1

)
3[(b−1)2+2(b−1)β−β2](1−b)

2β(γ−1)
3 (b−1)2+2(b−γ )β−β2

2β(γ−1)

⎞
⎠ ,

(32)
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implying

DetJ = 9
β2 − (b − 1)2

2β(γ − 1)
(33)

TrJ = 3
(b − 1)2 + 2(1 − γ )β − β2

2β(γ − 1)
(34)

(TrJ)2

4
−DetJ = 9

[(b−1)2 + 2(γ−1)β−β2]2

16β2(γ − 1)2 . (35)

Thus, taking into account the range for the free parameters
of the model, we get DetJ > 0, which means that our equi-
librium point is a a node (spirals are not possible because
(TrJ)2

4 − DetJ > 0), and we can understand that it is sta-

ble because TrJ < 3 2(1−γ )β
2β(γ−1)

≤ −3 < 0. An example of the
phase portrait for such a system is displayed in Fig. 1, panel a,
for the numerical choice of the free parameters as b = −0.1,
γ = 0.5, β = −1.2, and α = 1.5; the equilibrium point is
denoted with a circle.

3.2 Modified Berthelot: interaction term Q1

The dynamical system to consider is formed by the two Eqs.
(A7) and (A10). In this case of the two mathematical attrac-
tors (xeq, yeq):(

1

1 − b
, −1

)
,

(
b − β − γ

β(γ − 1)
,

b − β − γ

γ − 1

)
, (36)

we must exclude the second because it delivers a zero Hubble
function at equilibrium. For the physically relevant equilib-
rium we get:

(Heq, zeq, qeq, weq)

=
(√

b − β − 1

3α
,

b

b − 1
, −1, b − 1

)
(37)

From the values of such physical quantities we must restrict
− 1

5 ≤ b ≤ 0, where the case b = 0 corresponds to a single
fluid pure dark energy pictured as a cosmological constant
universe. Moreover, the relation (b − β − 1) > 0 must hold
providing β < b − 1.

The Jacobian matrix associated to the dynamical system
when specified to such equilibrium point reads as:

J =
⎛
⎝ 3(1−b)

γ−1 3
(

1
1−b + 1

γ−1

)
3(1−b)3

β(γ−1)
3 (1−γ )β+(b−1)2

β(γ−1)

⎞
⎠ , (38)

implying

DetJ = 9(1 − b)(b − β − 1)

β(γ − 1)
(39)

TrJ = 3
(2 − b − γ )β + (b − 1)2

β(γ − 1)
(40)

(TrJ)2

4
− DetJ = 9

[(γ − b)β + (b − 1)2]2

4β2(γ − 1)2 . (41)

Thus, taking into account the range for the free parame-
ters of the model, we get DetJ > 0, which means that
our equilibrium point is a a node (spirals are not possible

because (TrJ)2

4 − DetJ > 0), and we can understand that

it is stable because TrJ < 3 (2−b−γ )β+β2

β(γ−1)
= 3 2−b−γ+β

γ−1 =
3−2+b+γ−β

1−γ
< −3 < 0. An example of the phase portrait for

such a system is displayed in Fig. 1, panel b, for the numer-
ical choice of the free parameters as b = −0.1, γ = 0.5,
β = −1.2, and α = 1.5; the equilibrium point is denoted
with a circle.

3.3 Dieterici: interaction term Q1

The dynamical system to consider is formed by the two Eqs.
(A7) and (A11). In this case we get three solutions (xeq, yeq)

which read as:(
1

1 − b
, −1

)
,

(
2β + (γ − b)e

2β(1 − γ )
,

2βe−1 − b + γ

1 − γ

)
,

(
2(b − γ )e−2 − β

β(γ − 1)
,

2b − 2γ − βe2

2(γ − 1)

)
. (42)

The third must be excluded because it implies Heq = 0.
Moreover:

(Heq, zeq, qeq, weq)

=

⎛
⎜⎜⎝
√√√√

[
W

(
2β

e2(1−b)

)
+ 4

]
(1 − b)

6α
,

b

b − 1
, −1, b − 1

⎞
⎟⎟⎠

(43)

(Heq, zeq, qeq, weq)

=
(√

β(γ − 1)

α[(b − γ )e − 2β] ,
e(b − γ ) − 2βγ

2β(1 − γ )
,

3(b − γ − 2βe−1) + γ − 1

2(γ − 1)
,

2β

e

)
, (44)

for the first and second attractors respectively. We note that
the second equilibrium point does not fulfill the physical
requirements. In fact xeq > 0 requires e(b − γ ) − 2βγ > 0,
which in turn inserted into qeq < 0 would require γ > 1.
For the first attractor we must restrict the values of the model
parameters as − 1

5 ≤ b ≤ 0, where the case b = 0 corre-
sponds to a single fluid pure dark energy as a cosmological
constant universe, and β < 2(b−1)e−2. The Jacobian matrix
for the dynamical system specified to the first attractor is

J1 =
⎛
⎝ 3(1−b)

γ−1 3
(

1
1−b + 1

γ−1

)
3[W (ψ)+2]2(b−1)2

(γ−1)W (ψ)
3 (b−1)W 2(ψ)+(4b+γ−5)W (ψ)+4(b−1)

(1−γ )W (ψ)

⎞
⎠ ,

ψ = 2β

(1 − b)e2 (45)
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(a) (b) (c)

Fig. 1 An example of the phase portrait for the dynamical system
accounting for the interaction term (14), and equation of state (24) in
a, (25) in b, (26) in c, for the numerical choice of the free parameters
as b = −0.1, γ = 0.5, β = −1.2, and α = 1.5; the equilibrium point

is denoted with a circle. We note that the evolution of the system for
case (c) stops when the dynamical equations are not anylonger defined,
showing the part of the phase plane which can be effectively explored
by this system

which implies

DetJ1 = 9(b − 1)[W (ψ) + 4][W (ψ) + 1]
(γ − 1)W (ψ)

(46)

TrJ1 = 3
(1 − b)[W 2(ψ) + 4] + (6 − γ − 5b)W (ψ)

(γ − 1)W (ψ)

(47)

(TrJ1)
2

4
− DetJ1

= 9
[(b − 1)(W 2(ψ) + 4) + (5b − γ − 4)W (ψ)]2

4(γ − 1)2W 2(ψ)
.

(48)

Thus, taking into account the range for the free parameters
of the model, and noticing that

DetJ1 = 54αH2
eq[1 + W (ψ)]

(1 − γ )W (ψ)
(49)

we get DetJ < 0, which means that our equilibrium point is
a saddle. An example of the phase portrait for such a system
is displayed in Fig. 1c, for the numerical choice of the free
parameters as b = −0.1, γ = 0.5, β = −1.2, and α =
1.5; the equilibrium point is denoted with a circle. We note
that in this case the evolution of the system stops when the
dynamical equations lose meaning, that is when the argument
of the Lambert W function becomes smaller than −1/e.

3.4 Redlich–Kwong: interaction term Q2

The dynamical system to consider is formed by the two Eqs.
(A14) and (A16). In this case we get five solutions (xeq, yeq)

which read as:

(1, −1), (1, β), (1, −β),

(
γ − b

β(1 + γ )
,

b − γ

1 + γ

)
,

(
b − γ

β(1 + γ )
,

b − γ

1 + γ

)
. (50)

We notice that the third and fourth equilibria deliver an ill-
defined Heq, while the second and fifth implies a zero Heq.
Thus we can consider only the first point as an appropriate
attractor for cosmology, for which we get:

(Heq, zeq, qeq, weq)

=
⎛
⎝
√

(1 + β)(1 + √
2)

3α(β − 1)
, 0, −1, −1

⎞
⎠ , (51)

which corresponds to a single fluid universe dominated by
dark energy in form of a cosmological constant. The model
parameters must be further restricted requiring β < −1.

The Jacobian matrix associated to the dynamical system
when specified to such equilibrium point reads as:

J =
( − 3(b+1)

γ+1 0
3(β2+2β−1)(1+b)

2β(γ+1)
3 (γ+1)β2−γ−1

2β(γ+1)

)
, (52)

implying

DetJ = 9
(1 − β2)(1 + b)

2β(γ + 1)
(53)

TrJ = 3
(γ + 1)(β2 − 1) − 2(b + 1)β

2β(γ + 1)
(54)

(TrJ)2

4
− DetJ = 9

(β2γ + 2bβ + β2 + 2β − γ − 1)2

16β2(γ + 1)2 .

