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Abstract A standing problem in neutrino physics is the
consistent and universal definition of oscillating neutrino
states as coherent superpositions of massive neutrino states.
This problem is solved in a quantum field theoretical frame-
work of neutrino mixing developed in analogy with the
Nambu–Jona–Lasinio model for the dynamical generation of
nucleon masses. The massive neutrino states are Bogoliubov
quasiparticles and their vacuum is a condensate of “Cooper
pairs” of massless flavour neutrinos. Their superpositions as
oscillating neutrino states have intrinsic quantum coherence
by construction. In this quantization framework, the stan-
dard phenomenological flavour neutrino states and oscilla-
tion probability formula are validated in the ultrarelativistic
approximation.

1 Introduction

The discovery of neutrino oscillations [1,2] is the most
prominent achievement of physics beyond the Standard
Model. This phenomenon signals the fact that neutrinos
are massive and they mix coherently, in contrast with the
Standard Model massless neutrinos. Neutrino oscillations
were predicted long ago [3–6] and their standard theoretical
description has been developed in the framework of quantum
mechanics [7–12]. Massive neutrinos bring about other puz-
zling questions, regarding their nature as Dirac or Majorana
particles (see, for example, [13]). Plausible mechanisms of
leptogenesis indicate the massive neutrinos, of either Majo-
rana [14] or Dirac type [15], as responsible for the baryonic
asymmetry of the Universe (for an ample review of neutri-
nos in cosmology, see [16]). The neutrino oscillations will
provide also the best test for a possible CPT violation in the
leptonic sector, at DUNE and Hyper–Kamiokande [17,18].

In Standard Model, neutrinos are massless and carry a
U (1) global quantum number called flavour. For each fam-
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ily of leptons (electron, muon and tau-lepton and their cor-
responding neutrinos), family flavour number is conserved.
This conservation also implies that, for example, if an elec-
tron neutrino is produced in a process, it will always be
detected as electron neutrino. The neutrinos of Standard
Model are immutable due to the flavour conservation. In con-
trast, when we allow the neutrinos to mix and become mas-
sive, family flavour number oscillates between the production
and detection, and a particle produced as muon neutrino may
be detected as electron neutrino.

For simplicity and clarity of the exposition, we shall con-
sider throughout this paper the mixing of two families of
Dirac neutrinos. The extension to three families is straightfor-
ward. Majorana neutrinos can be treated as well by the proce-
dure described below. In the standard treatment the oscillat-
ing neutrino states, customarily called “flavour states”, are
represented as unitary superpositions of massive neutrino
states [7,8],

|νe〉 = cos θ |ν1〉 + sin θ |ν2〉,
|νμ〉 = − sin θ |ν1〉 + cos θ |ν2〉, (1)

where |νe〉 and |νμ〉 represent the electron and muon neu-
trino states, and |ν1〉 and |ν2〉 represent the massive neutrino
states, with the masses m1 and m2, while θ is the mixing
angle. It is also assumed that the superposition is coherent,
namely that the phase difference between the two massive
neutrinos is always the same (and usually taken to be zero).
Having different dispersion relations, the propagating mas-
sive states develop a time-dependent phase difference, such
that an electron neutrino is turned, after a macroscopic dis-
tance of propagation, into a muon neutrino. The standard
oscillation probability, in the approximation that neutrinos
are ultrarelativistic, is

Pνeνμ = sin2 2θ sin2
(

�m2

4E L
)

, �m2 = m2
2 − m2

1, (2)

where E is the energy of the neutrinos in the beam and L is
the distance between the neutrino production and detection
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points. The details regarding the standard treatment of neu-
trino oscillations, including the current view on the coherence
of the massive neutrino states, can be found in the mono-
graphs [8–12].

The quantum mechanical formalism relies essentially on
the constancy of the number of particles, therefore it cannot
include the neutrino production and absorption processes.
However, all the interactions of the neutrinos are described by
the Standard Model, therefore a consistent treatment of all the
aspects of propagation, oscillation and interaction has to be
done within a quantum field theoretical framework. How can
one then connect the Lagrangian underlying the propagation
and interaction of massive neutrino fields with the intuitive
picture of the oscillating neutrino states presented above?

