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Abstract It is conjectured that stationary black holes are
characterized by the inverse hoop relation A ≤ C2/π , where
A and C are respectively the black-hole surface area and the
circumference length of the smallest ring that can engulf the
black-hole horizon in every direction. We explicitly prove
that generic Kerr–Newman–(anti)-de Sitter black holes con-
form to this conjectured area-circumference relation.

1 Introduction

The isoperimetric inequality [1] in a two-dimensional
Euclidean space states that the area A of a connected domain
is bounded from above by the simple relation

A ≤ C2/4π, (1)

where C is the circumference length of the two-dimensional
domain. The equality in (1) may be attained by an engulfing
circular ring.

On the other hand, the area A of a deformed (or wrin-
kled) two-dimensional patch which is embedded in a three-
dimensional space can violate the area-circumference rela-
tion (1) [2]. Likewise, the surface area of a (3 + 1)-
dimensional black hole may in principle grow unboundedly
with respect to its (squared) circumference length.

Intriguingly, however, it is well known that black holes
in three spatial dimensions behave in many respects as two-
dimensional objects. In particular, a black hole is character-
ized by a thermodynamic entropy [3,4] which is proportional
to its two-dimensional surface area (and not to its effective
volume). One can therefore expect that, in analogy with the
two-dimensional relation (1), the surface area of a black hole
may be bounded from above by a quadratic function of its
circumference length.

The main goal of the present compact paper is to raise
the inverse hoop conjecture, according to which the surface
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areas of all stationary (3 + 1)-dimensional black holes are
bounded from above by the simple functional relation

A ≤ C2
s /π, (2)

where Cs is the circumference length of the smallest ring that
can engulf the black-hole horizon in all azimuthal directions
[5–9].

2 The inverse hoop conjecture in charged and spinning
Kerr–Newman–(anti)-de Sitter black-hole spacetimes

A Kerr–Newman–(anti)-de Sitter black-hole spacetime of
mass M , angular momentum J ≡ Ma, electric charge Q,
and cosmological constant � is characterized by the curved
line element [10–13]
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where the metric functions �r ,�θ , ρ, and I are given by the
functional expressions [10,11]

�r ≡ r2 − 2Mr + Q2 + a2 − 1

3
�r2(r2 + a2), (4)

�θ ≡ 1 + 1

3
�a2 cos2 θ, (5)

ρ2 ≡ r2 + a2 cos2 θ, (6)

and

I ≡ 1 + 1

3
�a2. (7)

Asymptotically flat Kerr–Newman black holes are char-
acterized by the simple relation � = 0, whereas non-
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asymptotically flat Kerr–Newman–de Sitter and Kerr–New-
man–anti-de Sitter black-hole spacetimes are characterized
respectively by the relations � > 0 and � < 0. The hori-
zon radii of the black-hole spacetime (3) are determined by
the roots of the radial metric function �r (r) [10,11,14]. In
particular,

�r (r+) = 0, (8)

where r+ is the radius of the black-hole event horizon.
From Eqs. (3) and (8) one finds the compact expressions

Ceq = 2π
r2+ + a2

r+ I
(9)

and

A = 4π
r2+ + a2

I
(10)

for the equatorial circumference and the horizon surface area
of the Kerr–Newman–(anti)-de Sitter black hole.

Interestingly, from Eqs. (9) and (10) one finds the compact
dimensionless ratio

H(M, Q, a,�) ≡ πA
C2

eq
= I r2+

r2+ + a2
(11)

for generic Kerr–Newman–(anti)-de Sitter black holes [15].
The conjectured inverse hoop relation asserts that stationary
(3 + 1)-dimensional black holes are characterized by the
simple relation

H ≤ 1. (12)

Taking cognizance of Eqs. (7) and (11), one finds that
asymptotically flat Kerr–Newman black holes (with � = 0
and therefore I = 1) and Kerr–Newman–anti-de Sitter black
holes (with � < 0 and therefore I < 1) conform to the
inverse hoop relation (12). It is easy to show that Kerr–
Newman–de Sitter black holes (with � > 0) are character-
ized by the relation �r2+ ≤ 1 [16] and therefore also respect
the inverse hoop relation (12).

3 Summary and discussion

The famous Thorne hoop conjecture [5] asserts that black-
hole spacetimes of suitably defined mass M are character-
ized by the relation M ≥ C/4π . Since there are many dif-
ferent definitions of mass (energy) in curved spacetimes, it
is natural to ask: what is the exact physical meaning of the
mass (energy) termM in the hoop relation? To the best of our
knowledge, in his original work Thorne [5] has not provided

a specific definition for the mass term M in the intriguing
hoop conjecture.

In the present compact paper we have explicitly demon-
strated that if the mass term M is interpreted as the irre-
ducible mass Mirr of the black hole, then generic Kerr–
Newman–(anti)-de Sitter black-hole spacetimes conform to
the inverse hoop relation

Mirr ≤ Cs/4π. (13)

Taking cognizance of the fact that the irreducible mass of
a black hole is related to its horizon surface area A by the
simple relation

Mirr ≡ √
A/16π, (14)

one realizes that the inverse hoop relation (13) is a statement
about the geometric properties of the black-hole horizon,
bounding its surface area in terms of the squared circum-
ference of the smallest ring that can engulf the horizon in
every direction:

A ≤ C2
s /π. (15)

If true, the conjectured inverse hoop relation (15) implies that
the black-hole surface area cannot be unboundedly wrinkled
[17].

Finally, it is worth noting that there is an important numer-
ical evidence [18] for the validity of the inverse hoop con-
jecture (15) in non-stationary (dynamical) black-hole space-
times. In particular, in a very interesting work, East [18] has
studied numerically the full non-linear gravitational collapse
of self-gravitating spheroidal matter configurations. Remark-
ably, it has been explicitly demonstrated in [18] that, in accord
with the weak cosmic censorship conjecture [19], the final
state of the collapse is a black hole. Interestingly, the initially
distorted dynamically formed horizons obtained in [18] are
characterized by damped oscillations between being prolate
and oblate (see Figure 1 of [18]).

Intriguingly, and most importantly for our analysis, the
numerical data presented in [18] (see, in particular, Figure 1
of [18]) reveals the fact that, within the bounds of the numer-
ical accuracy [20], the dynamically formed black holes pre-
sented in [18] are characterized by the relation

max{Ceq(t), Cp(t)}
4πMirr

≥ 1, (16)

where Ceq and Cp are respectively the time-dependent
(oscillating) equatorial and polar circumferences of the
non-stationary black-hole horizons. Thus, the dynamically
formed black holes presented in [18] seem to respect the
conjectured inverse hoop relation (15).
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