(55)
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Thus, taking into account the range for the free parame-
ters of the model, we get DetJ > 0, which means that our
equilibrium point is a node (spirals are not possible because
(TrJ)2

4 − DetJ > 0), and we can understand that it is stable
because TrJ < 0. An example of the phase portrait for such
a system is displayed in Fig. 2a, for the numerical choice of
the free parameters as b = −0.1, γ = 0.5, β = −1.5, and
α = 1.5; the equilibrium point is denoted with a circle.

3.5 Modified Berthelot: interaction term Q2

The dynamical system to consider is formed by the two Eqs.
(A14) and (A17). In this case we get four attractors (xeq, yeq)

which correspond to:

(1, 0),

(
b − γ

β(1 + γ )
,

b − γ

1 + γ

)
, (1, −1), (1, β).

(56)

The first equilibrium point is not physical because it delivers
an ill-defined Heq, and we must exclude also the second and
fourth solutions because they imply a zero Heq. For the third
solution, which is the only one relevant for cosmology, we
get:

(Heq, zeq, qeq, weq) =
(√

−1 + β

3α
, 0, −1, −1

)
, (57)

which corresponds to a single fluid universe dominated by
dark energy in form of a cosmological constant. The model
parameters must be further restricted requiring β < −1. The
Jacobian matrix associated to the dynamical system when
specified to such equilibrium point reads as:

J =
( −3 b+1

1+γ
0

−3 1+b
β(γ+1)

−3β+1
β

)
, (58)

which implies

DetJ = 9(b + 1)(β + 1)

β(γ + 1)
(59)

TrJ = −3
(b + 1)β + (γ + 1)(1 + β)

β(γ + 1)
(60)

(TrJ)2

4
− DetJ = 9[bβ − 1 − (1 + β)γ ]2

4β2(1 + γ )2 . (61)

Thus, taking into account the range for the free parame-
ters of the model, we get DetJ > 0, which means that our
equilibrium point is a node (spirals are not possible because
(TrJ)2

4 − DetJ > 0), and we can understand that it is stable
because TrJ < 0. An example of the phase portrait for such
a system is displayed in Fig. 2b, for the numerical choice of
the free parameters as b = −0.1, γ = 0.5, β = −1.5, and
α = 1.5; the equilibrium point is denoted with a circle.

3.6 Dieterici: interaction term Q2

The dynamical system to consider is formed by the two Eqs.
(A14) and (A18). In this case we get five mathematical equi-
libria (xeq, yeq):

(
1,

2β

e

)
,

(
1,

βe2

2

)
, (1, −1),

(
2(b − γ )

β(1 + γ )e2 ,
b − γ

γ + 1

)
,

(
(b − γ )e

2β(1 + γ )
,

b − γ

1 + γ

)
(62)

of which we must exclude the second and fourth because
they deliver a zero Heq. For the three cosmologically relevant
solutions we get:

(Heq, zeq, qeq, weq) =
(√

1

2α
, 0,

1

2
+ 3β

e
,

2β

e

)
(63)

(Heq, zeq, qeq, weq)

=
⎛
⎝
√

W (2e−2β) + 4

6α
, 0, −1, −1

⎞
⎠ (64)

(Heq, zeq, qeq, weq)

=
(√

β(1 + γ )

α(b − γ )e
,

e(γ − b) + 2β(1 + γ )

2β(1 + γ )
,

1 + 3b − 2γ

2(γ + 1)
,

2β

e

)
. (65)

respectively. For the first attractor, which pictures a dark-
matter-free universe, we must restrict − 3e

5 ≤ β < − e
6 ; the

particular case β = − e
2 corresponds to a cosmological con-

stant. The second attractor pictures as well a dark-matter-free
universe in which dark energy is pictured with a cosmolog-
ical constant, and for it we must restrict β ≥ − e

2 for having
a well-defined Hubble function. The third equilibrium point
requires − 3e

5 ≤ β ≤ e(b−γ )
2(1+γ )

where the lower limit comes
from requiring a negative deceleration parameter and a neg-
ative parameter weq for the dark energy equation of state,
while the upper limit comes from requiring a positive dark
matter abundance parameter: moreover a negative decelera-
tion parameter requires b <

2γ−1
3 ; then all the other physical

requirement are automatically satisfied.
We note that the second attractor constitutes a limit of

the first attractor for the particular choice β = − e
2 , which

consequently delivers a bifurcation. A bifurcation between
the first and third attractor is possible when the condition
2β(1+γ )
(b−γ )e = 1 holds. The three attractors reduce to a unique

equilibrium point for the choice (β = −e/2, b = −1). The
Jacobian matrices are ill-defined in the first and third equi-
libria, while in the second it reads:
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(a)

(e) (f) (g)

(b) (c) (d)

Fig. 2 An example of the phase portrait for the dynamical system
accounting for the interaction term (15), and equation of state (24)
in a, (25) in b, for the numerical choice of the free parameters as
b = −0.1, γ = 0.5, β = −1.5, and α = 1.5; the equilibrium point
is denoted with a circle. c–g Display the phase space for the system
for the same interaction term, but with equation of state (26) for the
choices of the free parameters as (γ = 0.1, b = 0.5, β = −0.5),

(γ = −0.1, b = −0.5, β = −1.5), (γ = −0.1, b = −0.5, β = −e/2),
(γ = −0.99, b = −0.3, β = −e/2), and (γ = 0.1, b = −0.5,
β = −1.1) respectively showing a rich behavior and possible bifu-
ractions among the various attractors. Note that in this latter case the
evolution equation can be studied as long as the Lambert W function
is well defined, thus showing if the system can effectively reach these
attractors

J=
( −3 b+1

1+γ
0

−3 (1+b)(W (2e−2β)+2)2

(γ+1)W (2e−2β)
−3 (4+W (2e−2β))(1+W (2e−2β))

W (2e−2β)

)
,

(66)

which implies

DetJ = 9(b + 1)(4 + W (2e−2β))(1 + W (2e−2β))

(1 + γ )W (2e−2β)
. (67)

Being DetJ < 0, this equilibrium point is a saddle. Panels c–g
of Fig. 2 display the phase space for this cosmological system
for the choices of the free parameters as (γ = 0.1, b = 0.5,
β = −0.5), (γ = −0.1, b = −0.5, β = −1.5), (γ = −0.1,
b = −0.5, β = −e/2), (γ = −0.99, b = −0.3, β =
−e/2), and (γ = 0.1, b = −0.5, β = −1.1) respectively
showing a rich behavior and possible bifuractions among the
various attractors. Note that in this latter case the evolution
equations can be studied as long as the Lambert W function
is well defined, thus showing if the system can effectively
reach these attractors.

3.7 Redlich–Kwong: interaction term Q3

The dynamical system to consider is formed by the two Eqs.
(A22) and (A24). In this case we get five mathematical equi-
libria (xeq, yeq):

(b + 1, −1) ,(
(1 + γ )

√
β[β(1 + γ )2 + 4(b − γ )] − β(1 + γ )2 + 2(γ − b)√

β[β(1 + γ )2 + 4(b − γ )] − β(1 + γ )
,

√
β[β(1 + γ )2 + 4(b − γ )] − β(1 + γ )

2

)
,

(
(1 + γ )

√
β[β(1 + γ )2 + 4(b − γ )] + β(1 + γ )2 − 2(γ − b)√

β[β(1 + γ )2 + 4(b − γ )] + β(1 + γ )
,

−
√

β[β(1 + γ )2 + 4(b − γ )] + β(1 + γ )

2

)

(
(1 + γ )

√
β[β(1 + γ )2 − 4(b − γ )] + β(1 + γ )2 − 2(γ − b)√

β[β(1 + γ )2 − 4(b − γ )] + β(1 + γ )
,
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√
β[β(1 + γ )2 − 4(b − γ )] + β(1 + γ )

2

)
,

(
(1 + γ )