The definition of the oscillating neutrino states in quan-
tum field theory is a standing problem ever since the neutrino
oscillations were predicted by Pontecorvo [4]. There are sev-
eral phenomenological approaches within extensions of the
Standard Model (see, e.g., [19–29] and references therein),
all of them leading in the ultrarelativistic approximation to
the standard oscillation formula (2), though there exists still
some debate regarding several more subtle issues in the the-
ory of oscillation (see, for example, [30]). Our understand-
ing of the nature of oscillating neutrinos hinges on a consis-
tent formulation of the mechanism of production/detection
of coherent neutrino states. This coherence, which precludes
the discrimination between different neutrino mass eigen-
states, is the key element for achieving the interference lead-
ing up to the oscillation. In this paper we propose a the-
oretically rigorous definition of oscillating neutrino states,
fulfilling the requirements of coherence and universality.

2 Phenomenological definitions of flavour neutrino
states

In the Standard Model, the massless neutrino fields ψνl , with
l = e, μ interact with the conservation ofU (1) lepton family
number, for example,

Lint = − g√
2

[
ψ̄νe (x)γμLe(x) + ψ̄νμ(x)γμLμ(x)

]
Wμ

+ h.c., (3)

where γμL = γμ
1−γ5

2 , e(x) and μ(x) are the electron and
muon fields and Wμ is the field of the W± gauge bosons.
The fields ψνl are called for good reasons flavour neutrino
fields. The basis of the quantum field theoretical treatment
of neutrino oscillations is to consider the Standard Model
interaction terms and replace the fields ψνl by the mixed
neutrino fields �νl , whose quadratic Lagrangian reads:

L = �νe (x)i /∂�νe (x) + �νμ(x)i /∂�νμ(x)

− (
�νe (x) �νμ(x)

) (
mee meμ

meμ mμμ

) (
�νe (x)
�νμ(x)

)
. (4)

Upon diagonalization, (4) becomes

L = �1(i /∂ − m1)�1 + �2(i /∂ − m2)�2, (5)

with the electron and muon neutrino fields being expressed
as mixings of the massive neutrino fields as
(

�νe (x)
�νμ(x)

)
=

(
cos θ sin θ

− sin θ cos θ

) (
�1(x)
�2(x)

)
, (6)

where

tan 2θ = 2meμ

mμμ − mee
(7)

and

m1 = mee cos2 θ + mμμ sin2 θ − meμ sin 2θ,

m2 = mee sin2 θ + mμμ cos2 θ + meμ sin 2θ. (8)

The quanta of the fields �1 and �2 represent the primary
excitations of the system, i.e. massive neutrino states.

The interaction is expressed by the analogue of the
Lagrangian of interaction (3), in which the massless fields
ψνl are replaced by the mixed neutrino fields �νl . However,
upon the diagonalization of the quadratic part by the transfor-
mation (6), the Lagrangian of interaction becomes, in terms
of the massive fields:

Lint = − g

2
√

2

[
cos θ�̄1(x)γμLe(x) + sin θ�̄2(x)γμLe(x)

− sin θ�̄1(x)γμLμ(x) + cos θ�̄2(x)γμLμ(x)
]
Wμ

+ h.c. (9)

As it stands, the Lagrangian composed of (9) and (5) contains
only massive neutrino fields and can be easily quantized,
leading to two massive neutrinos interacting both with the
electron and the muon. Customarily, at this point the flavour
neutrino states (1) are introduced, though it is well known
that they cannot be quanta of the flavour fields �νl (for a
proof, see [19]).

If we are to speak about neutrino oscillations, we have to be
able to define the coherent oscillating neutrino states, which
should be associated to the fields �νe and �νμ . (Such states
are called in the literature “flavour neutrino states”, but we
shall avoid this terminology because they do not have definite
family flavour number. Instead, we reserve the term offlavour
states solely for the Standard Model massless neutrinos.) It
is clear from the construction that these fields do not admit
their own creation and annihilation operators, because they
are not in definite representations of the Poincaré group. It
is therefore necessary to develop a prescription for assigning
states to the fields �νe and �νμ .

