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Abstract DsixTools is a Mathematica package for
the handling of the standard model effective field theory
(SMEFT) and the low-energy effective field theory (LEFT)
with operators up to dimension six, both at the algebraic and
numerical level. DsixTools contains a visually accessible
and operationally convenient repository of all operators and
parameters of the SMEFT and the LEFT. This repository
also provides information concerning symmetry categories
and number of degrees of freedom, and routines that allow
to implement this information on global expressions (such
as decay amplitudes and cross-sections). DsixTools also
performs weak basis transformations, and implements the
full one-loop Renormalization Group Evolution in both EFTs
(with SM beta functions up to five loops in QCD), and the full
one-loop SMEFT-LEFT matching at the electroweak scale.
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1 Introduction

The experimental success of the Standard Model (SM) of
particle physics and the absence of new physics (NP) signals
after LHC run 2, seem to indicate the presence of a mass gap
between the Electroweak (EW) scale and the scale of poten-
tial new dynamics. If this is the case, non-standard effects in
processes at energy scales much smaller than the scale of NP
can be described within Effective Field Theory (EFT).

Above the EW scale, the relevant EFT which contains
the SM as the low-energy limit is called the Standard
Model EFT (SMEFT). The SMEFT accounts for the effect
of unknown heavy degrees of freedom by extending the
SM Lagrangian with higher-dimensional operators invariant
under the SM gauge group. The dominant NP contributions
to most of the processes of phenomenological interest are
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then parametrized by Wilson Coefficients (WCs) of SMEFT
operators of canonical dimension five and six [1].

Below the EW scale, heavy SM particles (massive bosons
and the top quark) also decouple, and the dynamics is
described by the Low-Energy EFT (LEFT). This theory con-
sists of the QCD and QED Lagrangians for the light SM
fermions complemented with a set of higher-dimensional
operators compatible with the gauge symmetries of QED and
QCD. The Wilson coefficients of these higher dimensional
operators encode all the physics related to heavy SM states
and the NP degrees of freedom, dominated again by oper-
ators of canonical dimension five and six [2]. The LEFT is
more general than the SMEFT since it is still the correct low-
energy EFT when there are new particles at the EW scale.
However, under the SMEFT hypothesis, one can define the
LEFT (fix its WCs) by doing a matching to the SMEFT at
the EW scale.

The basis for automation of calculations within these two
EFTs arises from work done within the last decade. First, a
complete non-redundant operator basis for the SMEFT up
to dimension six was derived in Ref. [3] (aka the Warsaw
basis). The complete set of one-loop anomalous dimensions
of the operators in the Warsaw basis was then calculated
in a series of papers [4–7]. Similarly, a complete and non-
redundant basis for the LEFT up to dimension six was con-
structed in Ref. [2] (aka the San Diego basis), and the full
one-loop anomalous dimensions were calculated in Ref. [8].
Finally, the tree-level and one-loop matching between the
LEFT and the SMEFT was performed in Refs. [2,9], respec-
tively (see also [10,11]).

These advances, together with simultaneous theoretical
developments occurring in the field (such as the matching
of specific models to the SMEFT at one loop [12–22], or
the automation of calculations by means of several computer
tools [23–35]), pave the way to the systematic use of EFT
methods in the analysis of new physics models. The power
of the this approach is that it allows to relate physics at dis-
parate energy scales, in our case properties of the high-energy
dynamics at the new physics scale �UV, with measurements
that take place at low energies, while performing an expan-
sion in 1/�UV that allows to keep leading new physics effects
in a consistent manner.

The Mathematica1 package DsixTools [24] was
developed as a tool to implement such automated calcula-
tions. Since the first release of DsixTools in 2017, further
development of the package has occurred in two directions:
(1) implementation of new theory results (such as moving
from the WET [37] to the LEFT, and the implementation of
higher-order effects), and (2) improvements and refinements
at the front-end and operational levels (new routines, input,
documentation, faster methods for RG evolution, and nota-

1 Mathematica is a product from Wolfram Research, Inc. [36].

tion). The result of these developments is the new release
DsixTools 2.0, which is available at

https://dsixtools.github.io

This paper presents a description of the program and its new
features.

2 DsixTools in a nutshell

2.1 Overview of DsixTools 2.0

DsixTools is aMathematicapackage for analytical and
numerical computations within the SMEFT and the LEFT.
It features routines devoted to RGE running (in the SMEFT
and in the LEFT), matching between the two theories, basis
transformation, input reading (with consistency checks) and
output generation. DsixTools also contains a comprehen-
sive and pedagogical repository with routines that allow the
user to display lists of operators with certain properties, and
information on WCs in the SMEFT and the LEFT.

The current version of DsixTools (DsixTools 2.0)
fully implements the one-loop SMEFT RGEs, the complete
one-loop matching between the SMEFT and the LEFT, and
the one-loop LEFT RGEs, all up to operators of canonical
dimension six. In what concerns the SMEFT RGE running,
DsixTools contains:

• Three-loop SM RGEs from Refs. [38–41], as well as five-
loop QCD corrections to the running of the strong gauge
coupling and quark Yukawa couplings from Refs. [42–
44].2

• One-loop RGEs for the dimension-six operators in the
Warsaw basis from Refs. [4–6].3

• One-loop RGEs for the dimension-six baryon-number-
violating operators from Ref. [7].

• One-loop RGE for the dimension-five lepton-number-
violating operator from Ref. [49].

Regarding the SMEFT-LEFT matching,DsixTools imple-
ments:

• The tree-level matching of the SMEFT Warsaw basis to
the LEFT San Diego basis at the electroweak scale, using
the results of Ref. [2]. We have independently derived the
matching relations (in two different ways), finding full
agreement.4

2 The one- and two-loop SM RGEs were computed in [45–47] and
[48], respectively.
3 We have taken into account the errata published in http://einstein.
ucsd.edu/smeft/.
4 See the erratum at https://einstein.ucsd.edu/smeft/.
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Fig. 1 Scketch of the DsixTools matching-running routine. The
DsixTools terminology is: �UV = HIGHSCALE, �EW =
EWSCALE and �IR = LOWSCALE. The default is EWSCALE = MZ =
91.1876 GeV

• The complete one-loop matching of the SMEFT Warsaw
basis to the LEFT San Diego basis at the electroweak
scale, using the results of Ref. [9].

Finally, DsixTools also implements several results related
to the RGE running in the LEFT:

• Four-loop QCD corrections to the strong coupling beta
function and quark mass anomalous dimensions from Ref.
[50].

• One-loop RGEs for all LEFT operators up to dimension
six in the San Diego basis from Ref. [8].

The structure of DsixTools is illustrated in Fig. 1,
where one can also see how they relate to the different energy
ranges and effective theories. Relevant details of the SMEFT
and LEFT implementations are given in Appendices A–C,
where our conventions are also presented.

2.2 Differences with DsixTools 1.0

The list of improvements and changes that features the new
version with respect to the original version published in 2017
is substantial, and programs written with DsixTools 1.0
will most likely not work with DsixTools 2.0. Thus we
collect here a summary of the most relevant changes:

• DsixTools 2.0 is now very easy to install, directly
within Mathematica. See Sect. 3.

• The notation for WCs has changed such that now they
are dimensionful. For example the SMEFT Lagrangian
is given by:

LSMEFT = L(4)
SM +

∑

k

C (5)
k Q(5)

k +
∑

k

C (6)
k Q(6)

k +O
(

1

�3
UV

)
,

(2.1)

with C (5)
k ∼ �−1

UV and C (6)
k ∼ �−2

UV. Same principle
applies also to the LEFT WCs.

• The WET [37] basis has been superseded by the LEFT,
in order to implement all the new results derived within
the latter.

• Nomenclature for operators and Wilson coefficients has
been modified, mainly for global convenience and con-
sistency, and in part to make it closer to more common
standards (e.g. WCxf [51] or FeynRules [27]).
First, all operators in the SMEFT start with Q (e.g.
Q(3)

φ� = QHl3) while the ones in the LEFT start with

O (e.g. O(V 8,LL)
ud = OudV8LL).

Second, Wilson coefficients in the SMEFT start with C
(e.g. [C (3)

φ� ]12 = CHl3[1,2]) while the ones in the LEFT

start withL (e.g. [L(V 8,LL)
ud ]1213 = LudV8LL[1,2,1,3]).

In DsixTools 1.0, flavor matrices were specified as
WC[name], wherenamewas not the same as the name of
the Wilson coefficient (e.g. WC[ϕl3] vs. ϕL3[1,2]).
Flavor matrices in DsixTools 2.0 have the same name
as the WCs but with an ‘M’ in front, e.g.

MCHl3 = {{[C(3)
φ�

]1,1, [C(3)
φ�

]1,2, [C(3)
φ�

]1,3}, · · · } ,

MLudV8LL = {{{{[L(V 8,LL)
ud ]1111, [L(V 8,LL)

ud ]1112, · · · }, · · · }}}.

In addition, characters that are not trivially easy to type in
Mathematica have been avoided (e.g. ϕL3[1,2] →
CHl3[1,2] or ϕ� → CHbox).

• Besides the two options to solve the RGEs available in
DsixTools 1.0 (exact numerical solution and leading
logarithm), DsixTools 2.0 includes a third method
as the default setting. This method employs the Evo-
lution Matrix approach, described in Appendix D. This
method is numerically very precise and it is computa-
tionally faster than solving the RGEs exactly.

• Many of the routines inherited from DsixTools 1.0
have changed names. For example, all routines related to
the SMEFT now start with SMEFT... and similarly for
the LEFT (e.g. SMEFTRunEGEs and LEFTRunRGEs),
which makes it easier to use Mathematica’s autocom-
pletion feature. In addition, some routines inDsixTools
1.0 have been eliminated (or replaced by improved ones),
and new routines have been implemented. See Sect. 4.6
for the complete list of routines in DsixTools 2.0.

• DsixTools 2.0 incorporates a reference repository
of information about the SMEFT and the LEFT acces-
sible through the routines SMEFTObjectList and
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LEFTObjectList, SMEFTOperators and
LEFTOperators, SMEFTParameterList and
LEFTParameterList, ObjectInfo,
SMEFTOperatorsMenu andLEFTOperatorsMenu,
SMEFTOperatorsGrid andLEFTOperatorsGrid,
and NIndependent. In addition, DsixTools 2.0
contains a full Mathematica documentation system.

• Setting the input values for the Wilson coefficients
in the SMEFT or the LEFT through NewInput[…],
ChangeInput[…] or ReadInputFiles[…] now
checks the consistency of the given input, printing warn-
ings when necessary. The same is done when set-
ting scales through NewScale[...]. The input in
DsixTools 2.0 is basis-independent. See Sect. 4.2
for details. The user can also check the input values
for the WCs at any time using the routines
InputValues,SMEFTLagrangian[HIGHSCALE]
or LEFTLagrangian[EWSCALE].

• DsixTools 2.0 includes higher order corrections to
matching coefficients and RG coefficients as compared
to DsixTools 1.0. In particular it includes SM beta
functions up to five loops, and LEFT matching conditions
in the SMEFT at one loop.

3 Downloading, installing and loading DsixTools

DsixTools is free software under the copyright of the GNU
General Public License. There are two ways to download the
package and install it:

Automatic installation

The simplest way to download and install DsixTools is to
run the following command in a Mathematica session:

Import ["https ://raw.githubuser
content.com/DsixTools/DsixTools

/master/install.m"];

This will download and install DsixTools in the Applica-
tions folder of the Mathematica base directory, activate
the documentation and load the package. During the instal-
lation process, a pop up window will appear asking if you

want to convert the .m files to .mx format. This option is rec-
ommended, since it significantly reduces the DsixTools
loading time.

Manual installation

Alternatively, the user can also download and install
DsixTools manually. The package can be downloaded
from the web page [52]:

https://dsixtools.github.io

We recommend placing the DsixTools folder inside the
Applications folder ofMathematica’s base directory, after
which loading the package will be automatic. Alternatively,
the user can place theDsixTools folder in a different direc-
tory. In this case, loading the package will require specifying
previously its location via

pathtoDsixTools = "<directory >";
AppendTo[$Path , pathtoDsixTools ];

As a final step, the user can activate the documentation by
moving the contents of the zip file Documentation.zip
inside the DsixTools folder, and applying

If[$VersionNumber >=12.1 ,
PacletDataRebuild [],
RebuildPacletData []];

inside a Mathematica notebook.

Loading DsixTools

Once installed, the user can load DsixTools anytime
with the command

Needs["DsixTools ‘"]

When DsixTools is loaded, a message is printed out with
information about the version, the authors, and links to the
relevant references and to the DsixTools website:

A typical loading time is about 5–10 s depending on
the machine, if the .m to .mx conversion is done. When
DsixTools is loaded, several (relatively heavy)
Mathematica files containing SMEFT and LEFT beta
functions, RGEs and evolution matrices, as well as the
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SMEFT-LEFT one-loop matching relations are loaded as
well. This may be unnecessary for some DsixTools appli-
cations. In this case the user can force DsixTools to load
without importing such files, by evaluating the line

DsixTools ‘ImportFiles = False;

before loading DsixTools. This will reduce the loading
time to under a second. If running or matching is required
after loading DsixTools in this mode, the corresponding
files can be loaded by the user a posteriori, there is no need
to reload DsixTools.

4 Using DsixTools

In this Section we describe how to use DsixTools in some
detail, explaining the main features of the package with spe-
cific examples of use. At the end of the section we provide a
complete list of DsixTools routines and functions with a
brief explanation of each one of them.

4.1 A DsixTools program

The following is a simple but complete DsixTools pro-
gram which takes input from the user for the SMEFT
Lagrangian at the UV scale �UV = HIGHSCALE, and cal-
culates the LEFT WCs at the scale μ, chosen here equal to
�IR = LOWSCALE, printing out one specific WC for illus-
tration:

Needs["DsixTools ‘"]

NewScale [{ HIGHSCALE -> 10000}];

NewInput [{Clq1 [1,1,1,2] ->
1/ HIGHSCALE^2,
Clq1[1,1,2,1] ->
1/ HIGHSCALE^2, CH ->
-0.5/ HIGHSCALE ^2}];

RunDsixTools;

D6run[LeuVLL [2,2,1,1]] /.
\[Mu] -> LOWSCALE

The program begins by loading DsixTools, as explained
in Sect. 3. In the next line we provide the numerical value for
the global variable HIGHSCALE which corresponds to �UV

HIGHSCALE = �UV = 10 TeV .