√
β[β(1 + γ )2 − 4(b − γ )] − β(1 + γ )2 − 2(γ − b)√

β[β(1 + γ )2 − 4(b − γ )] − β(1 + γ )
,

−√
β[β(1 + γ )2 − 4(b − γ )] + β(1 + γ )

2

)
, (68)

of which we can keep only the first since the others deliver
an ill-defined (second and third), or zero (fourth and fifth)
Heq. For the cosmologically relevant solution we get:

(Heq, zeq, qeq, weq) =
⎛
⎝
√

[β(1 + b) + 1](1 + √
2)

3α(1 + b)[β(1 + b) − 1] ,

−b, −1, − 1

1 + b

⎞
⎠ . (69)

The restrictions to apply to the free parameters of the model
are − 1

6 ≤ b ≤ 0 (from the values of xeq, zeq, and weq),
and [β(1 + b) + 1] · [β(1 + b) − 1] > 0, which implies
β < − 1

1+b , from the value of Heq. The particular case b =
0 corresponds to the case of a dark-matter-free universe in
which dark energy is pictured as a cosmological constant.
The Jacobian matrix for the dynamical system specified to
this attractor is

J =
( −3 3(b − γ )

3 β2(1+b)2+2(1+b)β−1
2β(b+1)2 3 (b+1)2(1+γ )β2−2(1+b)β(b−γ )−γ−1

2β(1+b)2

)
,

(70)

which implies

DetJ = 9[1 − β2(1 + b)2]
2β(b + 1)

(71)

TrJ = 3
(b + 1)2(1 + γ )β2 − 2(2b − γ + 1)(1 + b)β − γ − 1

2β(b + 1)2

(72)

(TrJ)2

4
− DetJ = 9

[
(1 + γ )2(1 + b)2β2 + 2 (2b − γ + 1)2 (1 + b)β − (1 + γ )2

] [(1 + b)2β2 + 2(1 + b)β − 1]
16β2(1 + b)4 . (73)

Since DetJ > 0 this equilibrium point cannot be a saddle,
but only a node or a spiral. We note that the value of the
parameter α does not affect this analysis, whose outcome
consequently depends on the relation between γ and the other
two remaining free parameters. Figure 3 depicts the behavior

of TrJ, and of (TrJ)2

4 − DetJ as functions of γ and β for
the choice b = −0.1 with the latter being on the top for
γ = −1. An example of the phase portrait for such a system
is displayed in Fig. 6a–c, for the numerical choices of the free
parameters as (b = −0.1, γ = 0.9, β = −1.2, α = 1.5),
(b = −0.1, γ = −0.9, β = −1.2, α = 1.5), (b = −0.1,

Fig. 3 This figure shows the behavior of TrJ, and of (TrJ)2

4 −DetJ given
by Eqs. (72) and (73), as functions of γ and β for the choice b = −0.1
with the latter being on the top for γ = −1

γ = 1.0, β = −1.12, α = 1.5) respectively; the equilibrium
points are denoted with a circle, and are respectively a stable
spiral, a stable node, and a unstable node for the previously
mentioned choices of the free parameters.

3.8 Modified Berthelot: interaction term Q3

The dynamical system to consider is formed by the two Eqs.
(A22) and (A25). In this case we get three mathematical
equilibria (xeq, yeq):

(b + 1, −1)(
(1 + γ )

√
β[β(1 + γ )2 + 4(γ − b)] + β(1 + γ )2 + 2(γ − b)√

β[β(1 + γ )2 + 4(γ − b)] + β(1 + γ )
,

√
β

(
β(1 + γ )2

4
− b + γ

)
+ β(1 + γ )

2

⎞
⎠

(
(1 + γ )

√
β[β(1 + γ )2 + 4(γ − b)] − β(1 + γ )2 − 2(γ − b)√

β[β(1 + γ )2 + 4(γ − b)] − β(1 + γ )
,

√
β

(
β(1 + γ )2

4
− b + γ

)
+ β(1 + γ )

2

⎞
⎠ , (74)

of which we can keep only the first since the others deliver a
zero Heq. For the cosmologically relevant solution we get:

(Heq, zeq, qeq, weq)

=
(√

−β(1 + b) + 1

3α(1 + b)
, −b, −1, − 1

1 + b

)
. (75)

The restrictions to apply to the free parameters of the model
are − 1

6 ≤ b ≤ 0 (from the values of xeq, zeq, and weq),
and β < − 1

1+b from the value of Heq. The particular case
b = 0 corresponds to the case of a dark-matter-free universe
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Fig. 4 This figure represents the behavior of TrJ, and of (TrJ)2

4 − DetJ
given by Eqs. (78) and (79), as functions of γ and β for the choice
b = −0.1 with the latter being on the top for γ = −1

in which dark energy is pictured as a cosmological constant.
The Jacobian matrix for the dynamical system specified to
this attractor is

J =
( −3 3(b − γ )

− 3
β(b+1)2 −3β(b+1)2+γ+1

β(1+b)2

)
, (76)

which implies

DetJ = 9
1 + (1 + b)β

β(b + 1)
(77)

TrJ = −3
2β(b + 1)2 + γ + 1

β(b + 1)2 (78)

(TrJ)2

4
− DetJ = 9

(1 + γ )2 + 4(b + 1)2(γ − b)β

4β2(1 + b)4 . (79)

Since DetJ > 0 this equilibrium point cannot be a saddle,
but only a node or a spiral. We note that the value of the
parameter α does not affect this analysis, whose outcome
consequently depends on the relation between γ and the other
two remaining free parameters. Figure 4 depicts the behavior

of TrJ, and of (TrJ)2

4 − DetJ as functions of γ and β for
the choice b = −0.1 with the latter being on the top for
γ = −1. An example of the phase portrait for such a system
is displayed in Fig. 6d–f, for the numerical choices of the free

parameters as (b = −0.1, γ = −0.5, β = −1.2, α = 1.5),
(b = −0.1, γ = −0.9, β = −1.2, α = 1.5), (b = −0.1,
γ = 1.0, β = −1.12, α = 1.5) respectively; the equilibrium
points are denoted with a circle, and are respectively a stable
spiral, a stable node, and a unstable node for the previously
mentioned choices of the free parameters.

3.9 Dieterici: interaction term Q3

The dynamical system to consider is formed by the two Eqs.
(A22) and (A26). In this case we get five mathematical equi-
libria (xeq, yeq):

(b + 1, −1)(
β(γ + 1)2 + e(γ − b) + √

β(β(γ + 1)2 + 2e(γ − b))(γ + 1)

βγ + √
β(β(γ + 1)2 + 2e(γ − b)) + β

,

βγ + √
β(β(γ + 1)2 + 2e(γ − b)) + β

e

)

(
β(γ + 1)2 + e(γ − b) − √

β(β(γ + 1)2 + 2e(γ − b))(γ + 1)

βγ + √
β(β(γ + 1)2 + 2e(γ − b)) + β

,

βγ − √
β(β(γ + 1)2 + 2e(γ − b)) + β

e

)

(
e2β(1 + γ )2 + e

√
β(e2β(γ + 1)2 + 8(γ − b))(γ + 1) + 4(γ − b)

e2β(γ + 1) + e
√

β(e2β(γ + 1)2 + 8(γ − b))
,

e2β(γ + 1) + e
√

β(e2β(γ + 1)2 + 8(γ − b))

4

)

(
e2β(1 + γ )2 − e

√
β(e2β(γ + 1)2 + 8(γ − b))(γ + 1) + 4(γ − b)

e2β(γ + 1) − e
√

β(e2β(γ + 1)2 + 8(γ − b))
,

e2β(γ + 1) − e
√

β(e2β(γ + 1)2 + 8(γ − b))

4

)
, (80)

of which we can keep only the first since the others deliver
a zero or an ill-defined Heq. For the cosmologically relevant
solution we get:

(Heq, zeq, qeq, weq)

=
⎛
⎝
√

W (2(b + 1)βe−2) + 4)

6α(b + 1)
, −b, −1, − 1

1 + b

⎞
⎠ .