One ingenious proposal in the literature has been to define
the oscillating neutrino states phenomenologically, by the
production or detection process in which they take part [19–
22]. In this approach, it is postulated that the massive neutri-
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nos are emitted or absorbed coherently, and the coefficients
of their superposition are the matrix elements of the neu-
trino production/detection process. As a result, the oscillating
neutrino states are process-dependent, though in the ultrarel-
ativistic limit (which is the only limit in which neutrino oscil-
lations have been observed 1), they reduce to the “standard
flavour states” of the form (1). An alternative quantum field
theoretical approach is to consider the oscillating neutrinos
only in intermediate states, as virtual particles [23,24] (for
reviews, see [25,26]), thus eliminating the need for defining
flavour neutrino states. This solution is somewhat unnatu-
ral, in view of the macroscopic distances travelled by the
oscillating neutrinos. An attempt to construct a Fock space
of flavour neutrino states [27] (see also [28] and references
therein) has been ruled out in Ref. [29], by proving that the
resulting flavour states are unphysical.

3 Universal oscillating neutrino states

In this paper, we propose a novel framework for the defi-
nition of oscillating neutrino states, which are universal in
nature (i.e. process-independent) and coherently emitted and
absorbed by definition. These states inherit a hint of the fam-
ily flavour number from the Standard Model neutrino fields,
which is actually their guaranty of universality.

The quantization prescription we propose is inspired
by the Bardeen–Cooper–Schrieffer (BCS) theory [31] in
Bogoliubov’s treatment [32], or by the Nambu–Jona–Lasinio
(NJL) model [33], with a twist due to the mixing of states. The
analogy does not include the spontaneous symmetry break-
ing. In contrast to those models, in this case the vacuum is
unique, because we start with the effective theory described
by the Lagrangian (4). The procedure works irrespective of
the concrete mass generation mechanism. In the most popu-
lar models, the mass terms for neutrinos are the result of the
Brout–Englert–Higgs mechanism in an extension of the Stan-
dard Model. Once the vacuum is fixed for the electroweak
theory with Dirac neutrino mass terms, that will be the vac-
uum (35) of this scheme and its “uniqueness” has to be under-
stood in this sense. Thus, massive neutrinos can be viewed
as Bogoliubov quasiparticles (this analogy has been earlier
suggested for Majorana neutrinos in [34], as well as for the
case of neutron-antineutron oscillations [35,36]). However,
other mass generation schemes are also possible, for exam-
ple the gravitationally triggered neutrino condensate [37,38]
or the scenario in which the small neutrino masses emerge
from a topological formulation of the gravitational anomaly
[39].

1 The neutrino masses do not exceed approximately 1 eV, while in
neutrino oscillation experiments neutrinos with energy E > 100 keV
are detected.

3.1 Massive neutrinos as Bogoliubov quasiparticles

The general framework of this quantization procedure is the
method of unitarily inequivalent representations, which is the
basis of many fundamental results, including Haag’s theorem
[40]. It has the remarkable feature that it can relate consis-
tently the Standard Model flavour neutrino fields with the
massive neutrino fields. Detailed presentations of the method
can be found in Refs. [41,42].

The procedure is developed in the Heisenberg picture,
where the time-dependent Heisenberg fields satisfy the
canonical equal-time anticommutation relations as well as
the equation of motion

i∂t�(x) = [�(x), H ], (10)

where H is the Hamiltonian of the system. The Fock space of
physical, or observable, states of the Hamiltonian consists by
definition of free particle states, obtained by the application
of creation operators to the physical vacuum of the theory.
When the Hamiltonian is expressed in terms of the creation
and annihilation operators of the physical particles, it has
automatically the form of a free Hamiltonian. We say then
that the Heisenberg fields are realized in the Fock space of
the physical free particles [42]. This is a general feature of
the Heisenberg picture.

The scope of the method of unitarily inequivalent repre-
sentations is to determine the Fock space of the free physical
states of the Hamiltonian. The procedure relies on the self-
consistency between the Heisenberg fields and their physical
Fock space [42] and it can be summarized as follows:

(i) write down the classical Hamiltonian of the theory (cor-
responding to a given classical Lagrangian);

(ii) choose a set of candidate free quantum fields, based on
some physical considerations, and expand the Hamil-
tonian in terms of their creation and annihilation oper-
ators. The Hamiltonian will usually be non-diagonal.
The Fock space corresponding to the candidate fields
is built on a vacuum |0〉 and its particle states describe
bare particles;

(iii) diagonalize the Hamiltonian by introducing new cre-
ation and annihilation operators through Bogoliubov
transformations among the operators of the initial candi-
date fields. The new creation and annihilation operators
act on a new vacuum, which is the physical vacuum
of the theory. The initial candidate fields and the fields
which diagonalize the Hamiltonian are all canonical,
but unitarily inequivalent (they cannot be related by a
unitary transformation in the infinite volume limit).