In DsixTools all scales are given in GeV. The third
line defines the input values by means of the NewInput

DsixTools routine. In this case the user is implicitly spec-
ifying that the input WCs correspond to the SMEFT, and
these take the values
[
C (1)

�q

]

1112
=

[
C (1)

�q

]

1121
= 1

�2
UV

= 10−8 GeV−2 ,

Cϕ = − 0.5

�2
UV

= −5 · 10−9 GeV−2 , (4.1)

at the new physics scale �UV = 10 TeV, with all the other
WCs set to zero. We note that [C (1)

�q ]1112 = [C (1)
�q ]1121 fol-

lows from the hermiticity of the Lagrangian, which implies
the general relation [C (1)

�q ]aabc = [C (1)
�q ]∗aacb. If this condi-

tion were not respected by the arguments of the NewInput
routine, a message would be issued by DsixTools and a
modification of the input values in order to restore consis-
tency would be applied (see Sect. 4.2). In the next line, the
program makes use of the RunDsixTools routine. This
can be regarded as the master DsixTools routine, since it
performs the three main tasks this package is designed for:
it runs the SMEFT parameters from �UV = HIGHSCALE
to �EW = EWSCALE, matches to the LEFT, and finally runs
the LEFT parameters from �EW = EWSCALE to �IR =
LOWSCALE. The variableLOWSCALE takes the default value
LOWSCALE = 5 GeV. After evaluating RunDsixTools,
the D6run function becomes available. The last line of the
program precisely reads these results by printing the value of
the LEFT WC [LV,LL

eu ]2211 at μ = �IR = 5 GeV, obtaining
a numerical result
[
LV,LL
eu

]

2211
� 6.22 · 10−6 GeV−2 .

The general flowchart of this minimal program can be
seen in Fig. 2. It clearly involves most of the main routines
ofDsixTools and serves as an example of use in a practical
scenario. However, some of the functionalities used in this
program offer alternative possibilities and methods of appli-
cation. For this reason, in the rest of the paper we explain in
greater detail how to take full advantage of DsixTools.

4.2 Input values in DsixTools

One of the first steps in every DsixTools program is
to define the input. This includes the numerical values of
the SMEFT or LEFT parameters at the input scale, the
relevant scales for matching and RGE running (�UV =
HIGHSCALE, �EW = EWSCALE and �IR = LOWSCALE),
and some DsixTools options. The input values for the SM
parameters, which are used by default and in the evolution
matrix method, are given in Table 1.

There are two ways of defining an input. The first way,
which we call notebook input, is to introduce the input val-
ues directly in the Mathematica notebook. This is the
method used in the example program shown in Sect. 4.1.
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Fig. 2 Example of a minimal
DsixTools program flowchart

Table 1 Default DsixTools
inputs for the SM parameters,
taken in the MS scheme at the
renormalization scale
MZ = 91.1876 GeV. See also
footnote 5

Parameter Value

g 0.6515

g′ 0.3576

gs 1.220

λ 0.2813

m2 8528 GeV2

�u

⎛

⎝
7.109 × 10−6 −8.175 × 10−4 (8.176 + 3.265 i) × 10−3

1.636 × 10−6 3.551 × 10−3 −4.017 × 10−2

(0.782 + 2.522 i) × 10−8 1.540 × 10−4 0.970

⎞

⎠

�d diag(1.551 × 10−5, 3.165 × 10−4, 1.637 × 10−2)

�e diag(2.944 × 10−6, 6.071 × 10−4, 1.021 × 10−2)

θs , θ, θ ′ 0
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Alternatively, the user can also set the input by reading exter-
nal files containing the input values. We will refer to this
approach as external files input. We now explain these two
approaches and how to use them. For definiteness, we will
concentrate on the SMEFT. For setting input in the LEFT,
the steps and routines are completely analogous.

Notebook input

The simplest way of setting the input in DsixTools is to
introduce the values directly in the Mathematica note-
book. The DsixTools options and the relevant scales for
the RGE running can be introduced easily. For instance,

UseRGEsSM = 0;
NewScale [{HIGHSCALE - >10000}];

would set the UseRGEsSM option to 0 and the high-energy
scale �UV = 10 TeV. The SMEFT or LEFT parameters
(including the SM or QCD & QED inputs) can be intro-
duced by means of the NewInput routine. This routine
resets the input so that the WCs take their default values and
then applies the changes indicated by the user.5 For instance,
the program of Sect. 4.1 includes the line

NewInput [{Clq1 [1,1,1,2] ->
1/ HIGHSCALE^2,
Clq1[1,1,2,1] ->
1/ HIGHSCALE^2, CH ->
-0.5/ HIGHSCALE ^2}];

which, as discussed already, sets [C (1)
�q ]1112 = [C (1)

�q ]1121 =
1/�2

UV = 10−8 GeV−2 and Cϕ = −0.5/�2
UV = −5 ·

10−9 GeV−2, if the new physics scale �UV is previously set
to 10 TeV. We note that only the non-vanishing WCs must
be given and the rest are assumed to be zero.

As explained in Appendix C, some of the 2- and 4-fermion
operators in the SMEFT and the LEFT possess specific sym-
metries under the exchange of flavor indices. In particular,
these symmetries imply conditions to be enforced in the input
WCs in order to avoid two types of inconsistencies:

1. Hermiticity: The hermiticity of the Lagrangian imposes
certain conditions on some WCs, and these must be
respected by the input provided by the user. For instance,

5 The default SMEFT and LEFT values correspond to the SM and
QED&QCD benchmarks, respectively, in both cases with all Wilson
coefficients of dimension-five and -six operators set to zero and default
values for the coefficients of dimension ≤ 4 operators (see Table 1).
Corrections to the numerical values of these latter coefficients due to
the presence of dimension > 4 operators should be taken properly into
account separately (see e.g., Ref. [53]). This can be done on a case-
by-case basis with the aid of DsixTools itself. A systematic treat-
ment of these corrections shall be implemented in a future version of
DsixTools.

an input with [C (1)
�q ]1112 �= [C (1)

�q ]∗1121 would be inconsis-
tent.

2. Antisymmetry: Some LEFT operators are antisymmetric
under the exchange of two flavor indices and thus vanish.
For practical reasons, we have not excluded these oper-
ators from the WC input list, but rather require that the
corresponding WCs vanish. For instance, an input with
[Lνγ ]11 �= 0 would be inconsistent.

In order to avoid potential issues associated to inconsis-
tent inputs, DsixTools includes user-friendly input rou-
tines that simplify the user’s task.DsixTools accepts input
values for the WCs of any set of operators (belonging to the
Warsaw or San Diego bases) and then checks for possible
consistency problems. When the user’s input is not consis-
tent, a warning is issued and DsixTools corrects the input
by replacing it by a new one that ensures a complete consis-
tency of the Lagrangian. For instance, this would be case if
the user initializes HIGHSCALE and then runs

NewInput [{Clq1 [1,1,1,2] ->
1/ HIGHSCALE ^2}];

since this command sets [C (1)
�q ]1112 = 1/�2

UV and [C (1)
�q ]1121 =

0 �= [C (1)
�q ]∗1112. The list of invalid input values can be

seen by clicking on a button named Input errors that
appears after running NewInput. DsixTools fixes this
inconsistency by defining L = 1

2

(
Lin + L∗

in

)
, where Lin

is the input Lagrangian containing the inconsistency.6 The
resulting input values after this correction are [C (1)

�q ]1112 =
[C (1)

�q ]1121 = 1/(2�2
UV), now satisfying [C (1)

�q ]1121 =
[C (1)

�q ]∗1112. The hermiticity correction only needs to be
applied to those operators for which we do not need to add
explicitly its hermitian conjugates in the Lagrangian because
they are already included among their flavor components.

We finally note that our prescription can modify other fla-
vor components of the Wilson coefficient of the operator that
is related to the inconsistent input by the two reasons given
above. In order to make sure that the input has been correctly
introduced, the user should pay attention to the input error
messages, and check the values of the Wilson coefficients
that could have been potentially affected using, for instance,
the InputValues routine (see below).

Aside from these consistency issues, DsixTools also
transforms all WCs to the symmetric basis, defined as the
basis in which the WCs follow the same symmetry condi-
tions as the associated operators. We refer to Appendix C.3
for more information about this basis. For example, in the
symmetric basis [C��]1122 = [C��]2211 since [Q��]1122 =

6 Even though this correction is only applied when the input Lagrangian
is not Hermitian, we note that in case of a consistent input this change
would have no effect.
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[Q��]2211. This is the basis used internally by DsixTools.
Nevertheless, the user needs not to worry about this, since
the input is always unambiguous. In fact, this is one of
the virtues of the input system in DsixTools 2.0: the user
introduces directly a Lagrangian, which as such is basis-
independent, e.g.,

NewInput [{Cll[1,1,2,2] -> x,
Cll[2,2,1,1] -> y}];

sets the input SMEFT Lagrangian

LSMEFT = LSM + x [Q��]1122 + y [Q��]2211 , (4.2)

which is unambiguous, and understood by DsixTools
with no regard to the index symmetry relation [Q��]1122 =
[Q��]2211.

After defining the input values with the NewInput rou-
tine the dispatch InputValues gets (re)initialized. This
dispatch can be used to print the input value of any SMEFT
or LEFT parameter. For instance, after running

NewInput [{Cll[1,1,2,2] ->
10^( -8) }];

one can evaluate

Cll[1,1,2,2] /. InputValues

and obtain the result 5 · 10−9 GeV−2. This is the input
value given with the NewInput routine to the SMEFT
WC [C��]1122, after transforming to the symmetric basis. In
this basis [C��]2211 = [C��]1122, and due to [Q��]2211 =
[Q��]1122 this is equivalent to the input given by the user:

User’s input: [C��]1122 = 10−8 GeV−2 and [C��]2211 = 0 ,

In symmetric basis: [C��]1122 = 5 · 10−9 GeV−2 and

[C��]2211 = 5 · 10−9 GeV−2 .

This can be clearly seen by evaluating the command

MCll /. InputValues

which prints the complete C�� WC in array form. The input
values in the independent basis (see Appendix C.3) can be
obtained by applying the routine ToIndependent:

ToIndependent[MCll ,6] /.
InputValues

which in this case results in the same input introduced before
since [C��]1122 is one of the independent WCs.

Finally, once the input values have been set, the user can
change them individually at any moment in the notebook.
This is done with the ChangeInput routine. In contrast to
NewInput, this routine does not reset the input to default
values, but just applies the changes demanded by the user.
For instance,

ChangeInput [{CHG -> 10^( -6)}]

would change the value of CϕG to 10−6 GeV−2 in the cur-
rent InputValues dispatch, without altering the values of
the other SMEFT parameters. Exactly as NewInput, the
ChangeInput routine also checks the consistency of the
input Lagrangian provided by the user and then translates the
2- and 4-fermion WCs to the symmetric basis.

External files input

Alternatively, the user can set the program options and pro-
vide input values from external files. This is done with the
ReadInputFiles routine. For instance,

ReadInputFiles [" Options.dat",
"WCsInput.dat","SMInput.dat",
"SMEFT "]}

applies the content of three SMEFT input files.7 The file
Options.dat contains the option values to be used
in the program, the file WCsInput.dat contains the
input values for the SMEFT WCs at μ = �UV, and
the file SMInput.dat contains the input values for the
SM parameters. Examples for all of these files (and the
corresponding ones for the LEFT) can be found in the
IO folder of DsixTools. Each of the entries in these
files are accompanied by comments that make them self-
explanatory. Similarly to the case of notebook input, the
InputValues dispatch gets initialized and can be used
after using ReadInputFiles.

The default DsixTools input and output format is
inspired by the Supersymmetry Les Houches Accord (SLHA)
[54,55]. Input files are distributed in blocks, each devoted to
a set of parameters. Any complex parameter is given in two
blocks, so that real and imaginary parts should be provided
separately. Furthermore, WCs carrying flavor indices should
be provided individually for each flavor combination. Anal-
ogously to the notebook input case, all WCs are assumed to
vanish by default. Therefore, it suffices to include the non-
zero WCs (and only these) in the input card. Furthermore,
the routine ReadInputFiles will also check that the set
of input values provided by the user is consistent. If any of
the hermiticity or antisymmetry conditions on the WCs are
not satisfied, a message will be issued and the corresponding
input values modified in order to restore consistency.

Additionally, DsixTools can also read WCs input files
in WCxf format [51], a standard data exchange format for
numerical values of Wilson coefficients. In this case, the WCs
input card can be a JSON or YAML file. Note however that

7 The use of input files for the LEFT is completely analogous, the only
difference being that instead of input values for the SM parameters one
must provide input values for the QCD & QED parameters, and that the
last option should be "LEFT" instead of "SMEFT".
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reading YAML input files requires previous installation of a
YAML importer for Mathematica [56]. For more details
about the WCxf format, such as the specific fermion basis
that is implicitly assumed, we refer to [51].

4.3 RGE running

Once the initial conditions at some energy scale �start are
defined, the user can apply the RGEs to obtain the resulting
Lagrangian parameters at the different energy scale�end. The
SMEFT running between �UV = HIGHSCALE and �EW =
EWSCALE is performed with the SMEFTRunRGEs routine,
while the LEFT running between �EW = EWSCALE and
�IR = LOWSCALE is performed with the LEFTRunRGEs
routine. Alternatively, the user can also perform the full RGE
evolution from �UV > �EW down to �IR < �EW by
means of the RunDsixTools master routine, which inter-
nally makes use of SMEFTRunRGEs and LEFTRunRGEs
and also applies the SMEFT-LEFT matching at �EW with
SMEFTLEFTMatch.

DsixTools has three different methods for the resolu-
tion of the RGEs, which the user can choose by setting the
flag RGEsMethod:

• “Exact” (RGEsMethod = 1): This method applies the
Mathematica internal command NDSolve for the
numerical resolution of the differential equations. Given
the large number of differential equations involved in this
case (several thousands), this might be time consuming,
with each evaluation requiring a few (< 10) seconds,
the exact number depending on the particular case and
computer.

• “First leading log” (RGEsMethod = 2): This approx-
imate method might be sufficient for many phenomeno-
logical studies, in particular when the initial and final
scales are not too far from each other. The solution of the
RGEs is obtained as

Ci (μ) = Ci (�start) + βi

16π2 log

(
μ

�start

)
, (4.3)

whereCi is any of the running parameters, μ is the renor-
malization scale and βi is the beta function for the Ci

parameter evaluated at μ = �start. This method is much
faster but neglects leading log resummation.

• “Evolution matrix” (RGEsMethod = 3): This method
uses an evolution matrix formalism, explained in detail
in Appendix D.