(81)

The restrictions to apply to the free parameters of the model
are − 1

6 ≤ b ≤ 0 (from the values of xeq, zeq, and weq),
and − e

2(b+1)
< β < − 2

e2(1+b)
from the value of Heq. The

Jacobian matrix for the dynamical system specified to this
attractor is

J =
( −3 3(b − γ )

−3 [W (2(b+1)βe−2)+2]2

(b+1)W (2(b+1)βe−2)
−3 (γ+1)[W 2(2(b+1)βe−2)+4]+(b+4γ+5)W (2(b+1)βe−2)

(1+b)W (2(b+1)βe−2)

)
, (82)

which implies

DetJ = 9
W 2(2(b + 1)βe−2) + 5W (2(b + 1)βe−2) + 4

W (2(b + 1)βe−2)
.

(83)

Figure 5 shows that DetJ < 0 implying that our equilibrium
point is a saddle. An example of the phase portrait for such
a system is displayed in Fig. 6g, for the numerical choices
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Fig. 5 This figure represents the behavior of DetJ given by Eq. (83) as
function of b and β showing that it is negative for the range of parameters
we are interested in

of the free parameters as (b = −0.1, γ = 0.9, β = −0.4,
α = 1.5), and the equilibrium point, which is a saddle, is
denoted with a circle.

3.10 Summary

Table 1 summarizes the nine cases given by the combina-
tions of equation of state for the dark energy and the type
of interaction between dark matter and dark energy. Each
cell reports the values assumed by the physical quantities
(xeq, yeq, Heq, zeq, qeq, weq) at equilibrium, the type of the
attractor, and the restrictions on the numerical values of the
free parameters of the model following from the requirements
0 ≤ xeq ≤ 1, 0 ≤ zeq ≤ 1, − 6

5 = −1.2 ≤ weq = yeq
xeq

< 0,

qeq = 1
2 (1 + 3yeq) < 0, well defined real and non-zero

Heq (for satisfying the Friedmann equation), and the general
requirements −1 ≤ b ≤ 1, −1 ≤ γ ≤ 1, α > 0, β < 0.

To summarize, our analysis about linearly interacting dark
matter - nonideal dark energy fluids in the linearized regime
of the dynamical evolution allows us to establish some recur-
rent physical patterns among the different modelings for dark
energy.

1. The strength of interaction (that is the deviation from an
ideal gas behavior p ∝ ρ) inside the dark energy fluid
quantified by the parameter α does not affect the stability
nature of the late-time attractors.

2. Similarly, α enters only the value of the Hubble function
Heq, and not the other physical quantities at the equi-
librium like the deceleration parameter, the matter abun-
dance, and the effective parameter of the dark energy
equation of state.

3. In the light of the two remarks above, the numerical
value of α is not restricted by any late-time cosmological
requirement.

4. When an interacting term linear in the dark matter is
assumed, the final states are the same as the limiting b →
0 case when the interaction is linear in the dark energy
(i.e. that in each table the first row reduces to the second
for b = 0).

5. Fixing the type of dark energy - dark matter interaction
and varying the equation of state for dark energy brings to
final states which differ only for the value of the Hubble
constant, that is the age of the universe, with the same
other cosmological quantities.

6. The limit of a diverging α → ∞ delivers a zero cosmo-
logical constant for all the combinations eos - interaction
type.

7. Only the Dieterici equation of state supports bifurcations
between the late-time attractors.

8. The late-time attractors that we have found supporting a
negative deceleration parameter correspond to a de Sitter
universe.

9. Our analysis has identified as well some equilibria char-
acterized by the vanishing of the Hubble function. These
points correspond to a Minkowski universe. In fact, from
(4) we understand that a zero Hubble function necesserely
implies absence of energy density for both dark energy
and dark matter. Then, from the equations of state consid-
ered in this paper (18)–(20) we obtain that a zero energy
density for dark energy implies a zero dark energy pres-
sure. Therefore, from the conservation Eqs. (6)–(7), tak-
ing into account our modeling of the interaction term
(14)–(16), we can check explicitly that this equilibrium
point is a Minkowski universe. Interestingly, this would
not be the case when dark energy is modeled according
to the Modified Chaplygin Gas [62] with p = A + Bρα ,
or adopting the Generalized Chaplygin Gas [14] with
p = βρα (in this latter case with negative α). In fact, a
zero dark energy density delivers a non-zero dark energy
pressure, which in turn provides a non-zero Ḣ through
(5), and a non-zero Einstein curvature tensor contrary to
the case of a Minkowski universe. The dynamical vari-
ables (H , Ḣ ) seem more suited for investigating the sta-
bility of this latter equilibrium point rather than (x , y)
[63] (Table 2).

4 Singularities

The type of singularities that can arise at time ts in a cosmo-
logical model according to [64,65] can be classified into five
cases:

1. Type I or Big rip singularity: limt→ts a(t) = ∞,
limt→ts ρ(t) = ∞, limt→ts |p(t)| = ∞. This is a true
spacetime singularity because it corresponds to have
incomplete null and timelike geodesics [66,67];
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2. Type II or Sudden singularity: limt→ts a(t) = as ,
limt→ts ρ(t) = ρs , limt→ts |p(t)| = ∞. This is a weak
singularity and geodesics are complete [68–71];

3. Type III or Big freeze singularity: limt→ts a(t) = as ,
limt→ts ρ(t) = ∞, limt→ts |p(t)| = ∞. This can be both
a weak or strong singularity and geodesics are complete
[72];

4. Type IV or Generalized sudden singularity: limt→ts a(t)
= as , limt→ts ρ(t) = ρs , limt→ts |p(t)| = ps ,
limt→ts H (i)(t) = ∞, i = 2, . . .. This is a weak sin-
gularity and geodesics are complete [70,71,73,74];

5. Type V or w singularity: limt→ts a(t)
= as , limt→ts ρ(t) = 0, limt→ts |p(t)| = 0, limt→ts w =
limt→ts

p(t)
ρ(t) = ∞. This is a weak singularity [75,76];

where as , ρs and ps are some finite constant values. First
of all we will explain why certain singularities cannot arise
simply looking at the equations of state for dark energy we
have adopted. Then, we will classify the remaining types of

singularity which can arise in our model looking at the lead-
ing terms in the Friedmann evolution equations, essentially
following the same line of thinking of [77,78] (Table 3).

4.1 Type V singularity

The equations of state for the dark energy modeling we
considered, namely the Redlich–Kwong (18), the modified
Berthelot (19), and the Dieterici (20) exhibit the following
behaviors:

lim
ρ→0

|p| = 0, lim
ρ→+∞ |p| = +∞,

lim
ρ→0

w = lim
ρ→0

p

ρ
= β (84)

lim
ρ→0

|p| = 0, lim
ρ→+∞ |p| = |β|

α
,

lim
ρ→0

w = lim
ρ→0

p

ρ
= β (85)

lim
ρ→0

|p| = 0, lim
ρ→+∞ |p| = 0,

(a)

(e) (f) (g)

(b) (c) (d)

Fig. 6 An example of the phase portrait for the dynamical system
accounting for the interaction term (16), and equation of state (24)
in a–c, (25) in d–f, and (26) in g, for the numerical choices of the
free parameters as (b = −0.1, γ = 0.9, β = −1.2, and α = 1.5),
(b = −0.1, γ = −0.9, β = −1.2, and α = 1.5), (b = −0.1, γ = 1.0,

β = −1.12, and α = 1.5), and (b = −0.1, γ = 0.9, β = −0.4,
α = 1.5), respectively; the equilibrium points are denoted with a circle,
and are respectively a stable spiral, a stable node, and a unstable node,
and a spiral for the previously mentioned choices of the free parameters
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Table 1 This table summarizes the values of the cosmological quantities at the equilibrium for the nine dark energy–dark matter interacting systems
we have investigated

Interaction type EoS

Redlich–Kwong Modified Berthelot Dieterici

3Hbρde + γ ρ̇de

(
1

1−b , −1,√
(b−β−1)(1+√

2)(b−1)
3α(b+β−1)

, b
b−1 ,

−1, b − 1
)

Stable node

− 1
5 ≤ b ≤ 0 β < b − 1

(
1

1−b , −1,

√
b−β−1

3α
, b

b−1 ,

−1, b − 1
)

Stable node

− 1
5 ≤ b ≤ 0 β < b − 1

(
1

1−b , −1,√[
W

(
2β

e2(1−b)

)
+4

]
(1−b)

6α
, b

b−1 ,

−1, b − 1
)