In this quantization procedure, the states of the physical
Fock space are Bogoliubov quasiparticles and the new vac-
uum |	0〉 of the physical Fock space is a condensate of spin-
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less zero-momentum pairs of bare particles (and antiparti-
cles). Physically, the condensation arises due to some attrac-
tive interactions between the bare particles. In the case of
the BCS theory, this is the interaction between the bare elec-
trons and the phonons of the superconductor lattice, while
in the NJL model it is the strong interaction between mass-
less nucleons. For Dirac neutrinos, it is the interaction with
the Higgs field. Essentially, the interaction term leads to an
effective bilinear term, which is responsible for inducing the
new ground state |	0〉.

In the case of neutrinos and their oscillating states, the
use of this quantization method will closely parallel the NJL
model. We start from the Standard Model with massless neu-
trino fields, but allowing also the right-handed chiral field.
The massless neutrinos will be the bare particles, with their
vacuum |0〉. The Yukawa interactions with the Higgs field
lead effectively to the bilinear (mass) terms in (4), which
break the chiral symmetry. Part of those bilinear terms break
also the family lepton number symmetry. As a result, the
bare vacuum |0〉 will be shifted to the physical vacuum |	0〉,
which is the ground state for massive neutrinos (regarded as
Bogoliubov quasiparticles, as we shall see below). All these
elements will enable us finally to define coherent and univer-
sal (process-independent) oscillating neutrino states on the
physical vacuum (see Sect. 3.2).

Bellow we shall go step-by-step through the quantization
procedure outlined above.

(i) The Hamiltonian with lepton number violation

The Hamiltonian corresponding to the Lagrangian (4) is:

H =
∫

d3x
[

− �νe (x)iγ
i∂i�νe (x)−�νμ(x)iγ i∂i�νμ(x)

]

+
∫

d3x
[
mee�νe (x)�νe (x) + mμμ�νμ(x)�νμ(x)

+meμ
(
�νe (x)�νμ(x) + �νμ(x)�νe (x)

) ]

= H0 + Hmass, (11)

where H0 is (formally) the Hamiltonian of two massless
Dirac fields and Hmass contains the mass terms, the non-
diagonal ones violating family lepton number.

(ii) Bare fields as standard model massless neutrino fields

In the spirit of the method of unitarily inequivalent repre-
sentations, we shall express the Hamiltonian in terms of the
modes of the free massless fields ψνe and ψνμ , which are the
Standard Model neutrino fields, i.e. solutions of the equa-
tions of motion governed by the lepton number conserving
Hamiltonian H0:

iγ μ∂μψνl (x) = 0, l = e, μ. (12)

The solutions of (12) are written in mode expansion, at t = 0:

ψνl (x, 0) =
∫

d3 p

(2π)3/2
√

2p

∑
λ

(
alλ(p)uλ(p)eip·x

+ b†
lλ(p)vλ(p)e−ip·x), (13)

where λ = ±1 is the helicity and p = |p|. The operators
al , a

†
l , bl , b

†
l are creation and annihilation operators on a vac-

uum |0〉,
alλ(p)|0〉 = blλ(p)|0〉 = 0, l = e, μ, (14)

and satisfy ordinary anticommutation relations:

{alλ(p), a†
l ′λ′(k)} = δll ′δλλ′δ(p − k),

{blλ(p), b†
l ′λ′(k)} = δll ′δλλ′δ(p − k), (15)

all the other anticommutators being zero. The states

a†
eλ(p)|0〉 and a†

μλ(p)|0〉 (16)

represent Standard Model (bare massless) electron and muon
neutrinos, respectively. We assign family lepton number +1
to the bare neutrino states and −1 to the bare antineutrino
states. In this sense, the Fock space of massless states built
on the vacuum |0〉 is the space of flavour states.

