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Abstract In the present paper, we continue to study the
two-dimensional soliton system that is composed of vortex
and Q-ball components interacting with each other through
an Abelian gauge field. This vortex-Q-ball system is electri-
cally neutral as a whole, nevertheless it possesses a nonzero
electric field. Moreover, the vortex-Q-ball system has a quan-
tized magnetic flux and a nonzero angular momentum, and
combines properties of topological and nontopological soli-
tons. We investigate radially and azimuthally excited states of
the vortex-Q-ball system along with the unexcited vortex-Q-
ball system at different values of gauge coupling constants.
We also ascertain the behaviour of the vortex-Q-ball system
in several extreme regimes, including thin-wall and thick-
wall regimes.

1 Introduction

It is known that (1 + 1)-dimensional gauge models and (2 +
1)-dimensional gauge models without the Chern–Simons
term do not allow the existence of electrically charged soli-
tons because any electrically charged compact object will
have infinite energy in these models. The reason for this
is simple: at large distances, the electric field of a one-
dimensional object does not depend on the distance and that
of a two-dimensional object is inversely proportional to the
distance. As a result, with increasing distance, the energy
of the electric field diverges linearly in the one-dimensional
case and logarithmically in the two-dimensional case.

The electrically charged solitons appear only in (3 + 1)-
dimensional gauge models (e.g. the three-dimensional elec-
trically charged dyon [1] or Q-ball [2–7]). Note, however,
that the Chern–Simons term can be added to the Lagrangian
of a (2 + 1)-dimensional gauge model. Moreover, (2 + 1)-
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dimensional gauge models may be pure Chern–Simons,
and hence have no Maxwell gauge term. Such (2 + 1)-
dimensional gauge models may admit the existence of electri-
cally charged solitons. Indeed, electrically charged vortices
were found in both the pure Chern–Simons [8–12] and the
Maxwell–Chern–Simons [13–16] gauge models. In addition,
one-dimensional domain walls may exist in Chern–Simons
gauge models [17,18]. These Chern–Simons domain walls
possess finite linear densities of energy, magnetic flux, and
electric charge.

Thus, in (1 + 1) and (2 + 1)-dimensional pure Maxwell
gauge models, solitons should be electrically neutral. The
neutrality, however, does not mean the absence of electric
field. In Refs. [19,20], one and two-dimensional soliton sys-
tems composed of topological and nontopological compo-
nents were described. The components interact with each
other through an Abelian gauge field and possess opposite
electric charges, so the soliton systems are neutral as a whole.
Despite electrical neutrality, these soliton systems possess a
nonzero electric field that tends to zero exponentially at spa-
tial infinity, resulting in finite electrostatic energy.

The characteristic feature of nontopological solitons is the
presence of radially and azimuthally excited states [21–27].
The Q-ball components of compound soliton systems may
also be radially or azimuthally excited. The corresponding
excited compound soliton systems will have some new fea-
tures compared to unexcited systems. In the present paper, we
study radially and azimuthally excited states of the (2 + 1)-
dimensional vortex-Q-ball system described in [19]. We also
study the unexcited vortex-Q-ball system using different val-
ues of gauge coupling constants.

Solitons of (2 + 1)-dimensional field models have coun-
terparts in the corresponding (3 + 1)-dimensional models.
These counterparts are soliton objects extended in one spa-
tial dimension. The exceptions are solitons of gauged Chern–
Simons models; these solitons (CS-vortices and CS-Q-balls)
have no counterparts in (3 + 1) dimensions because the
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Chern–Simons term does not exist in this case. The objects
extended in one spatial dimension might emerge in the early
stages of the universe evolution, hence these objects (cosmic
strings) may play an important role in cosmology. Also, the
soliton objects extended in one spatial dimension (Abrikosov
vortices) exist in type-II superconductors and play a signifi-
cant role in the theory of superconductivity.