Saddle − 1
5 ≤ b ≤ 0

β < 2(b − 1)e−2

3Hbρdm + γ ρ̇dm

(
1, −1,

√
(1+β)(1+√

2)
3α(β−1)

, 0,

−1, −1
)

Stable node β < −1

(
1, −1,

√
− 1+β

3α
, 0, −1, −1

)
Stable node β < −1

Bifurcations here

3Hb(ρde + ρdm) +
γ (ρ̇de + ρ̇dm)

(
b + 1, −1√

[β(1+b)+1](1+√
2)

3α(1+b)[β(1+b)−1] , −b,

−1, − 1
1+b

)
Stable spiral, or

stable node, or unstable node
− 1

6 ≤ b ≤ 0 β < − 1
1+b

(
b + 1, −1,

√
β(1+b)+1
3α(1+b)

, −b,

−1, − 1
1+b

)
Stable spiral, or

stable node, or unstable node
− 1

6 ≤ b ≤ 0 β < − 1
1+b

(
b + 1, −1,√

W (2(b+1)βe−2)+4)
6α(b+1)

, −b,

−1, − 1
1+b

)
Saddle − 1

6 ≤ b ≤ 0

− e
2(1+b)

< β < − 2
e2(1+b)

Table 2 This table summarizes the values of the dark energy density ρde, the absolute value of the dark energy pressure |pde|, and of the dark
matter density ρdm at equilibrium for all the interacting systems we have investigated

Interaction type EoS

Redlich–Kwong Modified Berthelot Dieterici

3Hbρde + γ ρ̇de
(b−β−1)(1+√

2)
α(1−b−β)

,
(b−β−1)(1+√

2)(b−1)
α(b+β−1)

,

b(b−β−1)(1+√
2)

α(b+β−1)

(b−β−1)
α(1−b)

,
b−β−1

α
,

b(b−β−1)
α(b−1)

[
W

(
2β

e2(1−b)

)
+4

]
2α

,

[
W

(
2β

e2(1−b)

)
+4

]
(1−b)

2α
,

−b

[
W

(
2β

e2(1−b)

)
+4

]
2α

3Hbρde + γ ρ̇de
(1+β)(1+√

2)
α(β−1)

,
(1+β)(1+√

2)
α(β−1)

, 0 − 1+β
α

, − 1+β
α

, 0
(

3
2α

,
3β
αe , 0

)
(

W (2e−2β)+4
2α

,
W (2e−2β)+4

2α
, 0

)
(

3β(1+γ )
α

,
3β
αe , 3 e(γ−b)+2β(1+γ )

2α(b−γ )e

)

3Hb(ρde + ρdm) +
γ (ρ̇de + ρ̇dm)

[β(1+b)+1](1+√
2)

α[β(1+b)−1] ,
[β(1+b)+1](1+√

2)
α(1+b)[β(1+b)−1]

− b[β(1+b)+1](1+√
2)

3α(1+b)[β(1+b)−1]

[β(1+b)+1]
α[β(1+b)−1] ,

[β(1+b)+1]
α(1+b)[β(1+b)−1]

b[β(1+b)+1]
3α(1+b)[1−β(1+b)]

W (2(b+1)βe−2)+4)
2α

,
W (2(b+1)βe−2)+4)

2α(b+1)
,

− bW (2(b+1)βe−2)+4)
2α

lim
ρ→0

w = lim
ρ→0

p

ρ
= βe2

2
, (86)

respectively. Therefore, all the models considered in this
papar are type V-singularity-free because they cannot admit
at the same time a zero energy density and a diverging effec-
tive equation of state parameter. We stress that this result
relies only on the particular equations of state we have con-
sidered, and not on the interactions terms. Moreover, this
is a qualitatively similar behavior than the one that can
be obtained for a cosmological modeling which adopts the
Chaplygin gas p = − A

ρn as dark energy for which the pres-
sure cannot vanish in the correspondence of a vanishing
energy density.

4.2 Type I and type III singularity

From (84)–(86) we understand that a type I singularity cannot
happen when we model dark energy in terms of the modified
Berthelot and of the Dieterici equations of state because it is
not possible to have a diverging pressure in correspondence
of a diverging energy density, which is qualitatively the same
behavior of the Chaplygin gas for positive n. Again, we stress
that this observation fully relies only on the particular func-
tional form of the equations of state considered and not on the
choice of the interaction terms. The same conclusion holds
for the type III singularity.

For the Redlich–Kwong scenario, in proximity of a possi-
ble type I or III singularity (if it arises) we can approximate
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Table 3 This table summarizes the values of the parameters which allows for a type I, or II, or III, or IV, or V singularity, respectively. The simbol
# means that that type of singularity cannot occur within our range of interest for the parameters

Interaction type EoS

Redlich–Kwong Modified Berthelot Dieterici

Type I singularity

3Hbρde + γ ρ̇de b − 1 − β > 0 # #

3Hbρdm + γ ρ̇dm # # #

3Hb(ρde + ρdm) + γ (ρ̇de + ρ̇dm) β < − 1
1+b , − 1

6 � b � 1 and b < γ # #

Type II singularity

3Hbρde + γ ρ̇de # # α 
= 0 and γ 
= 1

3Hbρdm + γ ρ̇dm # # α 
= 0 and γ 
= −1

3Hb(ρde + ρdm) + γ (ρ̇de + ρ̇dm) # # α 
= 0 and γ 
= −1

Type III singularity

3Hbρde + γ ρ̇de γ = 1 and 1 + β − b 
= 0 # #

3Hbρdm + γ ρ̇dm # # #

3Hb(ρde + ρdm) + γ (ρ̇de + ρ̇dm) # # #

Type IV singularity

3Hbρde + γ ρ̇de γ = 1 γ = 1 γ = 1

3Hbρdm + γ ρ̇dm γ = −1 γ = −1 γ = −1

3Hb(ρde + ρdm) + γ (ρ̇de + ρ̇dm) # # #

Type V singularity

3Hbρde + γ ρ̇de # # #

3Hbρdm + γ ρ̇dm # # #

3Hb(ρde + ρdm) + γ (ρ̇de + ρ̇dm) # # #

the pressure as

p � βρ (87)

which holds at high energy densities.

4.2.1 Redlich–Kwong: interaction term Q1

Using (87) we can approximate the evolution Eqs. (4), and
(A5)–(A6) nearby the singularity as
(

ȧ

a

)2

= ρde + ρdm

3
(88)

ρ̇de � − 3

γ − 1
(b − 1 − β)ρde

ȧ

a
(89)

ρ̇dm � − 3

γ − 1
[(γ − b + γβ)ρde + (γ − 1)ρdm] ȧ

a
.

(90)

The second equation can be integrated as

ρde(t) � C1a(t)
3(1+β−b)

γ−1 , (91)

where C1 is a constant of integration. Therefore, a type I
singularity may be possible if

3(1 + β − b)

γ − 1
> 0 ⇒ 1 + β − b < 0, (92)

where we used the physical restriction −1 ≤ γ ≤ 1, while a
type III singularity may be possible if

γ = 1 and 1 + β − b 
= 0. (93)

We note that in the absence of the interaction term, i.e. for b =
0 = γ , a type I singularity may still be possible for a phantom
dark energy with β < −1, while a type III singularity cannot
be realized. Then the evolution eq. for the dark matter density
provides

ρdm(t) � a(t)−3

⎡
⎣C2 + C1(γ + βγ − b)a(t)

3(γ+β−b)
γ−1

(b − γ − β)

⎤
⎦ ,

(94)

where C2 is another constant of integration. C1 and C2 can be
determined by imposingρde(a0) = ρde0 andρdm(a0) = ρdm0

respectively. In the proximity of a type I singularity we can
neglect the first term in the evolution of the energy density
for the dark matter respect to the contribution of the dark
energy, and write the evolution of the scale factor as

a(t) �
(

3C1β

4

) γ−1
3(b−1−β) ·

[
((t − C3)(β + 1 − b))2

(γ − 1)(b − β − γ )

] γ−1
3(b−1−β)