By default, the SM parameters are assumed to be given
at the electroweak scale �EW = MZ = 91.1876 GeV.
Therefore, before running down from �UV to �EW they
must be computed at �UV. In case the user chooses

to solve the RGEs with RGEsMethod=1 (NDSolve) or
RGEsMethod=2 (leading log), this can be done by running
up from the electroweak scale using pure SM RGEs, hence
neglecting possible deviations caused by non-zero SMEFT
WCs.8 However, in case the user prefers to give the SM
parameters directly at the high-energy scale �UV, this can
be done by setting the UseRGEsSM option to 0. This choice
is recommended when the user wants to use the First leading
log method to solve the RGEs. In the case the user chooses
RGEsMethod=3 (DsixTools default) for the resolution
of the RGEs (the evolution matrix method), this is implicitly
taken into account. Our derivation of the evolution matrix
already enforces the SM parameters to be fixed to their mea-
sured values at the EW scale.

The user chooses between these three methods by set-
ting the global option RGEsMethod to 1 (for the “Exact”
method), to 2 (for the “First leading log” method) or to
3 (for the “Evolution matrix” method), via the routine
SetRGEsMethod. After running, the results are saved
in the function D6run, such that D6run[parameter]
returns the parameter parameter after RGE running as a func-
tion of the renormalization scale μ. Therefore, the user can
easily read the results by running commands such as

D6run[Clq1 [2,2,3,3]] /. \[Mu]
-> EWSCALE

which would give the result for [C (1)
�q (�EW)]2233.

The results obtained after running can be also
exported to a text file. This is done with the routines
SMEFTrunnerExport[] andLEFTrunnerExport[],
which generates the filesOutput_SMEFTrunner.dat or
Output_LEFTrunner.dat in each case, with
SLHA format (completely analogous to the WCs input
card in this format). Alternatively, the user can export the
results into text files following the WCxf convention
[51] by adding an argument to the previous
routines: SMEFTrunnerExport[format] and
LEFTrunnerExportWCXF[format], with format
being JSON or YAML.

The evolution matrix method is also used internally by
default when evaluating the routines SMEFTEvolve and
LEFTEvolve. These routines provide a semi-analytical
solution of the RGEs. For example,

EvolveSMEFT[CdG[2,2], EWSCALE ,
HIGHSCALE]

8 The user can check the validity of this approximation by using the
DsixTools routines, for instance by checking whether the resulting
values for the SM parameters at the electroweak scale (after running
down) do not match their initial values. This can be fixed by readjusting
the SM parameters at �UV. We note, however, that one should also take
into account NP corrections to the standard electroweak parameters
induced by non-zero SMEFT WCs.
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returns an analytical expression for the SMEFT WC [CdG]22
at μ = �EW as a function of the SMEFT parameters at
μ = �UV, with numerical coefficients. This easily allows
the user to identify the most relevant contributions to the
running, as well as running fast numerical scans of the EFT
parameter space.

Finally, we point out that DsixTools can also be
used for analytical calculations involving the SMEFT
or LEFT beta functions, since these are available to
the user right after loading the package. They can be
printed simply by evaluating β[parameter], where
parameter must be a valid SMEFT or LEFT parameter
(a member of SMEFTParameterListTotal or
LEFTParameterListTotal). For instance,
β[LdddSRR[2, 3, 3, 3]] returns the beta function of
the LEFT WC [LS,RR

ddd ]2333.

4.4 SMEFT-LEFT matching at the electroweak scale

In the first step of the matching process, DsixTools
transforms all the SMEFT parameters at the EW scale to
the up basis, applying the required biunitary transforma-
tions to the fermion mass matrices (which include contribu-
tions from dimension-six operators). The up basis, defined
in Appendix A, allows one to properly identify the top quark,
one of the fields that decouples in the matching. After this
transformation, the LEFT parameters at the electroweak
scale are computed, using either the full tree-level match-
ing [2]9 (if MatchingLoopOrder = 0) or the full one-
loop matching [9] (if MatchingLoopOrder = 1). In
order to set the value of MatchingLoopOrder prior
to the matching procedure, the user can use the routine
SetMatchingLoopOrder. The result of the matching of
the LEFT coefficients at the EW scale is given in the tree-
level mass basis.

The SMEFT-LEFT matching is performed by evaluating

SMEFTLEFTMatch;

This routine (re)initializes theMatch dispatch, which can be
used to obtain the numerical values of the LEFT parameters
after the matching at the electroweak scale. Therefore

LeeVLL [1,1,1,1] /. Match

would return the numerical value of [LV,LL
ee (�EW)]1111 in

units of GeV−2. The corresponding analytical expressions
can be obtained by using MatchEW, e.g.

LeeVLL [1,1,1,1] // MatchEW

9 We have independently derived the tree-level results in two different
ways, finding full agreement with the updated results posted at https://
einstein.ucsd.edu/smeft/.

Note that MatchEW does not require running
SMEFTLEFTMatch.

Since the LEFT is more general than the SMEFT low-
energy limit, not all the LEFT operators are generated from a
matching to the SMEFT. For instance, applying the command
MLνγ /.MatchAnalytical would return a 3 × 3 matrix
full of zeros, since the LEFT operator Oνγ is not present in
the SMEFT.

Furthermore, as explained, the first step of the routine
SMEFTLEFTMatch is to rotate all SMEFT parameters to
the fermion up basis. These rotations can be readily obtained
by means of the SMEFTRotateParameters routine by
evaluating e.g.,

{ToUpBasis , ToDownBasis} =
SMEFTRotateParameters[EWSCALE ];

This will create the dispatches ToUpBasis and
ToDownBasis, which can be used to obtain any SMEFT
parameter in the up and down bases at the electroweak scale.
For instance,

CuH[1,2] /. ToUpBasis
CuH[1,2] /. ToDownBasis

would return [Cuϕ]12 in GeV in the up and down bases at
�EW. We also note that the SMEFTRotateParameters
routine can be used to obtain the SMEFT parameters in the
up and down bases at any scale μ ≥ �EW. For instance,
running

{ToUpBasis , ToDownBasis} =
SMEFTRotateParameters [500];

creates the dispatches ToUpBasis and ToDownBasis,
now applicable to obtain any SMEFT parameter in the up
and down bases at 500 GeV. Finally, if the user is interested
in only one of the two fermion bases, up or down, the routine
to be used is SMEFTToNewBasis. For instance,

ToUpBasis =
SMEFTToNewBasis ["up",EWSCALE ];

would only create the ToUpBasis dispatch.
All these results can be exported to external text files

with the routine EWmatcherExport. This generates the
file Output_EWmatcher.dat, in SLHA format. The
results can also be exported in WCxf convention by adding
two arguments (format and name) to the previous rou-
tine: EWmatcherExport[format,name], with format
being "JSON" or "YAML". The resulting file will always be
in the up basis, denoted as Warsaw Up basis in the WCxf
exchange format documentation [51].

4.5 Reference guide and tools in DsixTools

DsixTools aims at a simple and visual experience. This
is accomplished via a variety of routines, some of which
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grant the user simple access to the most basic, useful and
comprehensive information about the LEFT and the SMEFT,
while others implement practical operations on the Wilson
coefficients.

The first repository of information available is contained in
the variablesSMEFTObjectList andLEFTObjectList,
which are lists of certain objects, one for each operator
of the EFT (75 for the SMEFT, 103 for the LEFT, up to
dimension six). Each object is itself a list containing: the
flavor matrix of WCs, the name of the (head of) the WCs,
the name of the operator, the symmetry category, the fla-
vor dimension, the canonical dimension, the EFT, the oper-
ator class, the broken symmetry (if any), and the LATEX
form for both the operator and its definition. A flattened list
of all the parameters appearing in the first position of the
objects inSMEFTObjectList andLEFTObjectList is
given in SMEFTParametersTotal and
LEFTParametersTotal:

SMEFTParametersTotal

= Flatten[SMEFTObjectList[[All,1]]]
LEFTParametersTotal

= Flatten[LEFTObjectList[[All,1]]]
which are all the parameters that might receive input val-
ues or output results. However, not all these parameters
are independent, and not all are complex-valued. The func-
tion NIndependent[parameter] returns the number
of independent real parameters in a given parameter: 2 for
a general complex parameter, 1 for a real parameter and
0 for a redundant one (as chosen by DsixTools con-
vention). The list of independent parameters are contained
in the lists SMEFTParameterList[] and
LEFTParameterList[], which match the operators in
SMEFTOperators and LEFTOperators. For example
the LEFT Lagrangian in the “independent basis” (containing
only non-redundant operators) is given by

LEFTParameterList []. LEFTOperators

In addition, in order to find the position that a
parameter occupies inSMEFTParameterList[]orLEFT
ParameterList[] one can use the routines
SMEFTFindParameter[parameter] and
LEFTFindParameter[parameter].

The routines SMEFTParameterList and LEFT
ParameterList also admit arguments in order to choose
subsets of parameters with certain properties. For example

SMEFTParameterList ["D6","LNV"]

lists the non-redundant Lepton-Number-violating SMEFT
parameters of canonical dimension six. For a list of attributes
that can be chosen as arguments inSMEFTParameterList
and LEFTParameterList see Sect. 4.6.

Fig. 3 Information about the SMEFT WC Cϕu obtained after
evaluating ObjectInfo[CHu], or by using the interfaces
SMEFTOperatorsMenu or SMEFTOperatorsGrid

More visual information on the properties of operators
and parameters can be obtained via a series of new routines.
The routine ObjectInfo displays a large amount of useful
information on any WC, or operator of the SMEFT or the
LEFT specified by the user. For instance,

ObjectInfo[CHu]

displays a menu with information about the SMEFT WC
Cϕu , including the EFT to which it belongs, the name of
the associated WC, the dimension (2, 3, 4, 5 or 6) and
type (0F, 2F or 4F), whether it corresponds to an Hermi-
tian operator or not, the number of independent real parame-
ters, the number of flavor indices and the list of elements,
as shown in Fig. 3. A clickable menu with information
about the SMEFT and LEFT parameters can be loaded with
SMEFTOperatorsMenu, LEFTOperatorsMenu and
TotalOperatorsMenu, while grid menus with all the
SMEFT or LEFT parameters can be generated with
SMEFTOperatorsGrid and LEFTOperatorsGrid.
These grids are interactive, and the definition of any oper-
ator appears on screen when dragging the mouse pointer
on top (see Fig. 4). In addition, clicking on the corre-
sponding operator creates a pop-up window with the same
chart created by ObjectInfo. The Mathematica note-
book OperatorsGrid.nb can be found in the main
DsixTools folder. This notebook already contains the
result of using SMEFTOperatorsGrid and
LEFTOperatorsGrid, and the two grid menus can be
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Fig. 4 Result of evaluating SMEFTOperatorsGrid. Positioning
the mouse on top of any operator displays its definition, and clicking
on it opens a pop-up containing the corresponding chart of Fig. 3. This

grid can be saved in a notebook and used later in a fresh Kernel without
loading DsixTools

used right after opening the notebook, without any need to
load DsixTools. This can be useful as an out of the box
visual reference on the SMEFT and the LEFT.

Concerning handy routines for handling WCs and expres-
sions with WCs (such as amplitudes or cross-sections),
we highlight D6Simplify. This routine is used to sim-
plify expressions involving SMEFT or LEFT parameters, by
replacing all redundant WCs in terms of non-redundant ones
and eliminating complex conjugates on real parameters. For
instance,

D6Simplify [2 m2 CHq1 [3,2]
CC[Gd[3 ,1]]]

returns 2 m2 CHq1[2,3]∗ Gd[3,1]∗, where the her-
miticity relation [C (1)

ϕq ]32 = [C (1)
ϕq ]∗23 for the SMEFT object

C (1)
ϕq has been used in order to express the result in terms

of the independent parameter [C (1)
ϕq ]23. As already men-

tioned, the function NIndependent returns the number
of independent real parameters in a given parameter. Finally,
the routines ToSymmetric, ToSymmetricSingle,
ToIndependent and ToIndependentSingle can be
used to transform WCs to the symmetric and independent
bases (see Appendix C.3 for the definition of these bases).
The routine CheckAndSymmetrize also checks whether
all hermiticity and antisymmetry conditions are satisfied in
a given argument.

4.6 Summary of DsixTools routines

Ass soon as the package is loaded, the user can already
execute all DsixTools functions and routines. Several
DsixTools global variables are also introduced at this
stage. Here we summarize the DsixTools routines avail-
able to the user.

General variables and routines

• DsixToolsVersion: Returns the loaded version of
DsixTools.

• DsixToolsDir: Returns the directory holding the
loaded version of DsixTools.

• HIGHSCALE: UV scale (in units of GeV) at which the
SMEFT input is set and where the running in the SMEFT
starts.

• EWSCALE: Electroweak scale (in units of GeV). This is
the scale at which the LEFT input is set (either directly
or through matching with the SMEFT), and where the
running in the LEFT starts. By default EWSCALE =
91.1876 GeV, but it can be modified by means of
NewScale or NewInput.

• LOWSCALE: IR scale (in units of GeV) which sets the
lower limit beyond which the solution of the LEFT RGEs
are only extrapolations. Since the LEFT in DsixTools
2.0 is the five-flavor theory, the default DsixTools
value is LOWSCALE = 5.

• RunDsixTools: Master DsixTools routine. It runs
the SMEFT parameters from �UV = HIGHSCALE to
�EW = EWSCALE, matches to the LEFT, and then runs
the LEFT parameters from �EW to �IR = LOWSCALE.

Reference

• SMEFTObjectList and LEFTObjectList: List of
SMEFT and LEFT objects, where an object is defined as
a list of properties of a SMEFT or LEFT operator and its
Wilson coefficients.

• SMEFTOperators and LEFTOperators: List of all
SMEFT and LEFT operators in DsixTools notation.

• SMEFTParametersTotal and
LEFTParametersTotal: List of all SMEFT and
LEFT parameters (i.e. couplings, mass parameters and
WCs) in DsixTools notation.

• SMEFTParameterList[<attributes>] and
LEFTParameterList[<attributes>]: List of
all independent SMEFT/LEFT parameters satisfying the
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condition given by attributes. The sequence of attributes
can be chosen from the following predefined lists in the
cases of the SMEFT and the LEFT, respectively:

SMEFT : {“SM", “D6", “D5", “D4", “D2", “BNV",

“BNC", “LNV", “LNC", “CPodd",

“CPeven", “X3", “H6", “H4D2", “X2H2",

“F2H3", “F2XH", “F2H2D", “LLLL",

“RRRR", “LLRR", “LRLR", “LRRL",

“B − violating", “L − violating",

“LFV", “QFV", “0F", “2F", “4F"}
LEFT : {“QED&QCD", “D6", “D5", “D4", “D3",

“D2", “BNV", “BNC", “LNV", “LNC",

“CPodd", “CPeven", “X3", “ννX",

“LRX", “LLLL", “RRRR", “LLRR", “LRLR",

“LRRL", “
L = 4", “
L = 2",

“
B = 
L = 1", “
B = −
L = 1",

“LFV", “QFV", “0F", “2F", “4F"}

The meaning of each of these attributes is rather self-
explanatory; however the user can consult the mean-
ing through the Mathematica documentation. SMEFT
ParameterList[] and LEFTParameterList[]
list all independent SMEFT and LEFT parameters.