The (3 + 1)-dimensional counterpart of the (2 + 1)-
dimensional vortex-Q-ball system is the vortex-Q-ball string.
The vortex-Q-ball string may arise when a cosmic string
passes through a charged scalar condensate. Such a conden-
sate could exist in the early universe; electrically charged
boson stars, if they exist, also consist of such a condensate.
The passing cosmic vortex string may carry a part of the
condensate away, with the result that the vortex-Q-ball string
arises. In this case, the gauge interaction between the vortex
and Q-ball components of the vortex-Q-ball string leads to
significant changes in their properties.

Thus, most of the (2 + 1)-dimensional soliton solutions
have counterparts in (3 + 1)-dimensional space-time and
these counterparts play an important role in physics. That
is why it is necessary to study soliton solutions of (2 + 1)-
dimensional models.

The paper is structured as follows. In Sect. 2, we describe
the Lagrangian, the symmetries, the field equations, and the
energy-momentum tensor of the gauge model under consid-
eration. In Sect. 3, we list some properties of the vortex-Q-
ball system; among them, the basic differential relation, the
asymptotic behaviour of fields at small and large distances,
some properties of the gauge potential, the virial relation, and
the Laue condition for the vortex-Q-ball system. In Sect. 4,
we study properties of the vortex-Q-ball system at extreme
values of parameters. In Sect. 5, we present and discuss the
numerical results for the unexcited vortex-Q-ball system at
different values of gauge coupling constants, the radially
excited vortex-Q-ball system, and the azimuthally excited
vortex-Q-ball system. In all three cases, we present depen-
dences of the vortex-Q-ball energy on the phase frequency
and on the Noether charge along with radial dependences of
the vortex-Q-ball ansatz functions.

Throughout the paper, we use the natural units h̄ = c = 1.

2 The gauge model

The Lagrangian density of the (2 + 1)-dimensional gauge
model under consideration has the form

L = −1

4
FμνF

μν + (
Dμφ

)∗
Dμφ − V (|φ|)

+ (
Dμχ

)∗
Dμχ −U (|χ |) . (1)

The model describes the two complex scalar fields φ and
χ that minimally interact with the Abelian gauge field Aμ

through the covariant derivatives

Dμφ = ∂μφ + ieAμφ, Dμχ = ∂μχ + iq Aμχ. (2)

The scalar fields φ and χ are self-interacting ones. The self-
interaction of φ and χ is described by the fourth- and sixth-
order potentials, respectively

V (|φ|) = λ

2

(
|φ|2 − v2

)2
, (3a)

U (|χ |) = m2 |χ |2 − g

2
|χ |4 + h

3
|χ |6 , (3b)

where |φ|2 = φ∗φ and |χ |2 = χ∗χ . In Eqs. (3a) and (3b),
λ, g, and h are positive self-interaction constants, m is the
mass of the scalar χ -particle, and v is the vacuum average of
the amplitude of the complex scalar field φ. From Eq. (3a)
it follows that the potential V (|φ|) possesses the continuous
family of minima lying on the circle |φ| = v. At the same
time, we suppose that the potential U (|χ |) has a global iso-
lated minimum at χ = 0. For this to hold, the parameters of
U (|χ |) must satisfy the inequality 3g2 < 16m2h.

The invariance of the Lagrangian density (1) under local
gauge transformations

φ (x) → φ′ (x) = exp (−ieΛ(x)) φ (x) ,

χ (x) → χ ′ (x) = exp (−iqΛ(x)) χ (x) ,

Aμ (x) → A′
μ (x) = Aμ (x) + ∂μΛ (x) (4)

and the electrical neutrality of the Abelian gauge field Aμ

lead to the invariance of the model under the two independent
global gauge transformations

φ (x) → φ′ (x) = exp (−iα) φ (x) ,

χ (x) → χ ′ (x) = exp (−iβ) χ (x) . (5)

The invariance of the Lagrangian density under global trans-
formations (5) results in the existence of the two conserved
Noether currents

jμφ = i
[
φ∗Dμφ − (

Dμφ
)∗

φ
]
,

jμχ = i
[
χ∗Dμχ − (

Dμχ
)∗

χ
]
. (6)

The field equations for the model have the form

DμD
μφ + λ

(
|φ|2 − v2

)
φ = 0, (7)

DμD
μχ + m2χ − g |χ |2 χ + h |χ |4 χ = 0, (8)

∂μF
μν = jν, (9)

where the electromagnetic current jν is

jν = ejμφ + q jμχ

= ieφ∗←→∂ν φ − 2e2Aνφ∗φ + iqχ∗←→∂ν χ − 2q2Aνχ∗χ.