, (95)
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whereC3 is a constant of integration which can be determined
requiring a(t0) = a0. Therefore, we can have a type I singu-
larity, which requires a diverging scale factor at a finite time
t = ts if the denominator of the fraction within the square
bracket is vanishing and simultaneously the exponent is pos-
itive, or if the numerator of the fraction within the square
bracket is vanishing and simultaneously the exponent is neg-
ative. In the former case we get the following requirement

b = β + γ and b < 1 + β, (96)

which must be exluded in the light of (92), while in the latter
case

ts = C3 and b > 1 + β. (97)

Therefore, a type I singularity can still arise in the latter
case for a phantom fluid with β < −1 even without interac-
tions. We note that the strength of interactions within the dark
energy fluid quantified by the parameter α has not played any
role in this analysis. If a type III singularity arises, we can
write the evolution for the scale factor as

3(ȧ(t))2 = C1β(γ − 1)a(t)
1+3(β−b)+2γ

γ−1

b − γ − β
+ C2

a(t)
, (98)

and we can neglect the second term in its rhs in light of
(93) and using that the exponential is dominating over the
polynomial. Therefore

a(t) �
(

3C1β(b − 1 − β)2(t − C3)
2

4(γ − 1)(b − γ − β)

) γ−1
3(b−1−β)

. (99)

Observing that

lim
γ→1− a(t) = 1, (100)

we understand that we can get a type III singularity when
(93) applies. Again the parameter α has not played any role
because in the high-energy regime the Redlich–Kwong fluid
behaves effectively like an ideal fluid.

4.2.2 Redlich–Kwong: interaction term Q2

The evolution for the energy density of dark matter in this
case reads as

ρdm(t) � a(t)−
3(b+1)
γ+1 C1, (101)

where C1 is some constant of the integration. The evolution
for dark energy is

ρde(t) � a(t)−3β−3C2 − a(t)−
3(b+1)
γ+1 (γ − b)C1

γ (β + 1) + β − b
, (102)

where C2 is another constant of integration. A type I singu-
larity may happen if

3(b + 1)

γ + 1
< 0 or − 3(β + 1) > 0. (103)

The former condition cannot happen for −1 � γ � 1 and
−1 � b � 1. The latter implies − 6

5 � β < −1, that is
that dark energy must be a quintessence fluid. Moreover, we
ignore the case in which the denominator is zero because
the exponential term dominates over the polynomial term.
Nearby the singularity we can approximate

ȧ(t)2

a(t)2 � C2

3
a(t)−3(1+β), (104)

which can be integrated for the scale factor as

a(t) �
(

3C2(1 + β)2(t − C3)
2

4

) 1
3(1+β)

, (105)

where C3 is another constant of integration. The scale factor
in this case is always regular at a finite time for − 6

5 � β <

−1. Therefore a type I singularity cannot occur.
A type III singularity can happen when

γ (β + 1) + β − b = 0 or − 3(b + 1)

γ + 1
→ +∞. (106)

The first condition implies that β= b−γ
1+γ

, and therefore
requires b < γ for being realized. The latter condition cannot
be realized since −3(b+1)

γ+1 < 0. Thus, nearby the singularity
we can approximate

ȧ(t)2

a(t)2 = C1(b − γ )a(t)3 (1+b)
γ+1

3γ (β + 1) + β − b
, (107)

which can be integrated for the scale factor as

a(t) �
[

3(t − C3)
2(1 + b)2C1(b − γ )

4(1 + γ )2(γ (1 + β) + β − b)

] 1
3

1+γ
(1+b)

, (108)

where C3 is a constant of integration. Therefore a type III
singularity, characterized by a(t) → as , cannot be realized
because 1+γ

3(1+b)
> 0, as already discussed, and taking into the

account vanishing factor in the denominator which follows
from (106).

4.2.3 Redlich–Kwong: interaction term Q3

In this limit, we can approximate the energy conservation
Eqs. (A20) and (A21) with

˙ρde � 3H
[
(b − γ )ρdm + (b − (γ + 1)(1 + β)) ρde

]
(109)

˙ρdm � 3H
[
(γ − 1 − b)ρdm + (γβ + γ − b)ρde

]
, (110)

which deliver the following time evolution for the dark
energy density:

ρde � a(t)u [
C1a(t)v + C2a(t)−v

]
(111)
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u = −3

[
1 + β(1 + γ )

2

]
(112)

v = −3

√
β

(
β(1 + γ )

4
+ γ − b

)
, (113)

where C1 and C2 are two arbitrary constants of integration.
Since neither u nor v can diverge, a type III singularity, char-
acterized by lima→as ρde = ∞, cannot occur in this frame-
work. For investigating the possible occurrence of a type I sin-
gularity, characterized by lima(t)→∞ ρ(t) = ∞, we observe
that we must require u + v > 0. Since u + v will domi-
nate over u − v, it is enough to study the sign of the former.
Explicitly we must require

− 3

[
1 + β(1 + γ )

2

]
+ 3

√
β

(
β(1 + γ )

4
+ γ − b

)
> 0,

(114)

which after some algebraic manipulations can be recast as

β < − 1

1 + b
. (115)

In particular, this requires b
=-1, and more im general the
condition − 6

5 � β < 1 will impose − 1
6 � b � 1. Moreover,

a well defined v requires

β
(1 + γ )

4
+ γ − b < 0 ⇒ β <

4(b − γ )

1 + γ

⇒ b < γ, (116)

where in the last step we imposed β < 0. Applying the
parameterization of [77] to the energy density rather than to
the Hubble function we write

ρde � (t − ts)
n + ρs � C1a(t)u+v, (117)

where in the last step we kept only the leading term. A diverg-
ing energy density in the neighborhood of t = ts requires
n < 0. By inverting for the scale factor we get

a(t) � [(
C1(t − ts)

n + ρs
)] 1

u+v , (118)

and since u + v > 0 (under the conditions we have derived
previously), we can get a(t) → ∞ for t → ts . Therefore, a
type I singularity can occur when the following conditions are
met simultaneously: β < − 1

1+b , − 1
6 � β � 1 and b < γ .

4.3 Type II singularity

We may have a type II singularity in correspondence of the
values of the energy densities which make the denominator
of the equations of state vanish. We observe that:

1 − (1 − √
2)αρ 
= 0 ∀ρ ∈ (0,∞) (119)

1 + αρ 
= 0 ∀ρ ∈ (0,∞) (120)

2 − αρ = 0 for ρ = ρs = 2

α
, (121)

in which we used α > 0 as from [44]. Therefore, a type II
singularity cannot arise in the models involving the Redlich–
Kwong and the modified Berthelot equations of state, but it
may arise in a framework supported by the Dieterici equa-
tion of state. Following [77], nearby a singularity, we can
parameterize the Hubble function as

H(t) =
(

1

t − ts

)n

+ Hs . (122)

In a type II singularity H(t) is finite because ρ(t) is finite
and we use (4). Therefore, n �0. Integrating

ȧ

a
=

(
1

t − ts

)n

+ Hs (123)

we obtain the evolution of the scale factor as

a(t) = C1 exp

[
Hst + 1

1 − n

(
1

t − ts

)n−1
]

(124)

where C1 is some constant of the integration and ts is the
time at the singularity. For n � 0, a(t) is finite about t = ts ,
as we need in a type II singularity. Therefore, we just need
to check explicitly whether we have a finite energy density
nearby the singularity for each type of interaction. First of
all, by expanding the Dieterici EOS about ρ = 2

α
we get

p � 2β

e2α(2 − αρde)
+ 3β

e2α
+ O

(
ρde − 2

α

)
, (125)

in which the leading term is the first one.

4.3.1 Dieterici: interaction term Q1

Keeping only the leading term in the pressure and substituting
it into the energy conservation equations we get

ρ̇de � 3H

γ − 1
pde = 6Hβ

(γ − 1)e2α(2 − αρde)
, (126)

ρ̇dm � 3γ H

1 − γ
pde = 6γ Hβ

(1 − γ )e2α(2 − αρde)
. (127)

From (126) we get

ρde � 2

α

[
1 ±

√
1 − 3β

e2(γ − 1)2 (C1 + ln a)

]
, (128)

where the double sign corresponds to approaching ρs from
the left and from the right respectively. Therefore, for avoid-
ing a divergence in the energy density we must require that
α 
= 0 and γ 
= 1. In this type of singularity α is playing
an important role (contrary to other types of singularity). In
fact for an ideal fluid with p � βρ, we would get p → ∞,

and a type II singularity would not be realized. This result is
compatible with ρs = 2

α
⇒ α 
= 0 (for having a finite energy

density), but we get one more piece of information such that
γ 
= 1. By plugging this ρde into ρ̇dm , and integrating over
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the time, we understand that these two conditions α 
= 0 and
γ 
= 1 are enough for guaranteeing a finite ρdm as well.