• SMEFTFindParameter[<attributes>,
parameter] and LEFTFindParameter[
<attributes>,parameter]: Returns the position
of parameter in the list SMEFTParameterList[]
or LEFTParameterList[]. If the optional entry
attributes is given, the position refers to the correspond-
ing restricted list.

• ObjectInfo[parameter]: Prints information about
parameter.

• SMEFTOperatorsMenu, LEFTOperatorsMenu
and TotalOperatorsMenu: Displays a clickable
menu with information about the operators and parame-
ters of the SMEFT and the LEFT.

• SMEFTOperatorsGrid andLEFTOperatorsGrid:
Creates a grid with all the SMEFT or LEFT operators.
Moving the mouse on top of each entry displays the def-
inition of the operator, and clicking on it a window with
information about it is displayed.

• SMEFTLagrangian[scale] andLEFTLagrangian
[scale]: Returns the SMEFT or LEFT Lagrangians at
the renormalization scale given in the argument, corre-
sponding to the current values given by InputValues.
If necessary, running and/or matching is performed inter-
nally.

Input & Output

• TurnOnMessages and TurnOffMessages: Turn
on or off the messages written by the DsixTools rou-
tines.

• NewScale[{list}]: Sets (or resets) the values of
the scales indicated in list. For example, if list =
{HIGHSCALE → 5000,LOWSCALE → 5} will set (or
reset) �UV = 5 TeV and �IR = 5 GeV.

• InputValues: Dispatch10 that contains the current
values of the Wilson coefficients at the input scale. It
might refer to the SMEFT or the LEFT, depending on the
last input defined by the user.

• InputBasis: Indicates the SMEFT flavor basis of the
input in InputValues. It can be “up” or “down”
(default).

• NewInput[{list},<additional>]: Resets the
variable InputValues putting to zero all d > 4 WCs,
and then replaces it by a new one in which the changes in
list are applied. The optional additional entries may also
contain changes in the scales HIGHSCALE, EWSCALE
and LOWSCALE, as well as in InputBasis, e.g.,
NewInput[{list},HIGHSCALE->5000,
InputBasis->"up"].

• ChangeInput[{list}]: Replaces (without reset-
ting) the current dispatch InputValues by a new one
in which the changes in list are applied. s

• SetSMLEFTInput: Resets the variableInputValues
with the LEFT coefficients obtained from a matching to
the SM.

• ReadInputFiles[options_file,
{WCsInput_file}, {SMInput_file},{EFT}]:
Reads all input files.

• WCXFtoSLHA[WCXF_file,SLHA_file,EFT]:
Translates the WCs file in WCxf format WCXF_file
into an SLHA format file named SLHA_file.

• SLHAtoWCXF[SLHA_file,WCXF_file,SCALE,
EFT]: Translates the WCs file in SLHA format
SLHA_file into an WCxf format file namedWCXF_file.

• AntisymmetryErrorsTotal: List containing the
accumulated set of errors fixed by NewInput,
ChangeInput orReadInputFiles due to input not
consistent with flavor-index symmetries.

• NonHermitianErrorsTotal: List containing the
accumulated set of errors fixed by NewInput,
ChangeInput orReadInputFiles due to input not
consistent with hermiticity of the Lagrangian.

10 For those not familiar with Mathematica dispatch tables, we
clarify that these are lists (or tables) of pointers to replacements rules.
In practice they work in exactly the same way as replacement rules, but
their execution time is much lower when the list of replacements is long.
It is possible to recover a normal replacement rule from the dispatch by
applying to it the Mathematica command Normal.
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Operations with Wilson coefficients

• D6Simplify[expression]: Replaces all redun-
dant Wilson coefficients in expression by their expres-
sions in terms of the non-redundant ones. It also elimi-
nates complex conjugates on real parameters.

• SubRedundant: Dispatch that replaces all redundant
Wilson coefficients by their expressions in terms of the
independent ones present inSMEFTParametersList[]
and LEFTParametersList[].

• NIndependent[parameter]: Returns the number
of independent real parameters in parameter: 2 for a gen-
eral complex parameter, 1 for a real parameter, and 0 for
a redundant WC.

• ToSymmetric[X,cat]: Returns X in the symmetric
basis, where X is an object of category cat in array form.

• ToSymmetricSingle[parameter]: Returns the
form of the SMEFT or LEFT parameter in the symmetric
basis.

• ToIndependent[X,cat]: ReturnsX in the indepen-
dent basis, where X is an object of category cat in array
form.

• ToIndependentSingle[parameter]: Returns the
form of the SMEFT or LEFT parameter in the indepen-
dent basis.

• CheckAndSymmetrize[X,cat]: Returns X in the
symmetric basis, where X is an object of category cat in
array form, after checking that all hermiticity and anti-
symmetry conditions are respected. If any of the condi-
tions are violated, some entries of X are modified.

SMEFT and LEFT running

• RGEsMethod: Indicates the method that DsixTools
is going to use to solve the RGEs. It is either 1 (exact
numerical solution), 2 (first leading log) or 3 (via the
evolution matrix formalism). This variable is protected.

• SetRGEsMethod[n]: Sets the value ofRGEsMethod
to n = 1, 2 or 3.

• SMEFTLoopOrder: Indicates the order thatDsixTools
is going to use for the SM beta functions when running in
the SMEFT. The maximum (and default) inDsixTools
2.0 is SMEFTLoopOrder = 5. This variable is pro-
tected.

• LEFTLoopOrder: Indicates the order in QCD that
DsixTools is going to use for the strong coupling beta
function and quark-mass anomalous dimensions when
running in the LEFT. The maximum (and default) in
DsixTools 2.0 is LEFTLoopOrder = 4. This vari-
able is protected.

• SetSMEFTLoopOrder[n] and SetLEFTLoopOrder

[n]:Set the values of SMEFTLoopOrder and
LEFTLoopOrder

• UseRGEsSM: If UseRGEsSM = 1, DsixTools will
use the pure SM RGEs to run the SM parameters to the
initial scale HIGHSCALE.

• β[parameter]: Gives the beta function of the SMEFT
or LEFT parameter.

• βSM[parameter]: Gives the SM beta function of the
SM parameter.

• SMEFTRunRGEs andLEFTRunRGEs: Solve the SMEFT
and LEFT RGEs in each case.

• D6run[parameter,<"log10">]: Gives the SMEFT
or LEFT parameter as a function of the renormalization
scale μ. Including the optional argument"log10" gives
the function in terms of t = log10(μ/ GeV).

• SMEFTEvolve[parameter,
final,initial,<"log10">]: Returns the SMEFT
parameter at μ = final in terms of the SMEFT parame-
ters at μ = initial using the evolution matrix method.

• LEFTEvolve[parameter,final,
initial,<"log10">]: Returns the LEFT param-
eter at μ = final in terms of the LEFT parameters at
μ = initial using the evolution matrix method.

• SMEFTrunnerExport[<format>,<name>]:
Exports the numerical values of the SMEFT parameters
at the scale �EW = EWSCALE (after running). If no
argument is given, SMEFTrunnerExport generates a
default output file namedOutput_SMEFTrunner.dat.
This routine can also export the output to file with a
name (without extension) and format chosen by the user
(both arguments are required). The available formats are
"SLHA" (default DsixTools format), "JSON" and
"YAML".

• LEFTrunnerExport[<format>,<name>]:
Exports the numerical values of the LEFT parameters
at the scale �IR = LOWSCALE (after running). If no
argument is given, LEFTrunnerExport generates a
default output file namedOutput_LEFTrunner.dat.
This routine can also export the output to file with a
name (without extension) and format chosen by the user
(both arguments are required). The available formats are
"SLHA" (default DsixTools format), "JSON" and
"YAML".

Matching at the EW scale

• MatchingLoopOrder: Indicates if the SMEFT-LEFT
matching will be done at tree-level (MatchingLoop
Order=0) or at one-loop (MatchingLoopOrder =
1). This variable is protected.
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• SetMatchingLoopOrder[n]: Sets the value of
MatchingLoopOrder to n.

• Match: Dispatch that replaces all LEFT parameters by
their numerical values at the matching scale, obtained
after matching to the SMEFT.

• MatchEW[parameter]: Returns the matching condi-
tion of the LEFT parameter in terms of SMEFT param-
eters at the EW scale, in analytical form.

• MatchAnalytical: Dispatch that replaces all LEFT
parameters by their analytical matching conditions, in
terms of SMEFT parameters.

• SMEFTLEFTMatch: Perfoms the matching between
the SMEFT and the LEFT, at the order specified by
MatchingLoopOrder.

• SMEFTRotateParameters[scale]: Returns a list
containing two dispatches that transform the SMEFT
parameters to the“up” and“down”bases atμ = scale.

• SMEFTToNewBasis[basis,scale]: Dispatch that
transforms the SMEFT parameters to a specific flavor
basis (“up” or “down”) at μ = scale.

• LEFTToNewBasis[scale]: Dispatch that transforms
the LEFT parameters to the mass basis at μ = scale.

• EWmatcherExport[<format>,<name>]: Exports
the numerical values of the LEFT parameters at the
scale �EW obtained after matching to the SMEFT. If
no argument is given, EWmatcherExport generates a
default output file named Output_EWmatcher.dat.
This routine can also export the output to file with a
name (without extension) and format chosen by the user
(both arguments are required). The available formats are
"SLHA" (default DsixTools format), "JSON" and
"YAML".

Other variables and routines

• Biunitary[matrix]: Applies a biunitary transfor-
mation diagonalizing the square matrix, and provides the
rotation matrices and the eigenvalues.

• LoopParameter: Appears in analytical expressions
such as beta functions and matching conditions, separat-
ing different loop orders. An n-loop term is proportional
to (LoopParameter)n (except for n = 1 in the beta
functions). This variable is protected.

5 Summary

DsixTools is a Mathematica package for simbolic and
numerical operations within the SMEFT and the LEFT, facil-
itating the treatment of these two effective theories in a sys-
tematic and complete manner.

Here we have presented DsixTools 2.0, a new and
improved version of DsixTools. This version features
the complete one-loop evolution from a high-energy scale
�UV > �EW (where the physics is described by the SMEFT)
down to a low-energy scale �IR < �EW (where the physics
is described by the LEFT). This includes complete one-loop
RGE evolution and complete one-loop matching at the EW
scale. In addition, the new version contains a large number
of improvements regarding notation and utilities, operational
efficiency and simplicity, user interface, input and output, a
set of reference tools for the SMEFT and the LEFT, and a
complete Mathematica documentation system.

DsixTools is a project that can be extended with future
improvements, including additional tools and functionalities.
The final outcome of this endeavour will be a complete and
powerful framework for the systematic exploration of new
physics models using the language of Effective Field Theo-
ries.
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Appendix A: Standard model effective field theory

The SMEFT is the EFT obtained after extending the SM
Lagrangian with all operators invariant under the SU (3)c ×
SU (2)L ×U (1)Y gauge group up to an arbitrary dimension.
The Lagrangian for the SMEFT can be written as

LSMEFT = LSM+
∑

k

C (5)
k Q(5)

k +
∑

k

C (6)
k Q(6)

k +O
(

1

�3
UV

)
.

(A.1)

The dimensionful Wilson coefficients C (5)
k and C (6)

k are
implicitly suppressed by 1/�UV and 1/�2

UV, respectively,
where �UV is the EFT cutoff scale, assumed to be much
larger than the electroweak scale. The implementation of
the SMEFT in DsixTools mainly follows the conventions
used in Ref. [3].11 The SM Lagrangian is given by

LSM = −1

4
GA

μνG
Aμν − 1

4
W I

μνW
Iμν − 1

4
BμνB

μν

+ (
Dμϕ

)† (
Dμϕ

) + m2ϕ†ϕ − λ

2

(
ϕ†ϕ

)2

+ i
(
�̄ �D� + ē �De + q̄ �Dq + ū �Du + d̄ �Dd

)

− (
�̄�eeϕ + q̄�uuϕ̃ + q̄�ddϕ + h.c.

) + Lθ . (A.2)

Here GA
μν (A = 1 . . . 8), W I

μν (I = 1 . . . 3) and Bμν denote,
respectively, the SU (3)c, SU (2)L and U (1)Y field-strength
tensors. The fields � and q correspond to the lepton and
quark SU (2)L doublets of the SM, while e, u, d are the SM
right-handed fields. The Higgs SU (2)L doublet is denoted
by ϕ. The Yukawa couplings �e,u,d are 3 × 3 matrices in fla-
vor space. Using appropriate field redefinitions, and without
loss of generality, one can choose a particular flavor basis
where �e and �d are diagonal and �u = VCKM �̂u , with �̂u

diagonal and VCKM denoting the CKM matrix. This is the
so-called down basis, and it is the default basis choice for
DsixTools. Another basis choice that is also useful is the
up basis, where �e and �u are diagonal and �d = V †

CKM �̂d

with �̂d diagonal. Note, however, that these bases are not sta-
ble under RGE evolution. The covariant derivative is defined
as

Dμ = ∂μ + igsT
AGA

μ + igT IW I
μ + ig′Y Bμ , (A.3)

where {gs, g, g′} and {G,W, B} are, respectively, the SU (3)c,
SU (2)L and U (1)Y gauge couplings and gauge fields, and

11 The reader should keep in mind that these conventions differ from
those used in [4–6]. The differences appear in the normalization of λ

footnote 11 continued
and m, the definition of the Yukawa matrices and the name of the gauge
couplings. However, DsixTools 2.0 adopts the convention of [4–6]
of introducing the EFT cutoff scale into the definition of the WCs.