(10)
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In Sect. 3, we shall need the form of the symmetric energy-
momentum tensor Tμν of the model

Tμν = 2∂L/∂gμν − gμνL
= −FμλF

λ
ν + 1

4
gμνFλρF

λρ

+ (
Dμφ

)∗
Dνφ + (Dνφ)∗ Dμφ

−gμν

((
Dμφ

)∗
Dμφ − V (|φ|))

+ (
Dμχ

)∗
Dνχ + (Dνχ)∗ Dμχ

−gμν

((
Dμχ

)∗
Dμχ −U (|χ |)) . (11)

In particular, we shall need the expression for the energy
density E = T00 of a field configuration of the model

E = 1

2
Ei Ei + 1

2
B2

+ (D0φ)∗ D0φ + (Diφ)∗ Diφ + V (|φ|)
+ (D0χ)∗ D0χ + (Diχ)∗ Diχ +U (|χ |) , (12)

where Ei = F0i and B = F21 are the electric field strength
and the magnetic field strength, respectively.

3 The vortex-Q-ball soliton system and some of its
properties

When the gauge coupling constant q is equal to zero, model
(1) possesses both the ANO vortex solution [28,29] formed
of the complex scalar field φ and the gauge field Aμ and
the two-dimensional nongauged Q-ball solution formed of
the complex scalar field χ . The ANO vortex and the two-
dimensional Q-ball are electrically neutral, thus they do not
interact with each other. The situation changes drastically
if the gauge coupling constant q is different from zero. It
was shown in Ref. [19] that in this case, the soliton system
consists of interacting vortex and Q-ball components. This
two-dimensional vortex-Q-ball system is electrically neutral
as a whole, because its vortex and Q-ball components have
opposite electrical charges. Nevertheless, the vortex-Q-ball
system possesses a nonzero radial electric field in its interior.

Using the Hamilton formalism and Lagrange’s method
of multipliers [30,31], it was shown in Ref. [19] that there
exists a gauge in which only the complex scalar field χ has
nontrivial time dependence ∝ exp [−iωt], while the complex
scalar field φ and the Abelian gauge field Aμ do not depend
on time. It was also shown that the vortex-Q-ball system
satisfies the important differential relation

dE

dQχ

= ω, (13)

where E = ∫ Ed2x and Qχ = ∫
j0
χd

2x are the energy and
the Noether charge of the vortex-Q-ball system, respectively,
and ω is the phase frequency of the complex scalar field χ .

Note that in Eq. (13), the phase frequency ω is treated as a
function of the Noether charge Qχ . Eq. (13) is a consequence
of the fact that the vortex-Q-ball solution is an extremum
of the energy functional E = ∫ Ed2x at a fixed value of
the Noether charge Qχ = ∫

j0
χd

2x . Indeed, according to
Lagrange’s method of multipliers, the vortex-Q-ball solution
is an unconditional extremum of the functional F = E −
ωQχ , where ω is the Lagrange multiplier. Hence, the first
variation of the functional F vanishes on the vortex-Q-ball
solution: δF = δE − ωδQχ = 0. The last relation holds
for arbitrary variations of fields in the vicinity of the vortex-
Q-ball solution, including those that change the vortex-Q-
ball solution to an infinitesimally close one. It follows that
the energy of the vortex-Q-ball system satisfies differential
relation (13).