4.3.2 Dieterici: interaction term Q2

By repeating the same steps, the dark energy density, when
the second interaction is considered, can be obtained as

ρde � 2

α

[
1 ±

√
1 + 3β

e2 (ln a + C1)

]
, (129)

where the double sign must be interpreted in the same way
in the previous paragraph. Similarly, as in previous case we
must require α 
= 0. The energy density for dark matter is

ρdm � C1a(t)−3 b+1
γ+1 . (130)

To have a finite energy density we must required thatγ 
= −1.

4.3.3 Dieterici: interaction term Q3

For the case of the third interaction term we obtain

ρde � 2

α

[
1 ±

√
1 + 3β(1 + γ )(C1 + ln a)

e2

]
, (131)

where the double sign must be interpreted in the same way in
the previous paragraph. Therefore, we must require α 
= 0,
that is that the dark energy must be pictured as a nonideal
fluid. The dark matter energy density for this case reads as

ρdm � − 2γ

eαβ(1 + γ )

√
3β(1 + γ )(ln a + C1) + e2 + C2,

(132)

which can be finite when α 
=0 and γ 
= −1, (taking into
account that β 
= 0 for dark energy fluid).

4.4 Type IV singularity

To find out if there is such a singularity or not, it is only
necessary to check whether the second derivative of Hub-
ble function is ill-defined, since, in this case, all the higher
order derivatives will be ill-defined automatically. From the
Friedman equations we can get the first derivative for Hubble
function as

Ḣ = −1

2
(ρde + ρdm + pde). (133)

Taking the second derivative of Hubble function and using
energy conservation equations get

Ḧ = −3H

2
(ρde + ρdm + ρdm)︸ ︷︷ ︸

In Type IV singularity this term is regular by definition.

−1

2
ṗde (134)

If a type IV singularity occurs, we must have a divergent
pressure for dark energy |pde| → ∞. By looking carefully
at the second term ṗde which reads as

ṗde = ∂p

∂ρ
· ρ̇, (135)

We can see that it can be divergent when
∣∣∣ ∂p
∂ρ

∣∣∣ → ∞ or ρ̇ →
∞. Note that the ρ̇ depends on the type of the interaction.
For each equation of state we calculate

• For Redlich–Kowng equation of state:

∂p

∂ρ
= β(αρ − 1)[(2√

2 − 3)αρ − 1]
[1 − (1 − √

2)αρ]2
. (136)

Therefore, a type IV singularity may happen if ρ =
1

(1−√
2)α

. However in this case we get ρ < 0. So there is

no type IV singularity.
• For Modified Betherlot equation of state:

∂p

∂ρ
= β

(1 + αρ)2 . (137)

This quantity is always regular for α > 0. Thus a type
IV singularity does not happen in this case.

• For Dieterici equation of state:

∂p

∂ρ
= βe(1−αρ)

(
α2ρ2 − 2αρ + 2

)
(2 − αρ)2 . (138)

In this case we may have a type IV singularity if ρ=2/α.
However in this case we get |pde| → ∞. Thus there is
no type IV singularity.
Therefore, we can have type IV singularity when →⎧⎨
⎩

γ = 1 for 1st interaction
γ = −1 for 2nd interaction
no possibilities for 3rd interaction.

5 Conclusions

The theoretical construction of a cosmological model is an
interplay between the following three independent aspects:
a gravitational theory, the symmetry group of the manifold,
a modeling for the matter content. It is important to clarify
the specific role of each three of them on driving the evo-
lution of the Universe. For example, the effects of a Chap-
lygin gas can be accounted for also by an appropriate f (R)

theory [79], or by an effective inhomogeneous cosmologi-
cal model [80], and similarly the effects of dark matter can
be mimicked by a non-local gravitational theory [81]. These
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claims triggered a line of research trying to break the possi-
ble degeneracy between physically and conceptually differ-
ent frameworks [82–84]. In particular, we are interested in
understanding how this interplay affects two basic aspects of
the cosmological model under investigation: the existence of
late-time equilibrium solutions characterized by a negative
deceleration parameter, and the types of singularities which
can arise. As the starting point, in this manuscript, we explic-
itly checked the existence of accelerating attractors in some
models based on general relativity, the flat Friedmann met-
ric, and some non-ideal dark energy fluids (already proposed
in the literature) linearly interacting with dark matter. In our
models a phase transition between decelerating and acceler-
ating universes is possible (see Appendix B). We showed that
the uniqueness of the accelerating late-time state depends on
the modeling of the dark energy because in one case bifur-
cations are allowed. In our class of models, all the late-time
attractors which support a negative deceleration parameter
correspond to a de Sitter universe. Then, we explained that
certain types of singularity cannot arise just looking at the
specific equations of state we considered, without the need
of any information about the theory of gravity and the metric
element we adopted. Moreover, we showed that the devia-
tions from an ideal fluid for the dark energy do not affect the
existence of other types of singularity. Similarly, we showed
that this quantity affects the value of the Hubble function at
equilibrium (which is the age of the universe), but not of the
other cosmological parameters. Furthermore the request of
a negative deceleration parameter has allowed us to estab-
lish a set of constraints among the free parameters of the
models under investigation. In the forthcoming works we
consider appropriate to investigate whether the classification
of the other singularities we exhibited remains true when
we consider dark energy interacting with scalar fields carry-
ing a non-zero pressure, or when we introduce high-energy
(branes) or long-distance corrections to general relativity for
extending [85], possibly accounting for the role of a massive
graviton [86,87], bouncing cosmology [88,89], in quintom
cosmology [90], in mimetic gravity [91], or when we aban-
don the Copernican principle (e.g. by adopting a Bianchi
or an inhomogeneous model). Also, we will check whether
our claim that the non-ideality of the fluid does not affect the
values of the cosmological parameters at equilibrium, but for
the age of the Universe, should be re-examined. Our results
about the classification of the singularities depending on cer-
tain relationships between the parameters of the model are
also important in light of the studies of their quantum cor-
rections (accounted for by the Wheeler-de Wit equation), as
done for example in the case of dark energy models based on
the non-ideal Shan-Chen fluid in which the cases of singu-
larities characterized by a finite or diverging energy density
where compared and contrasted [92].
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Appendix A: Dynamical system theory: a basic review

Dynamical system techniques have been widely adopted in
the literature for studying the asymptotic behavior of a sys-
tem of differential equations, in particular in the context of
classical Hamiltonian dynamics [93–95]. In this section we
shortly review their properties that we apply in this paper. Let
x = xα1,...,αn (t) and y = yα1,...,αn (t) be two functions of a
time variable t and of n (real) α1,…,αn constant parameters.
Assume that the evolution of the system is governed by the
two differential equations:

x ′ := dx

dt
= fα1,...,αn (x, y), y′ := dy

dt
= gα1,...,αn (x, y),

(A1)

with f and g some arbitrary C1 functions. This type of system
is called autonomous because the right hand side of the evo-
lution equations do not depend explicitly on the time variable
t . Assume also that the dynamical variables are bounded, i.e.
that they satisfy a ≤ x(t) ≤ b and c ≤ y(t) ≤ d ∀t with a,
b, c, d some appropriate (finite) constants. Then, dynamical
system techniques can provide qualitative information about
the evolution of the system after an initial time t0. In par-
ticular, an equilibrium point of the system (xeq, yeq) is such
that

xα1,...,αn (t) = xeq, yα1,...,αn (t) = yeq ∀t (A2)

if ∃t̄ such that xα1,...,αn (t̄) = xeq, yα1,...,αn (t̄) = yeq. From a
computational point of view, equilibrium points can be found
as the roots of the following algebraic system

fα1,...,αn (xeq, yeq) = 0, gα1,...,αn (xeq, yeq) = 0, (A3)
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and in general they depend on the values of the free param-
eters α1,…,αn . It is possible that, when more than one equi-
librium is found, a particular choice of the values of the free
parameters can bring to the identification of two or more
equilibria into a single point: in this case we say that we have
a bifurcation. In general, the system is expected to tend to a
certain equilibrium point at late times (thus we can speak also
of attractors), whose value depend on the initial conditions
chosen (if more than one equilibrium is allowed). Hartman–
Grobman theorem provides the classification of the stability
of equilibrium points in the linearized regime [96]. Let