Table 2 Hypercharge assignments in the SMEFT

Field �L eR qL uR dR ϕ

Y − 1
2 −1 1

6
2
3 − 1

3
1
2

Table 3 SMEFT operators in the Warsaw basis. The third column lists
the number of operators in the category whereas the last column indi-
cates whether they violate baryon (B) or lepton (L) numbers

Dim Class # operators Quantum numbers

5 Dimension-five 1 
L = 2

6 X3 4

6 ϕ6 1

6 ϕ4D2 2

6 X2ϕ2 8

6 ψ2ϕ3 3

6 ψ2Xϕ 8

6 ψ2ϕ2D 8

6
(
L̄ L

) (
L̄ L

)
5

6
(
R̄R

) (
R̄R

)
7

6
(
L̄ L

) (
R̄R

)
8

6
(
L̄ R

) (
L̄ R

)
4

6
(
L̄ R

) (
R̄L

)
1

6 Baryon-number-violating 4 
B = 
L = 1

Table 4 SMEFT purely bosonic operators

QG f ABCGAν
μ GBρ

ν GCμ
ρ QϕG ϕ†ϕGA

μνG
Aμν

QG̃ f ABC G̃ Aν
μ GBρ

ν GCμ
ρ QϕB ϕ†ϕBμνBμν

QW ε I J K W Iν
μ W Jρ

ν WKμ
ρ QϕW ϕ†ϕW I

μνW
Iμν

QW̃ ε I J K W̃ Iν
μ W Jρ

ν WKμ
ρ QϕWB ϕ†τ IϕW I

μνB
μν

ϕ6 QϕG̃ ϕ†ϕG̃ A
μνG

Aμν

Qϕ

(
ϕ†ϕ

)3
Qϕ B̃ ϕ†ϕ B̃μνBμν

ϕ4D2 QϕW̃ ϕ†ϕW̃ I
μνW

Iμν

Qϕ�
(
ϕ†ϕ

)
�

(
ϕ†ϕ

)
QϕW̃ B ϕ†τ IϕW̃ I

μνB
μν

QϕD
(
ϕ†Dμϕ

)∗ (
ϕ†Dμϕ

)

T A and T I are the corresponding gauge group generators
in the appropriate representations. The hypercharge assign-
ments for the matter fields are given in Table 2. The θ terms
are given by

Lθ = θ ′g′2

32π2 B̃μνB
μν + θg2

32π2 W̃
I
μνW

μν
I + θsg2

s

32π2 G̃
A
μνG

μν
A ,

(A.4)

with the dual tensors defined as X̃ = 1
2εμνρσ Xρσ (with

ε0123 = +1). There is only one operator of dimension five,
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Table 5 SMEFT mixed operators involving bosons and fermions

ψ2ϕ3 ψ2ϕ2D

Quϕ

(
ϕ†ϕ

)
(q̄uϕ̃) Q(1)

ϕ�

(
ϕ†i

↔
Dμϕ

) (
�̄γ μ�

)

Qdϕ

(
ϕ†ϕ

)
(q̄dϕ) Q(3)

ϕ�

(
ϕ†i

↔
Dμ

Iϕ

) (
�̄τ I γ μ�

)

Qeϕ
(
ϕ†ϕ

) (
�̄eϕ

)
Qϕe

(
ϕ†i

↔
Dμϕ

)
(ēγ μe)

ψ2Xϕ Q(1)
ϕq

(
ϕ†i

↔
Dμϕ

)
(q̄γ μq)

QeW
(
�̄σμνe

)
τ IϕW I

μν Q(3)
ϕq

(
ϕ†i

↔
Dμ

Iϕ

) (
q̄τ I γ μq

)

QeB
(
�̄σμνe

)
ϕBμν Qϕu

(
ϕ†i

↔
Dμϕ

)
(ūγ μu)

QuG
(
q̄σμνT Au

)
ϕ̃GA

μν Qϕd

(
ϕ†i

↔
Dμϕ

) (
d̄γ μd

)

QuW (q̄σμνu) τ I ϕ̃W I
μν Qϕud

(
ϕ̃†i Dμϕ

)
(ūγ μd)

QuB (q̄σμνu) ϕ̃Bμν

QdG
(
q̄σμνT Ad

)
ϕGA

μν

QdW (q̄σμνd) τ IϕW I
μν

QdB (q̄σμνd) ϕBμν

the so-called Weinberg operator,

Q��ϕϕ =
(
ϕ̃†�

)T
C

(
ϕ̃†�

)
, (A.5)

with C denoting the Dirac charge conjugation matrix. This
operator gives a Majorana mass term for the neutrinos after
spontaneous symmetry breaking [57]. A non-redundant basis
of dimension-six operators was defined in [3], the so called
Warsaw basis. Table 3 classifies the SMEFT operators in the
Warsaw basis indicating the number of independent opera-
tors in each category. We list the Baryon-number-conserving
operators in Tables 4, 5 and 6. Barring flavor structure,
these constitute a total of 59 operators, some of which are
non-Hermitian, yielding in total 76 real coefficients. Taking
into account flavor indices, the Baryon-number-conserving
dimension-six Lagrangian contains 1350 CP-even and 1149
CP-odd operators, for a total of 2499 Hermitian operators [6].
The complete set of independent dimension-six Baryon num-
ber violating operators were identified in [58]. Barring flavor
structure, there are only 4 Baryon-number-violating opera-
tors. These are listed in Table 7.

The beta functions for the SMEFT WCs Ci are defined as

dCi

d log μ
≡ 1

16π2 βi . (A.6)

Here μ is the renormalization scale, and βi are the individ-
ual beta functions of each WC. The complete set of one-loop

Table 6 SMEFT purely fermionic operators which preserve Baryon
number
(
L̄ L

) (
L̄ L

) (
L̄ L

) (
R̄R

)

Q��

(
�̄γμ�

) (
�̄γ μ�

)
Q�e

(
�̄γμ�

)
(ēγ μe)

Q(1)
qq

(
q̄γμq

)
(q̄γ μq) Q�u

(
�̄γμ�

)
(ūγ μu)

Q(3)
qq

(
q̄γμτ I q

) (
q̄γ μτ I q

)
Q�d

(
�̄γμ�

) (
d̄γ μd

)

Q(1)
�q

(
�̄γμ�

)
(q̄γ μq) Qqe

(
q̄γμq

)
(ēγ μe)

Q(3)
�q

(
�̄γμτ I �

) (
q̄γ μτ I q

)
Q(1)

qu
(
q̄γμq

)
(ūγ μu)

(
R̄R

) (
R̄R

)
Q(8)

qu
(
q̄γμT Aq

) (
ūγ μT Au

)

Qee
(
ēγμe

)
(ēγ μe) Q(1)

qd

(
q̄γμq

) (
d̄γ μd

)

Quu
(
ūγμu

)
(ūγ μu) Q(8)

qd

(
q̄γμT Aq

) (
d̄γ μT Ad

)

Qdd
(
d̄γμd

) (
d̄γ μd

) (
L̄ R

) (
R̄L

)

Qeu
(
ēγμe

)
(ūγ μu) Q�edq

(
�̄ j e

) (
d̄q j

)

Qed
(
ēγμe

) (
d̄γ μd

) (
L̄ R

) (
L̄ R

)

Q(1)
ud

(
ūγμu

) (
d̄γ μd

)
Q(1)

quqd

(
q̄ j u

)
ε jk

(
q̄kd

)

Q(8)
ud

(
ūγμT Au

) (
d̄γ μT Ad

)
Q(8)

quqd

(
q̄ j T Au

)
ε jk

(
q̄k T Ad

)

Q(1)
�equ

(
�̄ j e

)
ε jk

(
q̄ku

)

Q(3)
�equ

(
�̄ jσμνe

)
ε jk

(
q̄kσμνu

)

Table 7 SMEFT Baryon-number-violating operators

Baryon-number-violating

Qduq�

(
dT Cu

) (
qT C�

)

Qqque
(
qT Cq

) (
uT Ce

)

Qqqq� εilε jk
(
qTi Cq j

) (
qTk C�l

)

Qduue
(
dT Cu

) (
uT Ce

)

beta functions for the SM and dimension-six WCs were com-
puted in [4–7]. The beta functions in these references neglect
the contributions to the running of the dimension-six WCs
from two insertions of the dimension-five Weinberg opera-
tor. Given the smallness of neutrino masses, it is natural to
expect that the scale suppressing this operator is much larger
than the one of the dimension-six operators, which justifies
having neglected these contributions. The beta function for
the Weinberg operator can be found in [49]. The complete set
of one-loop SMEFT beta functions can be read off directly
from DsixTools with the command β[parameter].

Appendix B: Low-energy effective field theory

The LEFT is the EFT below the electroweak scale after inte-
grating out the Higgs boson, the massive W± and Z gauge
bosons and the top quark from the SM particle content, as well
as any BSM degrees of freedom at or above the EW scale.
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The resulting theory is invariant under the SU (3)c ×U (1)Q
gauge group and contains nu = 2 up-type quarks, nd = 3
down-type quarks, ne = 3 charged leptons and nν = 3 left-
handed neutrinos. The LEFT Lagrangian is given by

LLEFT = LQCD+QED +
∑

k

L(3)
k O(3)

k +
∑

k

L(5)
k O(5)

k

+
∑

k

L(6)
k O(6)

k + O
(

1

�3
EW

)
. (B.1)

The dimensionful Wilson coefficients L(5)
k and L(6)

k are
implicitly suppressed by 1/�EW and 1/�2

EW, respectively,
where �EW is the electroweak scale. A non-redundant basis
of dimension-three, -five and -six operators was introduced
in [2], and this will be known in the following as the San
Diego basis. Table 8 classifies the LEFT operators in the
San Diego basis indicating the number of independent oper-
ators in each category. Barring flavor structure and Hermi-
tian conjugation there are 96 independent operators. It can
be shown that no linear combination of these operators van-
ish after the application of the equations of motion, which
makes them completely independent operators. We list these
operators in Tables 9, 10, 11, 12 and 13, omitting flavor
(and SU (3)c indices in the last tables) to simplify the nota-
tion. The only operator present at dimension 3 is a Majorana
mass term for the left-handed neutrinos, shown in Table 9.
There are two categories of dimension-five operators, (νν) X
and

(
L̄ R

)
X , both listed in Table 10. While the former vio-

lates Lepton number in two units, the latter preserves both
lepton and Baryon numbers. All the dimension-five LEFT
operators are dipole operators. The remaining 89 indepen-
dent operators arise at dimension 6. There are 2 purely glu-
onic operators, shown in Table 11, 56 4-fermion operators
that conserve both Baryon and Lepton numbers, shown in
Table 12, and 31 4-fermion operators that violate Baryon
and/or Lepton numbers, shown in Table 13. Assuming that
the SMEFT is the correct theory above the EW scale, all
parameters of the LEFT can be fixed though a matching
calculation at the EW scale. The complete set of matching
conditions in the Warsaw and San Diego bases are known
at tree-level [8] and one-loop [9] orders. They can be can
be read off directly from DsixTools with the command
MatchEW[parameter].

The implementation of the LEFT in DsixTools follows
the same (or analogous) conventions as for the SMEFT.12 The
QCD and QED Lagrangian is given by

LQCD+QED = −1

4
GA

μνG
Aμν − 1

4
FμνF

μν

12 The reader should keep in mind that these conventions differ from
those used in [2,8]. The differences appear in the definition of the
fermion mass matrices and the name of the strong gauge coupling.

Table 8 LEFT operators in the San Diego basis. The third column
lists the number of operators in the category whereas the last column
indicates whether they violate baryon (B) or lepton (L) numbers

Dim Class # operators Quantum numbers

3 νν 1 
L = 2

5 (νν) X 1 
L = 2

5
(
L̄ R

)
X 5

6 X3 2

6
(
L̄ L

) (
L̄ L

)
12

6
(
R̄R

) (
R̄R

)
7

6
(
L̄ L

) (
R̄R

)
19

6
(
L̄ R

) (
L̄ R

)
15

6
(
L̄ R

) (
R̄L

)
3

6 
L = 4 1 
L = 4

6 
L = 2 14 
L = 2

6 
B = 
L = 1 9 
B = 
L = 1

6 
B = −
L = 1 7 
B = −
L = 1

Table 9 LEFT dimension-three
operator

νν

Oν νTL CνL

Table 10 LEFT dimension-five operators

(νν) X
(
L̄ R

)
X

Oνγ

(
νTL CσμννL

)
Fμν Oeγ (ēLσμνeR) Fμν

Ouγ (ūLσμνuR) Fμν

Odγ

(
d̄LσμνdR

)
Fμν

OuG
(
ūLσμνT AuR

)
GA

μν

OdG
(
d̄LσμνT AdR

)
GA

μν

Table 11 LEFT purely gluonic
operators

X3

OG f ABCGAν
μ GBρ

ν GCμ
ρ

OG̃ f ABC G̃ Aν
μ GBρ

ν GCμ
ρ

+ θQCD
g2
s

32 π2 G̃
A
μνG

μν
A + +θQED

e2

32 π2 F̃μνF
μν

+
∑

ψ=u,d,e,νL

ψ i �Dψ

−
⎡

⎣
∑

ψ=u,d,e

ψLMψψR + h.c.

⎤

⎦ . (B.2)

The Dirac mass matrices Mu and Me,d are, respectively, 2×2
and 3 × 3 matrices in flavor space and we will omit fla-
vor indices whenever possible. The absence of a Dirac mass
matrix for the neutrinos is due to the fact that right-handed
neutrinos are not included in the LEFT. The covariant deriva-
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Table 12 LEFT Baryon and Lepton number conserving dimension-six operators
(
L̄ L

) (
L̄ L

) (
L̄ L

) (
R̄R

) (
L̄ R

) (
L̄ R

)

OV,LL
νν

(
ν̄LγμνL

)
(ν̄Lγ μνL ) OV,LR

νe
(
ν̄LγμνL

)
(ēRγ μeR) OS,RR

ee (ēL eR) (ēL eR)

OV,LL
ee

(
ēLγμeL

)
(ēLγ μeL ) OV,LR

ee
(
ēLγμeL

)
(ēRγ μeR) OS,RR

eu (ēL eR) (ūLuR)

OV,LL
νe

(
ν̄LγμνL

)
(ēLγ μeL ) OV,LR

νu
(
ν̄LγμνL

)
(ū Rγ μuR) OT,RR

eu
(
ēLσμνeR

)
(ūLσμνuR)

OV,LL
νu

(
ν̄LγμνL

)
(ūLγ μuL ) OV,LR

νd

(
ν̄LγμνL

) (
d̄Rγ μdR

) OS,RR
ed (ēL eR)

(
d̄LdR

)

OV,LL
νd

(
ν̄LγμνL

) (
d̄Lγ μdL

) OV,LR
eu

(
ēLγμeL

)
(ū Rγ μuR) OT,RR

ed

(
ēLσμνeR

) (
d̄LσμνdR

)

OV,LL
eu

(
ēLγμeL

)
(ūLγ μuL ) OV,LR

ed

(
ēLγμeL

) (
d̄Rγ μdR

) OS,RR
νedu (ν̄LeR)

(
d̄LuR

)

OV,LL
ed

(
ēLγμeL

) (
d̄Lγ μdL

) OV,LR
ue

(
ūLγμuL

)
(ēRγ μeR) OT,RR

νedu

(
ν̄LσμνeR

) (
d̄LσμνuR

)

OV,LL
νedu

(
ν̄LγμeL

) (
d̄Lγ μuL

) OV,LR
de

(
d̄LγμdL

)
(ēRγ μeR) OS1,RR

uu (ūLuR) (ūLuR)

OV,LL
uu

(
ūLγμuL

)
(ūLγ μuL ) OV,LR

νedu

(
ν̄LγμeL

) (
d̄Rγ μuR

) OS8,RR
uu

(
ūL T AuR

) (
ūL T AuR

)