To describe the vortex-Q-ball system, we shall use the
following ansatz

φ (r, θ) = v exp (i Nθ) F (r) , (14a)

χ (r, θ, t) = exp [−i (ωt − K θ)] σ (r) , (14b)

Aμ (r, θ) =
(
a0 (r)

er
,

1

er
εi j n j a (r)

)
, (14c)

where K and N are integers, εi j are the components of
the two-dimensional antisymmetric tensor (ε12 = 1) and
n j are those of the two-dimensional radial unit vector n =
(cos(θ), sin(θ)). The ansatz functions a0 (r), a (r), F (r),
and σ (r) satisfy the system of nonlinear differential equa-
tions

a′′
0 (r) − a′

0(r)

r
+ a0(r)

r2 − 2e2v2F (r)2 a0(r)

+2eqr

[
ω − q

e

a0(r)

r

]
σ (r)2 = 0, (15)

a′′(r) − a′(r)
r

− 2e2v2 (N + a(r)) F (r)2

−2eq
[
K + q

e
a (r)

]
σ (r)2 = 0, (16)

F ′′(r) + F ′(r)
r

−
(
(N + a(r))2 − a0(r)2

)

r2 F(r)

+λv2
(

1 − F(r)2
)
F(r) = 0, (17)

σ ′′(r) + σ ′(r)
r

+
[(

ω − q

e

a0 (r)

r

)2

−
(
K

r
+ q

e

a (r)

r

)2
]

σ (r)

−
(
m2 − gσ (r)2 + hσ (r)4

)
σ (r) = 0. (18)

The energy density of the vortex-Q-ball system can also be
expressed in terms of the ansatz functions

E = 1

2

a′2

e2r2 + 1

2

[(a0

er

)′]2
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+v2F ′2 +
(
(N + a)2 + a0

2
)

r2 v2F2

+λ

2
v4

(
F2 − 1

)2 + σ ′2

+
(
ω − q

e

a0

r

)2
σ 2 +

(
K

r
+ q

e

a

r

)2

σ 2

+m2σ 2 − g

2
σ 4 + h

3
σ 6. (19)

The regularity of the vortex-Q-ball solution at r = 0 and the
finiteness of the energy E = 2π

∫ ∞
0 E (r) rdr lead to the

boundary conditions for the ansatz functions

a0(0) = 0, lim
r→∞a0(r) = 0, (20a)

a(0) = 0, lim
r→∞a(r) = −N , (20b)

F(0) = 0, lim
r→∞F(r) = 1, (20c)

δK0σ
′(0) + (1 − δK0) σ (0) = 0, lim

r→∞σ(r) = 0, (20d)

where δK0 is the Kronecker symbol.
Substituting the power expansions for the ansatz functions

in Eqs. (15)–(18) and taking into account boundary condi-
tions (20), we obtain the power expansion at the origin of the
vortex-Q-ball solution with N = 1. The power expansion of
the ansatz function a0 (r) has the form

a0 (r) = a1r + ap
p! r

p + O
(
r p+2

)
, (21)

where

p = 3δK0 + 5 (1 − δK0) (22)

and

a3 = 3qd2
0 (a1q − eω) , (23a)

a5 = 15e2v2a1c
2
1 + 15δ|K | 1

(
d2

1q (a1q − eω)
)

. (23b)

The power expansions of the ansatz functions a (r) and F (r)
are written as

a (r) = b2

2! r
2 + b4

4! r
4 + O

(
r6

)
, (24)

F (r) = c1r + c3

3! r
3 + O

(
r5

)
, (25)

where the next-to-leading order coefficients are

b4 = 6e2v2c2
1 + 3δK0q

2b2d
2
0 + 6sgn (K ) δ|K | 1eqd

2
1 , (26)

c3 = −3

4
c1

(
a2

1 − b2 + λv2
)

. (27)

Finally, the power expansion of the ansatz function σ (r) is

σ (r) = d|K |
|K |!r

|K | + d|K |+2

(|K | + 2)!r
|K |+2 + O

(
r |K |+4

)
, (28)

where the next-to-leading order coefficient is

d|K |+2 = |K | + 2

4e2 [(e (m + ω) − qa1)