J :=
( ∂ fα1,...,αn (x,y)

∂x
∂ fα1,...,αn (x,y)

∂y
∂gα1,...,αn (x,y)

∂x
∂gα1,...,αn (x,y)

∂y

)

x=xeq, y=yeq

, (A4)

be the Jacobian matrix of the system evaluated at the equi-
librium point of interest. Then, according to the nature of
its eigenvalues, or equivalently of its determinant DetJ and
of its trace TrJ, the stability of the equilibrium point can be
classified as follows:

• DetJ < 0 ⇔ the eigenvalues are real and of opposite
sign ⇔ the phase portrait is a saddle (which is always
unstable);

• If 0 < DetJ <
(TrJ)2

4 ⇔ the eigenvalues are real, distinct,
and of the same sign ⇔ the phase portrait is a node, stable
if TrJ < 0, unstable if TrJ > 0;

• If 0 <
(TrJ)2

4 < DetJ ⇔ the eigenvalues are neither real
nor purely imaginary ⇔ and the phase portrait is a spiral,
stable if TrJ < 0, unstable if TrJ > 0.

Essentially this classification describes whether the sys-
tem returns back to the equilibrium point or depart from it
after a small perturbation.

As already pointed out, the only equilibrium points rel-
evant for a cosmological analysis must fulfill the following
requirements, which will impose strict restrictions on the free
parameters of the models under investigation: 0 ≤ xeq ≤ 1,
0 ≤ zeq ≤ 1, − 6

5 = −1.2 ≤ weq = yeq
xeq

< 0, qeq =
1
2 (1 + 3yeq) < 0, well defined real and non-zero Heq (for
satisfying the Friedmann equation), and the general require-
ments −1 ≤ b ≤ 1, −1 ≤ γ ≤ 1, α > 0, β < 0.

In the following we derive the dynamical autonomous sys-
tem for each interaction model that we consider:

5.1 Q1 = 3Hbρde + γ ρ̇de

The choice of the interaction term (14) implies the following
laws for the conservation of the dark energy and dark matter:

ρ̇de = − 3H

γ − 1
[(b − 1)ρde − pde] (A5)

ρ̇dm = − 3H

γ − 1
[(γ − b)ρde + (γ − 1)ρdm + γ pde]. (A6)

Consequently the dynamical system to consider becomes:

x ′ = 3

[(
1 + y − b − 1

γ − 1

)
x + y

γ − 1

]
(A7)

y′ = −3H

2
(1 + y)

∂y

∂ H

+3

[(
1 + y − b − 1

γ − 1

)
x + y

γ − 1

]
∂y

∂x
. (A8)

The evolution equation for y in our explicit cases (24), (25),
and (26) reads as

y′ = 3
β2(b − 1)x3 − (β + 2(1 − γ )y + b − γ )βyx2 − y2(b − 2β − 1)x + y3

2βx2(γ − 1)

(A9)

y′ = 3y
β(γ − 1)(y + 1)x2 + y(1 − b)x + y2

βx2(γ − 1)
(A10)

y′ = 3y{[x(b − 1) − y]W 2(χ) + [((γ − 1)y + 4b + γ − 5)x − 4y]W (χ) + 4[(b − 1)x − y]}
x(γ − 1)W (χ)

, χ = −2xβ

e2 y
; (A11)

respectively.

5.2 Q2 = 3Hbρdm + γ ρ̇dm

The choice of the interaction term (15) implies the following
laws for the conservation of the dark energy and dark matter:

ρ̇de = − 3H

γ + 1
[(1 + γ )ρde + (γ − b)ρdm

+(1 + γ )pde] (A12)

ρ̇dm = −3H(1 + b)

γ + 1
ρdm. (A13)

Consequently the dynamical system to consider becomes:

x ′ = 3

(
γ − b

γ + 1
+ y

)
(x − 1) (A14)

y′ = −3H

2
(1 + y)

∂y

∂ H
+ 3

(
γ − b

γ + 1
+ y

)
(x − 1)

∂y

∂x
,

(A15)

where the latter in our explicit cases (24), (25), and (26), is
given by:
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y′ = 3
[(1 + b)x + (1 + γ )y − b + γ ]x2β2 − 2(x − 1)[b − γ − (1 + γ )y]xyβ − [(1 + b)x + (1 + γ )y − b + γ ]y2

2βx2(1 + γ )
(A16)

y′ = −3y
(1 + γ )y2 + [−x2β(1 + γ ) + (b + 1)x − b + γ ]y − x2β(1 + γ )

βx2(1 + γ )
(A17)

y′ = 3y[AW 2(χ) + BW (χ) + C]
x(γ + 1)W (χ)

, χ = −2xβ

e2 y
, A = (b + 1)x + (y + 1)γ − b + y = C

4
(A18)

B = [(y + 1)γ + 4b + y + 5]x + 4[(y + 1)γ − b + y]
(A19)

respectively.

5.3 Q3 = 3Hb(ρde + ρdm) + γ (ρ̇de + ρ̇dm)

The choice of the interaction term (16) implies the following
laws for the conservation of the dark energy and dark matter:

ρ̇de = −3H [(γ + 1 − b)ρde + (γ − b)ρdm + (γ + 1)pde]
(A20)

ρ̇dm = −3H [(b − γ + 1)ρdm + (b − γ )ρde − γ pde].
(A21)

Consequently the dynamical system to consider becomes:

x ′ = 3
[
(b − γ )(1 − x) − (γ + 1)y + x(y − γ + b)

]
(A22)

y′ = −3H

2
(1 + y)

∂y

∂ H
+ 3

[
(b − γ )(1 − x)

−(γ + 1)y + x(y − γ + b)
] ∂y

∂x
. (A23)

The evolution equation for y in our explicit cases (24), (25),
and (26) reads as

y′ = 3
x2[x + (1 + γ )y − b + γ ]β2 + 2[xy − (1 + γ )y + b − γ ]xyβ − y2[x + (1 + γ )y − b + γ ]

2βx2 (A24)

y′ = 3y
(βx2 + b − γ − x)y + βx2 − (1 + γ )y2

βx2 (A25)

y′ = 3y[AW 2(χ) + BW (χ) + C]
xW (χ)

, χ = −2xβ

e2 y
,

A = (1 + γ )y − b + x + γ = C

4
(A26)

B = (x + 4γ + 4)y − 4b + 5x + 4γ (A27)

respectively.

Appendix B: Phase transitions

In this appendix we investigate the phase transitions between
early and late-time epochs of the universe in each cosmolog-
ical model which we have considered in our analysis. This
can be done by looking at the evolution of the deceleration
parameter respect to the e-folding number. The deceleration
parameter is

q = 1

2
(1 + 3y), (B1)

in which the evolution of y is computed from the solution of
the dynamical system. In Fig. 7 we display the results for our
nine cases.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 This figure shows the phase transition between a decelerating
to an accelerating epoch in each cosmological model which have been
studied in this paper. Since the sign of q changes from positive to neg-
ative in each plot, it is clear that the universe experiences a transition
from a decelerating phase in the early times into a late time accelerating
phase. For the a–c, which refer to the first interaction term for all three
equations of state respectively, the value of the parameters have been set
to [b = −0.1, γ = 0.5, β = −1.2, α = 1.5]. While for the d, e which
refer to the second interaction term with first and second equations of

state, the parameters has been fixed at [b = −0.1, γ = −0.5, β =
−1.2, α = 1.5]. In the case of f which refers to the third equation of
state, the sign and value of γ is changed to γ = 0.3. Finally, for the
panels g and hwhich hold for the third interaction term with the first and
second equation of state, the value of the parameters have been fixed at
[b = −0.1, γ = 0.5, β = −1.2, α = 1.5]. However for the third equa-
tion of state, these values are [b = −0.1, γ = 0.1, β = −1.2, α = 1.5]
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