OV,LL
dd

(
d̄LγμdL

) (
d̄Lγ μdL

) OV 1,LR
uu

(
ūLγμuL

)
(ū Rγ μuR) OS1,RR

ud (ūLuR)
(
d̄LdR

)

OV 1,LL
ud

(
ūLγμuL

) (
d̄Lγ μdL

) OV 8,LR
uu

(
ūLγμT AuL

) (
ū Rγ μT AuR

) OS8,RR
ud

(
ūL T AuR

) (
d̄L T AdR

)

OV 8,LL
ud

(
ūLγμT AuL

) (
d̄Lγ μT AdL

) OV 1,LR
ud

(
ūLγμuL

) (
d̄Rγ μdR

) OS1,RR
dd

(
d̄LdR

) (
d̄LdR

)

(
R̄R

) (
R̄R

) OV 8,LR
ud

(
ūLγμT AuL

) (
d̄Rγ μT AdR

) OS8,RR
dd

(
d̄L T AdR

) (
d̄L T AdR

)

OV,RR
ee

(
ēRγμeR

)
(ēRγ μeR) OV 1,LR

du

(
d̄LγμdL

)
(ū Rγ μuR) OS1,RR

uddu (ūLdR)
(
d̄LuR

)

OV,RR
eu

(
ēRγμeR

)
(ū Rγ μuR) OV 8,LR

du

(
d̄LγμT AdL

) (
ū Rγ μT AuR

) OS8,RR
uddu

(
ūL T AdR

) (
d̄L T AuR

)

OV,RR
ed

(
ēRγμeR

) (
d̄Rγ μdR

) OV 1,LR
dd

(
d̄LγμdL

) (
d̄Rγ μdR

) (
L̄ R

) (
R̄L

)

OV,RR
uu

(
ū RγμuR

)
(ū Rγ μuR) OV 8,LR

dd

(
d̄LγμT AdL

) (
d̄Rγ μT AdR

) OS,RL
eu (ēL eR) (ū RuL )

OV,RR
dd

(
d̄RγμdR

) (
d̄Rγ μdR

) OV 1,LR
uddu

(
ūLγμdL

) (
d̄Rγ μuR

) OS,RL
ed (ēL eR)

(
d̄RdL

)

OV 1,RR
ud

(
ū RγμuR

) (
d̄Rγ μdR

) OV 8,LR
uddu

(
ūLγμT AdL

) (
d̄Rγ μT AuR

) OS,RL
νedu (ν̄LeR)

(
d̄RuL

)

OV 8,RR
ud

(
ū RγμT AuR

) (
d̄Rγ μT AdR

)

Table 13 LEFT Baryon and/or
Lepton number violating
dimension-six operators. We use
C to denote the Dirac charge
conjugation matrix


L = 2 
B = 
L = 1 
B = −
L = 1

OS,LL
νe

(
νTL CνL

)
(ēReL ) OS,LL

udd

(
uTLCdL

) (
dTL CνL

) OS,LL
ddd

(
dTL CdL

)
(ēRdL )

OT,LL
νe

(
νTL CσμννL

)
(ēRσμνeL ) OS,LL

duu

(
dTL CuL

) (
uTLCeL

) OS,LR
udd

(
uTLCdL

)
(ν̄LdR)

OS,LR
νe

(
νTL CνL

)
(ēL eR) OS,LR

uud

(
uTLCuL

) (
dTRCeR

) OS,LR
ddu

(
dTL CdL

)
(ν̄LuR)

OS,LL
νu

(
νTL CνL

)
(ū RuL ) OS,LR

duu

(
dTL CuL

) (
uTRCeR

) OS,LR
ddd

(
dTL CdL

)
(ēLdR)

OT,LL
νu

(
νTL CσμννL

)
(ū RσμνuL ) OS,RL

uud

(
uTRCuR

) (
dTL CeL

) OS,RL
ddd

(
dTRCdR

)
(ēRdL )

OS,LR
νu

(
νTL CνL

)
(ūLuR) OS,RL

duu

(
dTRCuR

) (
uTLCeL

) OS,RR
udd

(
uTRCdR

)
(ν̄LdR)

OS,LL
νd

(
νTL CνL

) (
d̄RdL

) OS,RL
dud

(
dTRCuR

) (
dTL CνL

) OS,RR
ddd

(
dTRCdR

)
(ēLdR)

OT,LL
νd

(
νTL CσμννL

) (
d̄RσμνdL

) OS,RL
ddu

(
dTRCdR

) (
uTLCνL

)

L = 4

OS,LR
νd

(
νTL CνL

) (
d̄LdR

) OS,RR
duu

(
dTRCuR

) (
uTRCeR

) OS,LL
νν

(
νTL CνL

) (
νTL CνL

)

OS,LL
νedu

(
νTL CeL

) (
d̄RuL

)

OT,LL
νedu

(
νTL CσμνeL

) (
d̄RσμνuL

)

OS,LR
νedu

(
νTL CeL

) (
d̄LuR

)

OV,RL
νedu

(
νTL CγμeR

) (
d̄Lγ μuL

)

OV,RR
νedu

(
νTL CγμeR

) (
d̄Rγ μuR

)
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tive is defined as

Dμ = ∂μ + igsT
AGA

μ + ieQAμ , (B.3)

where gs and e are the SU (3)c and U (1)Q gauge couplings,
respectively, and T A (A = 1 . . . 8) are the Gell-Mann matri-
ces. The gauge field tensors are defined as usual,

GA
μν = ∂μG

A
ν − ∂νG

A
μ − gs f

ABCGB
μG

C
ν , (B.4)

Fμν = ∂μFν − ∂νFμ , (B.5)

with covariant derivatives

(
DρGμν

)A = ∂ρG
A
μν − gs f

ABCGB
ρ G

C
μν , (B.6)

(
DρFμν

) = ∂ρFμν . (B.7)

Finally, dual tensors are defined as X̃ = 1
2εμνρσ Xρσ (with

ε0123 = +1).
The RGEs governing the renormalization scale evolution

of the LEFT Wilson coefficients Li are given by

dLi

d log μ
= 1

16π2 βi . (B.8)

which define the LEFT beta functions βi . We use a notation
completely analogous to that in the SMEFT. The complete set
of one-loop beta functions for the LEFT has been computed
in Ref. [8]. They can be read off directly from DsixTools
with the command β[parameter].

Appendix C: SMEFT and LEFT parameters

In this Appendix we provide additional details about the vari-
ables used in DsixTools. These can be useful to prop-
erly read and write some variables or apply some global dis-
patches and substitution rules in a Mathematica session
using DsixTools. We also introduce the notation used in
DsixTools for the SMEFT and LEFT parameters.

It is well known that some of the 2- and 4-fermion oper-
ators in the SMEFT and the LEFT possess specific sym-
metries under the exchange of flavor indices. For instance,
the flavour components of the SMEFT operator Qϕe form
a Hermitian matrix, hence following the symmetry relation
[Qϕe]i j = [Qϕe]∗j i , while the LEFT operator components
of Oνγ form an antisymmetric matrix, hence following the
symmetry relation [Oνγ ]i j = −[Oνγ ] j i . More complicated
index symmetries exist for some of the 4-fermion opera-
tors. In all these cases, the number of independent operator
components gets reduced, and thus the number of indepen-
dent WCs. For example, the Cee 4-fermion WC does not
contain 81 (= 34) independent complex WCs, but just 21

Table 14 Index symmetry categories used in DsixTools

Category Meaning

0 0F scalar object

1 2F general 3 × 3 matrix

2 2F Hermitian matrix

3 2F symmetric matrix

4 2F antisymmetric matrix

5 4F general 3 × 3 × 3 × 3 object

6 4F two identical ψψ currents

7 4F two independent ψψ currents

8 4F two identical ψψ currents (ψ singlet)

9 4F symmetric current × general current

10 4F antisymmetric current × general current

11 4F SMEFT special case Cqqql

12 4F LEFT special case LS,LL
νν

13 4F LEFT special case LS,LL/RR
ddd

Table 15 Independent WCs in each 2F category. Numbers between
curly brackets refer to the WC flavour indices. Elements in bold denote
real WCs. Columns refer to symmetry categories, while rows just count
WCs

1 2 3 4

1 {1,1} {1,1} {1,1} {1,2}

2 {1,2} {1,2} {1,2} {1,3}

3 {1,3} {1,3} {1,3} {2,3}

4 {2,1} {2,2} {2,2}

5 {2,2} {2,3} {2,3}

6 {2,3} {3,3} {3,3}

7 {3,1}

8 {3,2}

9 {3,3}

real and 15 imaginary independent components. It is con-
venient to restrict the number of parameters considered in
SMEFT or LEFT calculations to just the independent ones.
In DsixTools we have followed this approach, dropping
redundant WCs in all internal calculations by transforming
the user input into two minimal bases of operators: the inde-
pendent basis and the symmetric basis. These bases, which
are described in Appendix C.3, have the same set of indepen-
dent WCs, although with different numerical values. Since
the number of independent WCs depends on the symmetry
of the operators involved, it is sufficient to know the indepen-
dent WCs for each index symmetry category of the operators
in the SMEFT and LEFT. The different categories are given
in Table 14. We see that, apart from the operators belonging
to categories 0, 1 and 5, all other operators have index sym-
metries. Furthermore, there are two dimension-six operators
with special symmetries, not shared by any other operator,
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Qqqql and OS,LL
νν , and two operators as only representatives

of the last index symmetry category, OS,LL
ddd andOS,RR

ddd . Sim-
ilarly, the dimension-five SMEFT operator Q��ϕϕ and the
dimension-three LEFT neutrino mass matrix Mν are the only
symmetric matrices, while the dimension-five LEFT opera-
tor Oνγ is the only antisymmetric matrix.

In Tables 15 and 16 we list the independent WCs con-
tained in each category. This, combined with Tables 17 and
18, completely allows the user to determine the position
of a given parameter in the SMEFTParameterList and
LEFTParameterList arrays. In any case, we remind
the reader that the functions SMEFTFindParameter
and LEFTFindParameter can also be used for this
purpose.

C.1 SMEFT parameters

Table 17 provides a complete list of the SMEFT parame-
ters used in DsixTools. In addition to the SMEFT WCs,
this includes the SM parameters (gauge couplings, Yukawa
matrices and scalar and θ parameters). This table is partic-
ularly useful to identify the names given to the elements
of 2- and 4-fermion WCs, as well as the corresponding
beta functions, which can be readily obtained by evaluat-
ing β[parameter]. For instance, the beta function for
the gs gauge coupling is obtained by evaluating β[gs] and
the beta function for the [C (1)

�q ]2233 WC is obtained with
β[Clq1[2,2,3,3]].

C.2 LEFT parameters

Table 18 provides a complete list of the LEFT parameters
used in DsixTools. In addition to the LEFT WCs, this
includes the QCD and QED parameters (gauge couplings,
fermion mass matrices and θ parameters). This table is par-
ticularly useful to identify the names given to the elements
of 2- and 4-fermion WCs, as well as the corresponding
beta functions, which can be readily obtained by evaluat-
ing β[parameter]. For instance, the beta function for
the e gauge coupling is obtained by evaluating β[eQED]
and the beta function for the [LdG]22 WC is obtained with
β[LdG[2,2]].

C.3 The symmetric and independent bases

DsixTools allows the user to introduce an arbitrary input
for the WCs of the SMEFT in the Warsaw basis, and of the
LEFT in the San Diego basis. In order to work only with inde-
pendent parameters two different operator bases are used in
DsixTools that drop all redundant WCs, and the user input

and the results obtained from it can be expressed in terms of
any of them. The first non-redundant basis, the independent
basis, contains only the WCs with the flavour indices as listed
in Tables 15 and 16 for each symmetry category, all other
WCs being set to zero. In the second minimal basis, the sym-
metric basis, the redundancies in the WCs are removed by
imposing that the latter follow the same symmetry relations
as the corresponding operators. This is a convenient choice
since the index symmetry of the operators is translated to
the corresponding WCs. In order to simplify intermediate
calculations done in this basis (e.g. in the RGEs) only the
independent WCs listed for each category in Tables 15 and
16 are used. But unlike in the independent basis, the rest of
WCs do not vanish but relate to the former following the same
symmetry relations as the operators of the corresponding cat-
egory. For instance, if we consider a 4-fermion operator with
two identical ψ̄ψ currents (ψ singlet) (i.e. either Qee in the
SMEFT, or OV,RR

ee , OV,LL
ee and OV,LL

νν in the LEFT), which
belongs to category 8 in Table 14,
∑

prst

Cprst Q prst , (C.1)

its WCs in the symmetric basis fulfill the relations Cstpr =
Cprst (because the two flavour currents are identical),
Crpts = Cprst (due to hermiticity), and Cptsr = Cprst (as
a consequence of the Fierz identity satisfied by the flavour
components of the operator). Note that the sum in (C.1C.1)
runs over all possible values of the fermion flavour indices
(p, r, s, t). The same operator in the independent basis reads,
however,

∑

{prst} ∈ cat. 8
(real C̃)

C̃ prst Q prst +
∑

{prst} ∈ cat. 8
(complex C̃)

(
C̃ prst Q prst + h.c.

)
,

(C.2)

where now the sums comprise only the 21 (6 real and 15
complex) independent components listed under category 8
of Table 16, and all other C̃ prst vanish.