× (e (m − ω) + qa1) + τK ] d|K | (29)

and the term τK is

τK = −e2d2
0

(
2g − 3hd2

0

)
δK0 + eqKb2 (1 − δK0) . (30)

To obtain the asymptotic form of the vortex-Q-ball solu-
tion as r → ∞, we linearize Eqs. (15)–(18) and use boundary
conditions (20). As a result, we obtain the expressions

a0 (r) ∼ a∞
√
mAr exp (−mAr)

×
(

1 − 1

8mAr
+ O

[(
1

mAr

)2
])

, (31)

a (r) ∼ N + b∞
√
mAr exp (−mAr)

×
(

1 + 3

8mAr
+ O

[(
1

mAr

)2
])

, (32)

F (r) ∼ 1 + c∞
exp

(−mφr
)

√
mφr

×
(

1 − 1

8mφr
+ O

[(
1

mφr

)2
])

, (33)

σ (r) ∼ d∞
exp (−Δωr)√

Δωr

(

1 + 4 (K − qN/e)2 − 1

8Δωr

+O

[(
1

Δωr

)2
])

, (34)

where mA = √
2ev and mφ = √

2λv are the masses of
the gauge boson and the scalar φ-particle, respectively, and
Δω = √

m2 − ω2 is the mass parameter that defines the
asymptotic behaviour of the scalar field χ . Note that the
asymptotic forms (31)–(34) are valid only if the mass of
any of the three particles (gauge boson, φ-particle, and χ -
particle) does not exceed the sum of the mass of the two
remaining particles, with the mass parameter Δω playing the
role of the χ -particle’s mass. Only if this condition is met,
can Eqs. (15)–(18) be linearised.

From Eqs. (21)–(30), it follows that the behaviour of the
vortex-Q-ball solution in the neighbourhood of r = 0 is
determined by four independent parameters: a1, b2, c1, and
dK . At the same time, Eqs. (31)–(34) tell us that the behaviour
of the vortex-Q-ball solution at spatial infinity is also deter-
mined by four independent parameters: a∞, b∞, c∞, and d∞.
The coincidence of the numbers of parameters that define the
behaviour of the solution at the origin and at infinity makes
the existence of a solution of the boundary value problem in
Eqs. (15)–(18) and (20) possible.

Having boundary conditions (20), we can obtain the con-
straint on the Noether charges Qφ and Qχ of the vortex-Q-

123



Eur. Phys. J. C (2020) 80 :1123 Page 5 of 19 1123

ball system. To do this, we rewrite Eq. (15) (Gauss’s law) in
compact form

[
r

(
a0(r)

er

)′]′
= −r j0 (r) , (35)

where j0 (r) is the electric charge density expressed in terms
of the ansatz functions

j0 = 2qωσ (r)2 − 2a0 (r)

er

(
q2σ (r)2 + e2v2F (r)2

)
. (36)

Then, we integrate both sides of Eq. (35) with respect to
r from zero to infinity. Using boundary conditions (20)
and asymptotic expressions (21)–(30) and (31)–(34) of the
vortex-Q-ball solution, it is easily shown that the integral of
the left-hand side of Eq. (35) vanishes. At the same time,
the integral of the right-hand side of Eq. (35) is proportional
to the electric charge of the vortex-Q-ball system. It follows
that the electric charge of the vortex-Q-ball system vanishes.
Combining this fact and Eq. (10), we obtain the constraint on
the Noether charges Qφ and Qχ of the vortex-Q-ball system

Q = eQφ + qQχ = 0, (37)

where the Noether charges are expressed in terms of the
ansatz functions

Qφ = −4πv2

∞∫

0

a0 (r) F (r)2 dr, (38a)

Qχ = 4π

∞∫

0

(
ω − q

e

a0 (r)

r

)
σ (r)2 rdr. (38b)

Gauss’s law (15) allows us to ascertain some global prop-
erties of the time component of the gauge potential A0(r) =
a0(r)/(er). To do this, we rewrite Eq. (15) in the form

(
rΩ ′ (r)

)′ = 2r
[
q2σ (r)2 Ω (r) − e2v2F (r)2 (ω − Ω (r))