We proceed by going to the Schrödinger picture, at t = 0,
and making the identification [32,36,41,43]

�νl (x, 0) = ψνl (x, 0), l = e, μ, (17)

in the Hamiltonian (11). This relation will be essential later
for the definition of the oscillating neutrino states. The
Hamiltonian (11), in terms of the modes of the fields (13),
reads as follows:

H =
∫

d3 p
∑
λ

{
p

(
a†
eλ(p)aeλ(p) + b†

eλ(p)beλ(p)

+ a†
μλ(p)aμλ(p) + b†

μλ(p)bμλ(p)
)

+ sgn λ
[
mee

(
a†
eλ(p)b†

eλ(−p) + beλ(p)aeλ(−p)
)

+mμμ

(
a†
μλ(p)b†

μλ(−p) + bμλ(p)aμλ(−p)
)

+meμ

(
a†
eλ(p)b†

μλ(−p) + bμλ(p)aeλ(−p)

+ a†
μλ(p)b†

eλ(−p) + beλ(p)aμλ(−p)
) ]}

. (18)

(iii) Diagonalization of the Hamiltonian and Bogoliubov
transformations

We bring the Hamiltonian (18) to the diagonal form by
employing a two-step procedure. First we rotate the creation
and annihilation operators in (18):
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(
aeλ(p)

aμλ(p)

)
=

(
cos θ sin θ

− sin θ cos θ

)(
a1λ(p)

a2λ(p)

)
, (19)

and similarly for the antineutrino operators, with the mixing
angle θ given by (7). This is a unitarily equivalent represen-
tation of the canonical commutators (15), meaning that the
new operators are canonical:

{aiλ(p), a†
jλ′(k)} = δi jδλλ′δ(p − k),

{biλ(p), b†
jλ′(k)} = δi jδλλ′δ(p − k), i, j = 1, 2, (20)

and annihilate the same vacuum state |0〉. In effect, we have
introduced in this way a new set of massless Dirac fields,
denoted by ψνi (x) with i = 1, 2, such that
(

ψνe (x)
ψνμ(x)

)
=

(
cos θ sin θ

− sin θ cos θ

) (
ψ1(x)
ψ2(x)

)
, (21)

which satisfy

iγ μ∂μψνi (x) = 0, 1 = 1, 2. (22)

The new massless fieldsψνi do not have definite family lepton
numbers due to the mixing (21). In terms of the new operators
aiλ(p) and biλ(p), the Hamiltonian (18) reads:

H =
∫

d3 p
∑
λ,i

[
p

(
a†
iλ(p)aiλ(p) + b†

iλ(p)biλ(p)
)

+ sgn λmi

(
a†
iλ(p)b†

iλ(−p) + biλ(p)aiλ(−p)
) ]

, (23)

which is reminiscent of the Nambu–Jona–Lasinio Hamilto-
nian before diagonalization (see, for example, [43]).

The second step is to diagonalize (23) by defining the
following Bogoliubov transformations:

Aiλ(p) = αipaiλ(p) + βipb
†
iλ(−p),

Biλ(p) = αipbiλ(p) − βipa
†
iλ(−p), i = 1, 2, (24)

where

αip =
√

1

2

(
1 + p

�ip

)
, βip = sgn λ

√
1

2

(
1 − p

�ip

)
(25)

and

�ip =
√

p2 + m2
i . (26)

The coefficients in (24) obey the conditions

|αip|2 + |βip|2 = 1, i = 1, 2, (27)

what insures that the transformations (24) are canonical, such
that the new operators satisfy the canonical anticommutation
relations

{Aiλ(p), A†
jλ′(k)} = δi jδλλ′δ(p − k),

{Biλ(p), B†
jλ′(k)} = δi jδλλ′δ(p − k), (28)

with all the other anticommutators being zero.

By direct calculations, performing the Bogoliubov trans-
formation (24) in the Hamiltonian (23), the latter is shown
to aquire diagonal form in terms of the operators Aiλ(p) and
Biλ(p):

H = ∫
dp

∑
λ,i �ip

[
A†
iλ(p)Aiλ(p) + B†

iλ(p)Biλ(p)
]
. (29)

This is the Hamiltonian of two free Dirac fields of definite
masses m1 and m2, and it is in accord with the diagonal
expression of the Lagrangian, eq. (5).