It is straightforward to relate the WCs in the symmet-
ric basis to those of the independent basis by using the
symmetry relations satisfied by the operators. Let us pro-
vide an explicit example for illustration. Consider the con-
tribution to the Lagrangian of the operator OS,LL

νν,prst =(
νTL ,pCνL ,r

) (
νTL ,sCνL ,t

)
of the LEFT, which belongs to

the symmetry category 12. Its flavour components are sym-
metric under the exchange of indices p ↔ r , s ↔ t
and (p, r) ↔ (s, t), and further satisfy the Fierz identity
Oprst = −Optsr − Otrsp. These relations reduce the num-
ber of independent components to just six. In the symmetric
basis the contribution of this operator to the Lagrangian reads
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Table 16 Independent WCs in each 4F category. Same notation as in Table 15

5 6 7 8 9 10 11 12 13

1 {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,1,1,1} {1,2,1,1} {1,1,1,1} {1,1,2,2} {1,2,1,1}

2 {1,1,1,2} {1,1,1,2} {1,1,1,2} {1,1,1,2} {1,1,1,2} {1,2,1,2} {1,1,1,2} {1,1,3,3} {1,2,1,2}

3 {1,1,1,3} {1,1,1,3} {1,1,1,3} {1,1,1,3} {1,1,1,3} {1,2,1,3} {1,1,1,3} {2,2,3,3} {1,2,1,3}

4 {1,1,2,1} {1,1,2,2} {1,1,2,2} {1,1,2,2} {1,1,2,1} {1,2,2,1} {1,1,2,1} {1,1,2,3} {1,2,2,1}

5 {1,1,2,2} {1,1,2,3} {1,1,2,3} {1,1,2,3} {1,1,2,2} {1,2,2,2} {1,1,2,2} {1,2,2,3} {1,2,2,2}

6 {1,1,2,3} {1,1,3,3} {1,1,3,3} {1,1,3,3} {1,1,2,3} {1,2,2,3} {1,1,2,3} {1,2,3,3} {1,2,2,3}

7 {1,1,3,1} {1,2,1,2} {1,2,1,1} {1,2,1,2} {1,1,3,1} {1,2,3,1} {1,1,3,1} {1,2,3,1}

8 {1,1,3,2} {1,2,1,3} {1,2,1,2} {1,2,1,3} {1,1,3,2} {1,2,3,2} {1,1,3,2} {1,2,3,2}

9 {1,1,3,3} {1,2,2,1} {1,2,1,3} {1,2,2,2} {1,1,3,3} {1,2,3,3} {1,1,3,3} {1,2,3,3}

10 {1,2,1,1} {1,2,2,2} {1,2,2,1} {1,2,2,3} {1,2,1,1} {1,3,1,1} {1,2,1,1} {1,3,1,1}

11 {1,2,1,2} {1,2,2,3} {1,2,2,2} {1,2,3,2} {1,2,1,2} {1,3,1,2} {1,2,1,2} {1,3,1,2}

12 {1,2,1,3} {1,2,3,1} {1,2,2,3} {1,2,3,3} {1,2,1,3} {1,3,1,3} {1,2,1,3} {1,3,1,3}

13 {1,2,2,1} {1,2,3,2} {1,2,3,1} {1,3,1,3} {1,2,2,1} {1,3,2,1} {1,2,2,1} {1,3,2,1}

14 {1,2,2,2} {1,2,3,3} {1,2,3,2} {1,3,2,3} {1,2,2,2} {1,3,2,2} {1,2,2,2} {1,3,2,2}

15 {1,2,2,3} {1,3,1,3} {1,2,3,3} {1,3,3,3} {1,2,2,3} {1,3,2,3} {1,2,2,3} {1,3,2,3}

16 {1,2,3,1} {1,3,2,2} {1,3,1,1} {2,2,2,2} {1,2,3,1} {1,3,3,1} {1,2,3,1} {1,3,3,1}

17 {1,2,3,2} {1,3,2,3} {1,3,1,2} {2,2,2,3} {1,2,3,2} {1,3,3,2} {1,2,3,2} {1,3,3,2}

18 {1,2,3,3} {1,3,3,1} {1,3,1,3} {2,2,3,3} {1,2,3,3} {1,3,3,3} {1,2,3,3} {1,3,3,3}

19 {1,3,1,1} {1,3,3,2} {1,3,2,1} {2,3,2,3} {1,3,1,1} {2,3,1,1} {1,3,1,1} {2,3,1,2}

20 {1,3,1,2} {1,3,3,3} {1,3,2,2} {2,3,3,3} {1,3,1,2} {2,3,1,2} {1,3,1,2} {2,3,1,3}

21 {1,3,1,3} {2,2,2,2} {1,3,2,3} {3,3,3,3} {1,3,1,3} {2,3,1,3} {1,3,1,3} {2,3,2,2}

22 {1,3,2,1} {2,2,2,3} {1,3,3,1} {1,3,2,1} {2,3,2,1} {1,3,2,1} {2,3,2,3}

23 {1,3,2,2} {2,2,3,3} {1,3,3,2} {1,3,2,2} {2,3,2,2} {1,3,2,2} {2,3,3,2}

24 {1,3,2,3} {2,3,2,3} {1,3,3,3} {1,3,2,3} {2,3,2,3} {1,3,2,3} {2,3,3,3}

25 {1,3,3,1} {2,3,3,2} {2,2,1,1} {1,3,3,1} {2,3,3,1} {1,3,3,1}

26 {1,3,3,2} {2,3,3,3} {2,2,1,2} {1,3,3,2} {2,3,3,2} {1,3,3,2}

27 {1,3,3,3} {3,3,3,3} {2,2,1,3} {1,3,3,3} {2,3,3,3} {1,3,3,3}

28 {2,1,1,1} {2,2,2,2} {2,2,1,1} {2,1,2,1}

29 {2,1,1,2} {2,2,2,3} {2,2,1,2} {2,1,2,2}

30 {2,1,1,3} {2,2,3,3} {2,2,1,3} {2,1,2,3}

31 {2,1,2,1} {2,3,1,1} {2,2,2,1} {2,1,3,1}

32 {2,1,2,2} {2,3,1,2} {2,2,2,2} {2,1,3,2}

33 {2,1,2,3} {2,3,1,3} {2,2,2,3} {2,1,3,3}

34 {2,1,3,1} {2,3,2,1} {2,2,3,1} {2,2,2,1}

35 {2,1,3,2} {2,3,2,2} {2,2,3,2} {2,2,2,2}

36 {2,1,3,3} {2,3,2,3} {2,2,3,3} {2,2,2,3}

37 {2,2,1,1} {2,3,3,1} {2,3,1,1} {2,2,3,1}

38 {2,2,1,2} {2,3,3,2} {2,3,1,2} {2,2,3,2}

39 {2,2,1,3} {2,3,3,3} {2,3,1,3} {2,2,3,3}

40 {2,2,2,1} {3,3,1,1} {2,3,2,1} {2,3,1,1}

41 {2,2,2,2} {3,3,1,2} {2,3,2,2} {2,3,1,2}

42 {2,2,2,3} {3,3,1,3} {2,3,2,3} {2,3,1,3}
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Table 16 continued

5 6 7 8 9 10 11 12 13

43 {2,2,3,1} {3,3,2,2} {2,3,3,1} {2,3,2,1}

44 {2,2,3,2} {3,3,2,3} {2,3,3,2} {2,3,2,2}

45 {2,2,3,3} {3,3,3,3} {2,3,3,3} {2,3,2,3}

46 {2,3,1,1} {3,3,1,1} {2,3,3,1}

47 {2,3,1,2} {3,3,1,2} {2,3,3,2}

48 {2,3,1,3} {3,3,1,3} {2,3,3,3}

49 {2,3,2,1} {3,3,2,1} {3,1,3,1}

50 {2,3,2,2} {3,3,2,2} {3,1,3,2}

51 {2,3,2,3} {3,3,2,3} {3,1,3,3}

52 {2,3,3,1} {3,3,3,1} {3,2,3,1}

53 {2,3,3,2} {3,3,3,2} {3,2,3,2}

54 {2,3,3,3} {3,3,3,3} {3,2,3,3}

55 {3,1,1,1} {3,3,3,1}

56 {3,1,1,2} {3,3,3,2}

57 {3,1,1,3} {3,3,3,3}

58 {3,1,2,1}

59 {3,1,2,2}

60 {3,1,2,3}

61 {3,1,3,1}

62 {3,1,3,2}

63 {3,1,3,3}

64 {3,2,1,1}

65 {3,2,1,2}

66 {3,2,1,3}

67 {3,2,2,1}

68 {3,2,2,2}

69 {3,2,2,3}

70 {3,2,3,1}

71 {3,2,3,2}

72 {3,2,3,3}

73 {3,3,1,1}

74 {3,3,1,2}

75 {3,3,1,3}

76 {3,3,2,1}

77 {3,3,2,2}

78 {3,3,2,3}

79 {3,3,3,1}

80 {3,3,3,2}

81 {3,3,3,3}

∑

prst

Cprst OS,LL
νν, prst , (C.3)

where the Cprst inherit the same index symmetries as those
of the operator. Using those we can relate the 81 flavour

components to the six independent ones chosen for cate-
gory 12 (see Table 16). In this way, (C.3) reduces to

3C1122 OS,LL
νν,1122 + 6C1123 OS,LL

νν,1123 + 3C1133 OS,LL
νν,1133

123



167 Page 24 of 30 Eur. Phys. J. C (2021) 81 :167

Table 17 SMEFT parameters.
Position denotes the position of
the parameter (or parameters for
2- and 4-fermion objects) in the
SMEFTParametersTotal
global array. Type indicates the
type of parameter (with nF
standing for n-fermion) and
Category denotes the index
symmetry category of the
coefficient, being relevant for 2-
and 4-fermion WCs

Position Parameter(s) DsixTools name Elements Type Category

1 g g – 0F 0

2 g′ gp – 0F 0

3 gs gs – 0F 0

4 λ λ – 0F 0

5 m2 m2 – 0F 0

6–14 �u MGu Gu[i,j] 2F 1

15–23 �d MGd Gd[i,j] 2F 1

24–32 �e MGe Ge[i,j] 2F 1

33 θ θ – 0F 0

34 θ ′ θp – 0F 0

35 θs θs – 0F 0

36 CG CG – 0F 0

37 CG̃ CGtilde – 0F 0

38 CW CW – 0F 0

39 CW̃ CWtilde – 0F 0

40 Cϕ CH – 0F 0

41 Cϕ� CHbox – 0F 0

42 CϕD CHD – 0F 0

43 CϕG CHG – 0F 0

44 CϕB CHB – 0F 0

45 CϕW CHW – 0F 0

46 CϕWB CHWB – 0F 0

47 CϕG̃ CHGtilde – 0F 0

48 Cϕ B̃ CHBtilde – 0F 0

49 CϕW̃ CHWtilde – 0F 0

50 CϕW̃ B CHWtildeB – 0F 0

51–59 Cuϕ MCuH CuH[i,j] 2F 1

60–68 Cdϕ MCdH CdH[i,j] 2F 1

69–77 Ceϕ MCeH CeH[i,j] 2F 1

78–86 CeW MCeW CeW[i,j] 2F 1

87–95 CeB MCeB CeB[i,j] 2F 1

96–104 CuG MCuG CuG[i,j] 2F 1

105–113 CuW MCuW CuW[i,j] 2F 1

114–122 CuB MCuB CuB[i,j] 2F 1

123–131 CdG MCdG CdG[i,j] 2F 1

132–140 CdW MCdW CdW[i,j] 2F 1

141–149 CdB MCdB CdB[i,j] 2F 1

150–155 C (1)
ϕ� MCHl1 CHl1[i,j] 2F 2

156–161 C (3)
ϕ� MCHl3 CHl3[i,j] 2F 2

162–167 Cϕe MCHe CHe[i,j] 2F 2

168–173 C (1)
ϕq MCHq1 CHq1[i,j] 2F 2

174–179 C (3)
ϕq MCHq3 CHq3[i,j] 2F 2

180–185 Cϕu MCHu CHu[i,j] 2F 2

186–191 Cϕd MCHd] CHd[i,j] 2F 2

192–200 Cϕud MCHud CHud[i,j] 2F 1

201–227 C�� MCll Cll[i,j,k,l] 4F 6
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Table 17 continued
Position Parameter(s) DsixTools name Elements Type Category

228–254 C (1)
qq MCqq1 Cqq1[i,j,k,l] 4F 6

255–281 C (3)
qq MCqq3 Cqq3[i,j,k,l] 4F 6

282–326 C (1)
�q MClq1 Clq1[i,j,k,l] 4F 7

327–371 C (3)
�q MClq3 Clq3[i,j,k,l] 4F 7

372–392 Cee MCee Cee[i,j,k,l] 4F 8

393–419 Cuu MCuu Cuu[i,j,k,l] 4F 6

420–446 Cdd MCdd Cdd[i,j,k,l] 4F 6

447–491 Ceu MCeu Ceu[i,j,k,l] 4F 7

492–536 Ced MCed Ced[i,j,k,l] 4F 7

537–581 C (1)
ud MCud1 Cud1[i,j,k,l] 4F 7

582–626 C (8)
ud MCud8 Cud8[i,j,k,l] 4F 7

627–671 C�e MCle Cle[i,j,k,l] 4F 7

672–716 C�u MClu Clu[i,j,k,l] 4F 7

717–761 C�d MCld Cld[i,j,k,l] 4F 7

762–806 Cqe MCqe Cqe[i,j,k,l] 4F 7

807–851 C (1)
qu MCqu1 Cqu1[i,j,k,l] 4F 7

852–896 C (8)
qu MCqu8 Cqu8[i,j,k,l] 4F 7

897–941 C (1)
qd MCqd1 Cqd1[i,j,k,l] 4F 7

942–986 C (8)
qd MCqd8 Cqd8[i,j,k,l] 4F 7

987–1067 C�edq MCledq Cledq[i,j,k,l] 4F 5

1068–1148 C (1)
quqd MCquqd1 Cquqd1[i,j,k,l] 4F 5

1149–1229 C (8)
quqd MCquqd8 Cquqd8[i,j,k,l] 4F 5

1230–1310 C (1)
�equ MClequ1 Clequ1[i,j,k,l] 4F 5

1311–1391 C (3)
�equ MClequ3 Clequ3[i,j,k,l] 4F 5

1392–1472 Cduq� MCduql Cduql[i,j,k,l] 4F 5

1473–1526 Cqque MCqque Cqque[i,j,k,l] 4F 9

1527–1583 Cqqq� MCqqql Cqqql[i,j,k,l] 4F 11

1584–1664 Cduue MCduue Cduue[i,j,k,l] 4F 5

1665–1670 C��ϕϕ MCllHH CllHH[i,j] 2F 3

+ 24C1223 OS,LL
νν,1223 + 6C1233 OS,LL

νν,1233 + 3C2233 OS,LL
νν,2233 . (C.4)

(C.4) matches the form of this operator in the independent
basis, and thus allow us to read off the WCs in that basis in
terms of the symmetric basis WCs:

C̃1122 = 3C1122 , C̃1123 = 6C1123 , C̃1133 = 3C1133 ,

(C.5)

C̃1223 = 24C1223 , C̃1233 = 6C1233 , C̃2233 = 3C2233 .

(C.6)

Appendix D: Evolution matrix formalism

DsixTools 2.0 provides a new and much faster method of
solving the RGE equations that relies on an semi-analytical

solution of the RGE equations. To explain this method, we
focus on the case where only dimension four and dimension
six operators are present, and discuss the addition of dimen-
sion five operators at the end. The SMEFT and LEFT RGE
equations can then be generically written as

dC (4)

i (t)

dt
= 1

16π2 γ
(4)

i j (C (4)

k ,C (6)

k )C (4)

j (t) , (D.1)

dC (6)

i (t)

dt
= 1

16π2 γ
(6)

i j (C (4)

k )C (6)

j (t) , (D.2)

where i, j, k span the number of EFT operators, t ≡ ln μ,
and γ is the anomalous dimension matrix (ADM). The
superindices (4) and (6) denote, respectively, quantities asso-
ciated to dimension four and six operators, and we have
neglected contributions from C (6)

k in γ (6), since these corre-
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Table 18 LEFT parameters.
Position denotes the position of
the parameter (or parameters for
2- and 4-fermion objects) in the
LEFTParametersTotal
global array. Type indicates the
type of parameter (with nF
standing for n-fermion) and
Category denotes the index
symmetry category of the
coefficient, being relevant for 2-
and 4-fermion WCs

Position Parameter(s) DsixTools name Elements Type Category

1 gs gQCD – 0F 0

2 e eQED – 0F 0

3 θQCD θQCD – 0F 0

4 θQED θQED – 0F 0

5–10 Mν MMν Mν[i,j] 2F 3

11–19 Me MMe Me[i,j] 2F 1

20–28 Mu MMu Mu[i,j] 2F 1

29–37 Md MMd Md[i,j] 2F 1

38 LG LG – 0F 0

39 LG̃ LGtilde – 0F 0

40–42 Lνγ MLνγ Lνγ[i,j] 2F 4

43–51 Leγ MLeγ Leγ[i,j] 2F 1

52–60 Luγ MLuγ Luγ[i,j] 2F 1

61–69 Ldγ MLdγ Ldγ[i,j] 2F 1

70–78 LuG MLuG LuG[i,j] 2F 1

79–87 LdG MLdG LdG[i,j] 2F 1

88–108 LV,LL
νν MLννVLL LννVLL[i,j,k,l] 4F 8

109–129 LV,LL
ee MLeeVLL LeeVLL[i,j,k,l] 4F 8

130–210 LV,LL
νe MLνeVLL LνeVLL[i,j,k,l] 4F 5

211–291 LV,LL
νu MLνuVLL LνuVLL[i,j,k,l] 4F 5

292–372 LV,LL
νd MLνdVLL LνdVLL[i,j,k,l] 4F 5

373–453 LV,LL
eu MLeuVLL LeuVLL[i,j,k,l] 4F 5

454–534 LV,LL
ed MLedVLL LedVLL[i,j,k,l] 4F 5

535–615 LV,LL
νedu MLνeduVLL LνeduVLL[i,j,k,l] 4F 5

616–642 LV,LL
uu MLuuVLL LuuVLL[i,j,k,l] 4F 6

643–669 LV,LL
dd MLddVLL LddVLL[i,j,k,l] 4F 6

670–750 LV 1,LL
ud MLudV1LL LudV1LL[i,j,k,l] 4F 5

751–831 LV 8,LL
ud MLudV8LL LudV8LL[i,j,k,l] 4F 5

832–852 LV,RR
ee MLeeVRR LeeVRR[i,j,k,l] 4F 8

853–933 LV,RR
eu MLeuVRR LeuVRR[i,j,k,l] 4F 5

934–1014 LV,RR
ed MLedVRR LedVRR[i,j,k,l] 4F 5

1015–1041 LV,RR
uu MLuuVRR LuuVRR[i,j,k,l] 4F 6

1042–1068 LV,RR
dd MLddVRR LddVRR[i,j,k,l] 4F 6

1069–1149 LV 1,RR
ud MLudV1RR LudV1RR[i,j,k,l] 4F 5

1150–1230 LV 8,RR
ud MLudV8RR LudV8RR[i,j,k,l] 4F 5

1231–1311 LV,LR
νe MLνeVLR LνeVLR[i,j,k,l] 4F 5

1312–1392 LV,LR
ee MLeeVLR LeeVLR[i,j,k,l] 4F 5

1393–1473 LV,LR
νu MLνuVLR LνuVLR[i,j,k,l] 4F 5

1474–1554 LV,LR
νd MLνdVLR LνdVLR[i,j,k,l] 4F 5

1555–1635 LV,LR
eu MLeuVLR LeuVLR[i,j,k,l] 4F 5

1636–1716 LV,LR
ed MLedVLR LedVLR[i,j,k,l] 4F 5
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Table 18 continued
Position Parameter(s) DsixTools name Elements Type Category

1717–1797 LV,LR
ue MLueVLR LueVLR[i,j,k,l] 4F 5

1798–1878 LV,LR
de MLdeVLR LdeVLR[i,j,k,l] 4F 5

1879–1959 LV,LR
νedu MLνeduVLR LνeduVLR[i,j,k,l] 4F 5

1960–2040 LV 1,LR
uu MLuuV1LR LuuV1LR[i,j,k,l] 4F 5

2041–2121 LV 8,LR
uu MLuuV8LR LuuV8LR[i,j,k,l] 4F 5

2122–2202 LV 1,LR
ud MLudV1LR LudV1LR[i,j,k,l] 4F 5

2203–2283 LV 8,LR
ud MLudV8LR LudV8LR[i,j,k,l] 4F 5

2284–2364 LV 1,LR
du MLduV1LR LduV1LR[i,j,k,l] 4F 5

2365–2445 LV 8,LR
du MLduV8LR LduV8LR[i,j,k,l] 4F 5

2446–2526 LV 1,LR
dd MLddV1LR LddV1LR[i,j,k,l] 4F 5

2527–2607 LV 8,LR
dd MLddV8LR LddV8LR[i,j,k,l] 4F 5

2608–2688 LV 1,LR
uddu MLudduV1LR LudduV1LR[i,j,k,l] 4F 5

2689–2769 LV 8,LR
uddu MLudduV8LR LudduV8LR[i,j,k,l] 4F 5

2770–2796 LS,RR
ee MLeeSRR LeeSRR[i,j,k,l] 4F 6

2797–2877 LS,RR
eu MLeuSRR LeuSRR[i,j,k,l] 4F 5

2878–2958 LT,RR
eu MLeuTRR LeuTRR[i,j,k,l] 4F 5

2959–3039 LS,RR
ed MLedSRR LedSRR[i,j,k,l] 4F 5

3040–3120 LT,RR
ed MLedTRR LedTRR[i,j,k,l] 4F 5

3121–3201 LS,RR
νedu MLνeduSRR LνeduSRR[i,j,k,l] 4F 5

3202–3282 LT,RR
νedu MLνeduTRR LνeduTRR[i,j,k,l] 4F 5

3283–3309 LS1,RR
uu MLuuS1RR LuuS1RR[i,j,k,l] 4F 6

3310–3336 LS8,RR
uu MLuuS8RR LuuS8RR[i,j,k,l] 4F 6

3337–3417 LS1,RR
ud MLudS1RR LudS1RR[i,j,k,l] 4F 5

3418–3498 LS8,RR
ud MLudS8RR LudS8RR[i,j,k,l] 4F 5

3499–3525 LS1,RR
dd MLddS1RR LddS1RR[i,j,k,l] 4F 6

3526–3552 LS8,RR
dd MLddS8RR LddS8RR[i,j,k,l] 4F 6

3553–3633 LS1,RR
uddu MLudduS1RR LudduS1RR[i,j,k,l] 4F 5

3634–3714 LS8,RR
uddu MLudduS8RR LudduS8RR[i,j,k,l] 4F 5

3715–3795 LS,RL
eu MLeuSRL LeuSRL[i,j,k,l] 4F 5

3796–3876 LS,RL
ed MLedSRL LedSRL[i,j,k,l] 4F 5

3877–3957 LS,RL
νedu MLνeduSRL LνeduSRL[i,j,k,l] 4F 5

3958–3963 LS,LL
νν MLννSLL LννSLL[i,j,k,l] 4F 12

3964–4017 LS,LL
νe MLνeSLL LνeSLL[i,j,k,l] 4F 9

4018–4044 LT,LL
νe MLνeTLL LνeTLL[i,j,k,l] 4F 10

4045–4098 LS,LR
νe MLνeSLR LνeSLR[i,j,k,l] 4F 9

4099–4152 LS,LL
νu MLνuSLL LνuSLL[i,j,k,l] 4F 9

4153–4179 LT,LL
νu MLνuTLL LνuTLL[i,j,k,l] 4F 10

4180–4233 LS,LR
νu MLνuSLR LνuSLR[i,j,k,l] 4F 9

4234–4287 LS,LL
νd MLνdSLL LνdSLL[i,j,k,l] 4F 9

4288–4314 LT,LL
νd MLνdTLL LνdTLL[i,j,k,l] 4F 10
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Table 18 continued
Position Parameter(s) DsixTools name Elements Type Category

4315–4368 LS,LR
νd MLνdSLR LνdSLR[i,j,k,l] 4F 9

4369–4449 LS,LL
νedu MLνeduSLL LνeduSLL[i,j,k,l] 4F 5

4450–4530 LT,LL
νedu MLνeduTLL LνeduTLL[i,j,k,l] 4F 5

4531–4611 LS,LR
νedu MLνeduSLR LνeduSLR[i,j,k,l] 4F 5

4612–4692 LV,RL
νedu MLνeduVRL LνeduVRL[i,j,k,l] 4F 5

4693–4773 LV,RR
νedu MLνeduVRR LνeduVRR[i,j,k,l] 4F 5

4774–4854 LS,LL
udd MLuddSLL LuddSLL[i,j,k,l] 4F 5

4855–4935 LS,LL
duu MLduuSLL LduuSLL[i,j,k,l] 4F 5

4936–4962 LS,LR
uud MLuudSLR LuudSLR[i,j,k,l] 4F 10

4963–5043 LS,LR
duu MLduuSLR LduuSLR[i,j,k,l] 4F 5

5044–5070 LS,RL
uud MLuudSRL LuudSRL[i,j,k,l] 4F 10

5071–5151 LS,RL
duu MLduuSRL LduuSRL[i,j,k,l] 4F 5

5152–5232 LS,RL
dud MLdudSRL LdudSRL[i,j,k,l] 4F 5

5233–5259 LS,RL
ddu MLdduSRL LdduSRL[i,j,k,l] 4F 10

5260–5340 LS,RR
duu MLduuSRR LduuSRR[i,j,k,l] 4F 5

5341–5364 LS,LL
ddd MLdddSLL LdddSLL[i,j,k,l] 4F 13

5365–5445 LS,LR
udd MLuddSLR LuddSLR[i,j,k,l] 4F 5

5446–5472 LS,LR
ddu MLdduSLR LdduSLR[i,j,k,l] 4F 10

5473–5499 LS,LR
ddd MLdddSLR LdddSLR[i,j,k,l] 4F 10

5500–5526 LS,RL
ddd MLdddSRL LdddSRL[i,j,k,l] 4F 10

5527–5607 LS,RR
udd MLuddSRR LuddSRR[i,j,k,l] 4F 5

5608–5631 LS,RR
ddd MLdddSRR LdddSRR[i,j,k,l] 4F 13

spond to higher orders in the EFT expansion. An analytical
solution to this system of coupled differential equations is not
known, and one is generally forced to solve it numerically.
Given the large number of equations involved, such numer-
ical solution can be relatively slow. However, it is impor-
tant to note that (D.2) still contains contributions that are
higher order in the EFT expansion. Indeed, by noting that
C (6)

k ∼ O(1/�2), we can rewrite (D.1) as

dC (4)

i (t)

dt
= 1

16π2 γ
(4)

i j (C (4)

k )C (4)

j (t) + O(1/�2) , (D.3)

with γ
(4)

i j (C (4)

k ) ≡ γ
(4)

i j (C (4)

k , 0). These equations correspond

to the SM (or QCD and QED) RGE equations, and γ
(4)

i j (C (4)

k )

is known up to three loops [38–41] and even up to five loops
in QCD for the quark masses and QCD coupling [42–44].
The numerical solution of this system of equations is much
faster, given the reduced number ofC (4)

k coefficients, and only
needs to be performed once for a given set of experimental
inputs. As a result, we get

C (4)

k (t) = Ĉ (4)

k (t) + O(1/�2) , (D.4)

with Ĉ (4)

k (t) being interpolating functions obtained from the
numerical solution of (D.3). Using this solution, we can
rewrite (D.2) as

dC (6)

i (t)

dt
= 1

16π2 γ
(6)

i j (Ĉ (4)

k )C (6)

j (t) + O(1/�4)

≡ γ̂
(6)

i j (t)C (6)

j (t) + O(1/�4) , (D.5)

such that, up to corrections that are higher order in the
EFT expansion, the ADM is just a function of t , completely
fixed in terms of the interpolating functions Ĉ (4)

k (t). Neglect-
ing terms of O(1/�2), the system of differential equations
in (D.5) is solved by

C (6)

i (t) = U (6)

i j (t, t0)C
(6)

j (t0) , (D.6)

where t0 ≡ ln μ0, with μ0 being the input scale of the
dimension-six WCs, and U (6) is an evolution matrix that is
given in terms of γ̂ (6)(t) by13

13 In practice, it proves more convenient to determine the evolution
matrix in (D.6) by numerically solving (D.5) for a set of linearly inde-
pendent C (6)

j (t0) test inputs, rather than by using (D.7).
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U (6)(t, t0) = T
{

exp

(∫ t

t0
γ̂ (6)(ω) dω

)}

=
∞∑

n=0

∫ t

t0

∫ ωn

t0

∫ ωn−1

t0

. . .

∫ ω2

t0
γ̂ (6)(ω1) . . . γ̂ (6)(ωn) dω1 . . . dωn , (D.7)

where T denotes t-ordering. Obtaining the evolution matrix
is computationally expensive. However, since it is indepen-
dent of the dimension-six input, it only needs to be deter-
mined once (for a given set of SM inputs). DsixTools
2.0 already contains a pre-computed evolution matrix for
the inputs given in Table 1. Once the evolution matrix is
known, the evaluation of (D.6) is very fast. The solution for
C (6)

i (t) in (D.6) can then be plugged into the equations for
the dimension-four WCs in (D.1). These equations need to be
solved numerically, but given the small number of equations,
obtaining this numerical solution is considerably faster than
solving the whole system.

Finally, we comment on the inclusion of dimension five
operators, since these can potentially modify the method dis-
cussed here. The only dimension five operator in the SMEFT
is the Weinberg operator. Since its WC is expected to be
very small, given the smallness of the neutrino masses, we
neglect its mixing to dimension-six SMEFT operators, which
requires a double insertion of this operator. Once this con-
tribution is neglected, the evolution matrix formalism can
be trivially extended to include also the Weinberg opera-
tor. In the case of the LEFT, the presence of dimension-five
dipole could be addressed by extending the above procedure
order-by-order. The end result would be a numerical evo-
lution matrix which takes into account the effect of double
dipole insertions in the running of C (6). What we do is to
produce the numerical evolution matrix neglecting double
dipole insertions in the beta functions, and test the results of
running with this evolution matrix against the exact results.
We find that the agreement is numerically very accurate for
all practical cases. However, the user should keep this in
mind when considering applications with large contributions
to dipole operators. In such situations it might be wise to
compare the results of RGEsMethod=3 with those obtained
with RGEsMethod=1 in a few cases. If significant effects
from double dipole insertions are found, then running with
RGEsMethod=1 would be advised.
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