The operators introduced in (24) define a new vacuum
state, |	0〉,
Aiλ(p)|	0〉 = Biλ(p)|	0〉 = 0, i = 1, 2, (30)

which represents the physical vacuum of the theory. The
physical neutrino states are Bogoliubov quasiparticles, of
Dirac type, with the definite masses m1 and m2 given by (8).
In this way, we have found the mode expansion of the free
massive neutrino fields �i (x, 0), i = 1, 2. The evolution of
these Heisenberg fields is given by

eiHt�i (x, 0)e−i Ht = �i (x, t), i = 1, 2, (31)

with H in the form (29). The corresponding creation and
annihilation operators evolve as

Ai (p, t) = eiHt Ai (p)e−i Ht = Ai (p)e−i�ipt ,

A†
i (p, t) = eiHt A†

i (p)e−i Ht = A†
i (p)ei�ipt , (32)

and similarly for Bi (p, t) and Bi (p, t)†. Thus, the phys-
ical time-dependent massive Dirac neutrino fields will be
expressed as:

�i (x, t) =
∫

d3 p

(2π)
3
2
√

2�ip

∑
λ

(
Aiλ(p)Uiλ(p)e−i(�ipt−p·x)

+B†
iλ(p)Viλ(p)ei(�ipt−p·x)), (33)

with the spinors Uiλ(p), Viλ(p) satisfying the equations

( � p − mi )Uiλ(p) = 0,

( � p + mi )Viλ(p) = 0.

Consequently, the fields �i (x, t) satisfy the free massive
Dirac equations,

(iγ μ∂μ − mi )�i (x) = 0, i = 1, 2. (34)

The physical vacuum |	0〉 is not annihilated by the opera-
tors ai (p), bi (p), nor by al(p), bl(p), therefore it is a different
state from |0〉. Using (24), (25), (30) and (27), we find (see,
for example, [33,36]) that |	0〉 is a coherent superposition,
or a condensate of “Cooper pairs” of massless neutrino states:

|	0〉 = �i,p,λ

(
αip − βip a

†
iλ(p)b†

iλ(−p)
)

|0〉. (35)
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Let us calculate the inner product of the two vacua, using
(35) and taking into account (14) and (25):

〈0|	0〉 = �i,p,λ αip = �i,p,λ

(
1 + p

�ip

)1/2

, (36)

which vanishes as exp
[−(m2

1 + m2
2)

∫
dp

]
, in the infinite

momentum limit. As a result, the two vacua are orthogonal:

〈0|	0〉 = 0. (37)

Consequently, the Fock spaces built on the vacua |0〉 and |�0〉
do not contain any common states. The physical Fock space
is the one containing the vacuum condensate |�0〉, and its
elements are massive neutrino states. It should be emphasized
that all the operators of type al , bl , as well as ai , bi , when
acting on the vacuum |�0〉, create massive particles. This can
be seen by inverting the Bogoliubov transformations (24).
(In contrast, the operators of the type Ai , Bi create massless
particles when acting on the vacuum |0〉.)

Let us emphasize that, in spite of the fact that we started
with the Hamiltonian written in terms of the “flavour neutrino
fields” �νl and made the Schrödinger picture identification
(17), finally we ended up with the massive neutrino fields �i

as physical fields. This shows once more that it is impossi-
ble to identify proper creation and annihilation operators, or
states, of the fields �νl .

3.2 Oscillating neutrino states and their transition
probability

Although the fields �νe and �νμ do not have their own Fock
spaces, we can define a prescription for associating to these
fields properly defined states, which will be called below
oscillating neutrino states. The rule of association has to
satisfy several indispensable conditions:

1. the oscillating states have to be defined on the physical
vacuum |�0〉, namely the vacuum of the massive neutri-
nos;

2. in the limit when the family lepton-number violating
interaction vanishes (i.e. m1,m2 → 0), one recovers the
massless flavour neutrino states defined on the vacuum
|0〉.

The prescription we propose is to generalize the bona fide
flavour neutrino states, defined on the bare vacuum |0〉, as
a†
lλ(p)|0〉. The operators a†

lλ(p) carry a definite family flavour
number, and for this reason we shall adopt them as “neutrino
creation operators” also on the physical vacuum |	0〉. In view
of the relation

1√
2p

(∫
d3x

(2π)3/2 e
ip·xψ̄νl (x, 0)

)
γ0uλ(p) = a†

lλ(p) (38)

and the Schrödinger picture identification (17), �νl (x, 0) =
ψνl (x, 0), l = e, μ, we define in an universal manner the
oscillating neutrino states associated with the fields �νl :

|νl(p, λ)〉 ≡ a†
lλ(p)|	0〉

= 1√
2p

(∫
d3x

(2π)3/2 e
ip·x�̄νl (x, 0)

)
γ0uλ(p)|	0〉.

(39)

This definition satisfies the two consistency requirements
stated above. Using (39) together with (19), (30) and the
inverses of the Bogoliubov transformations (24), we find the
expressions for the oscillating electron and muon neutrino
states as coherent superpositions of the massive neutrino
states with equal momenta, |ν1λ(p)〉 and |ν2λ(p)〉:

|νe(p, λ)〉 =
(

cos θα1pA
†
1λ(p) + sin θα2pA

†
2λ(p)

)
|	0〉,

= cos θα1p|ν1λ(p)〉 + sin θα2p|ν2λ(p)〉 (40)

and

|νμ(p, λ)〉 =
(
− sin θα1pA

†
1λ(p) + cos θα2pA

†
2λ(p)

)
|	0〉

= − sin θα1p|ν1λ(p)〉 + cos θα2p|ν2λ(p)〉, (41)

with the coefficients given by (25)–(26). We emphasize that
the oscillating neutrino states are not orthogonal to each
other, unlike the standard states (1). A priori, there is no prin-
ciple to enforce the orthogonality of the electron and muon
neutrino states. The only quantum field theoretical require-
ment is that the massive neutrino states be orthogonal, and
they are.

The generalization to three neutrino mixing is straightfor-
ward: the flavour neutrino fields in terms of the massive fields
�i , i = 1, 2, 3 are written as

�νl =
∑

i=1,2,3

Uli�i ,

where Uli are the elements of the unitary Pontecorvo–Maki–
Nakagawa-Sakata mixing matrix. Using exactly the same
procedure as above, we find the oscillating neutrino states
in terms of the massive states of �i :

|νl(p, λ)〉 =
∑

i=1,2,3

U∗
liαip|νiλ(p)〉, l = e, μ, τ, (42)

where the coefficients αip have the same expressions as in
(25), but this time there are three of them, with �ip given by
the corresponding massesmi , i = 1, 2, 3. We took advantage
of the fact that, in spite of the a and b-type operators not being
creation and annihilation operators on the physical vacuum
|	0〉, they do act on this vacuum, with the action defined
through the inverse Bogoliubov transformations.

Thus, oscillating neutrino states, associated with the fields
�νl involved in the weak interactions, are naturally defined on
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the physical Fock space of massive neutrinos. By construc-
tion, they have inbuilt coherence, ensured by the coherence
of the vacuum condensate (35). The interaction leading to the
effective mass terms in (4) dresses the bare flavour neutrinos
and transforms them into physical states. In this process of
clothing [41], effectively encoded in the vacuum condensate,
the neutrinos gain mass and lose family flavour number.

It should be pointed out that the Eq. (42) do not represent
a “change of basis”, from the “massive states basis” to the
“oscillating states basis”. The oscillating states do not exist
independently of the massive states. Only the latter form a
basis. As a result, inverting (42) in order to express a mas-
sive state as a “superposition of oscillating states” is not a
justifiable operation.

The oscillation amplitude between the two types of neu-
trinos is obtained by letting the electron neutrino state evolve
and sampling the amount of muon neutrino in it at an arbitrary
time t :

Aνe→νμ = 〈νμ(p, λ)|νe(p, λ), t〉
≡ 〈νμ(p, λ)|e−i Ht |νe(p, λ)〉. (43)

Using (40) and (41), as well as the Hamiltonian in the
form (29) and its action on the massive neutrino states
H A†

iλ(p)|	0〉 = �ip A†
iλ(p)|	0〉, we obtain:

Aνe→νμ = 1

2
sin 2θ

[
− (α1p)

2e−i�1pt + (α2p)
2e−i�2pt

]
,

(44)

with the various coefficients and energies given by (25)–(26).
This is the general expression, valid for any values of the
particle momenta and mass parameters in the Lagrangian
(4). To come to a more familiar expresion of the transition
amplitude, we expand (44) to the second order in mi/p. In
this order,

Aνe→νμ = 1

2
sin 2θe−ipt

⎡
⎣−

(
1 − 1

4

m2
1

p2

)2

e−i
m2

1
2p t

+
(

1 − 1

4

m2
2

p2

)2

e−i
m2

2
2p t

⎤
⎦ . (45)

We note that the transition amplitude Aνe→νμ is never zero,
i.e. there is always a small portion of muon neutrino in the
electron neutrino and vice-versa. This is due to the fact that
the oscillating neutrino states are not orthogonal, but the
departure from orthogonality is extremely tiny, of the order
of m2

i /p
2. As a result, the probability of an electron neutrino

to interact with muons, for example, is theoretically nonva-
nishing but experimentally inobservable.

In the ultrarelativistic approximation, we discard the terms
of second order in mi/p and obtain

Aνe→νμ = 1

2
sin 2θe−ipt

[
− e−i

m2
1

2p t + e−i
m2

2
2p t

]
, (46)

recovering in this limit the standard oscillation probability,

Pνe→νμ = sin2 2θ sin2
(

�m2

4p t
)

, �m2 = m2
2 − m2

1. (47)

4 Outlook

The universal definition of the oscillating neutrino states is
the first step towards formulating the quantum field theoreti-
cal mechanism of their coherent production and absorption.
We propose for the first time a prescription for constructing
intrinsically coherent neutrino states (39), by establishing a
one-to-one correspondence with the Standard Model mass-
less neutrino states. This construction can be implemented for
the mixing of any number of Dirac or Majorana neutrinos and
it represents a novel conceptual framework for the descrip-
tion of neutrino oscillations. The present formalism will lead
to a deeper understanding of coherence and decoherence of
oscillating particles, as well as oscillations of nonrelativistic
neutrinos. At the same time, the elucidation of the unitarity
and relativistic covariance of the mechanism of interaction
of oscillating states is of utmost importance.

There is a commonly held belief that the Lagrangian and
Hamiltonian formalism lead to the same results. However,
it should not be forgotten that when it comes to quantiza-
tion, the Hamiltonian formalism is the repository of the first
principles, to which we have to return whenever we analyse
an unconventional physical situation, like particle oscilla-
tions. In general, the Hamiltonian formalism, in particular
the method of unitarily inequivalent representations, brings
out a richer dynamical picture than the simple diagonalization
of the Lagrangian [41]. The theoretical framework proposed
here is no exception: by Lagrangian diagonalization, we can-
not go further than the Eqs. (5) and (9), which show mas-
sive neutrino fields in interaction with charged lepton fields,
with the flavour neutrino fields completely obliterated. In
contrast, the Hamiltonian quantization formalism developed
in this paper gives a prominent role to the flavour neutrino
fields �νl , l = e, μ, by the Eq. (17). This makes possible to
associate to them the oscillating neutrino states (39), which
have intrinsic coherence as superpositions of massive neu-
trino states.

The oscillating neutrino states thus defined (39) dif-
fer from the standard neutrino states (1). Nevertheless, the
present quantization prescription does not contradict the stan-
dard phenomenological treatment, since the corrections to
the vacuum oscillations are negligible in the ultrarelativistic
approximation, in which all the oscillation experiments have
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been performed. Thus, the standard formalism is validated
as the limit of a conceptually more rigorous framework. It
is interesting to note that the coherent states introduced by
Klauder [44], Sudarshan [45] and Glauber [46] and used in
quantum optics are also not mutually orthogonal (see also
Ref. [47] for a presentation of the coherent state formalism
in the particle physics context). The lack of orthogonality
appears to be the price for coherence.

The quantitative differences between the oscillating neu-
trino states (39) and the standard flavour states (1) are more
pronounced for nonrelativistic neutrinos. This may suggest
possible effects for the planned PTOLEMY experiment [48]
for the detection of the cosmic neutrino background. How-
ever, since the relic neutrinos are considered to have deco-
hered and to propagate as massive states without oscillating,
their behaviour in interaction is not affected by the present
formalism. It would be interesting to find testable situations
in which nonrelativistic neutrinos do oscillate.

Moreover, it is quite plausible that this approach may lead
to enhanced corrections to the MSW effect [49,50]. The
quantitative differences could be even more significant for
neutrinos in extreme conditions, like supernova neutrinos
[51]. We shall consider these aspects in a future commu-
nication.
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