]
,

(39)

where the function

Ω (r) = ω − q A0(r) = ω − q

e

a0 (r)

r
. (40)

According to Eq. (20a), the function Ω (r) → ω as r → ∞.
Let the phase frequency ω be positive, then from Eq. (39)
it follows that 0 < Ω (r) < ω. Indeed, if Ω (r) < 0
(Ω (r) > ω) at some r = r̄ , then Ω ′ (r) will be negative (pos-
itive) at r > r̄ , and thus the boundary condition Ω (r) →

r→∞ ω

cannot be satisfied. If the phase frequency ω is negative, then
ω < Ω (r) < 0. Thus, we have the global conditions on
Ω (r)

0 < Ω (r) < ω if ω > 0,

ω < Ω (r) < 0 if ω < 0, (41)

which can be rewritten in terms of the gauge potential
A0(r) = a0(r)/(er) as

0 < A0 (r) <
ω

q
if ω > 0,

ω

q
< A0 (r) < 0 if ω < 0. (42)

Equation (20b) tells us that the boundary conditions for
the ansatz function a (r) are the same as those for the ANO
vortex. It follows that the magnetic flux of the vortex-Q-ball
system is quantized as it is for the ANO vortex

Φ = 2π

∞∫

0

B (r) rdr = 2π

e
N , (43)

where B(r) = −a′(r)/(er) is the magnetic field strength. In
particular, the magnetic flux of the vortex-Q-ball system does
not depend on the gauge coupling constant q that determines
the strength of interaction between the gauge field Aμ and
the complex scalar field χ .

Having the symmetric energy-momentum tensor (11), we
can form the angular momentum tensor

Jλμν = xμT λν − xνT λμ. (44)

Use of Eqs. (11), (14), and (44) results in the angular momen-
tum density J = 1

2εi j J 0i j = J 012 expressed in terms of the
ansatz functions

J = −r BEr + 2
(
K + q

e
a
) (

ω − q

e

a0

r

)
σ 2

−2
a0 (N + a)

r
v2F2, (45)

where Er (r) = − (a0 (r) / (er))′ is the radial electric
field strength. Next, we integrate the term −r BEr =
−e−2a′ (a0/r)′ by parts, taking into account boundary con-
ditions (20) and using Gauss’s law (15) to eliminate a′′

0 .
As a result, the expression for the angular momentum J =
2π

∫ ∞
0 J (r) rdr of the vortex-Q-ball system takes the form

J = −4πN

∞∫

0

v2a0 (r) F (r)2 dr

+4πK

∞∫

0

r

(
ω − q

e

a0 (r)

r

)
σ (r)2 dr

= NQφ + K Qχ , (46)

where the last line in Eq. (46) follows from Eqs. (38a) and
(38b). Using Eq. (37), we can rewrite Eq. (46) in two equiv-
alent forms

J =
(
K − q

e
N

)
Qχ =

(
N − e

q
K

)
Qφ. (47)

Let suppose that the gauge coupling constants e and q are
multiples of some minimal gauge coupling constant, then
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the ratio q/e is a rational number. Eq. (47) tells us that in
this case, the angular momentum of the vortex-Q-ball sys-
tem vanishes when the ratio K/N is equal toq/e. Conversely,
the ratio q/e is a rational number if there exists a vortex-Q-
ball system possessing zero angular momentum. Note that if
K/N = q/e then field configuration (14) is invariant under
an axial rotation modulo the corresponding gauge transfor-
mation, as it should be for a gauged soliton system possessing
zero angular momentum.

Using Eqs. (15)–(19), (38), and (46), one can easily ascer-
tain properties of the vortex-Q-ball system under the change
of sign of the phase frequency

E (ω) = E (−ω) , (48a)

Qφ,χ (ω) = −Qφ,χ (−ω) , (48b)

J (ω) = −J (−ω) , (48c)

and under the change of signs of the winding numbers N and
K

E (N , K ) = E (−N ,−K ) , (49a)

Qφ,χ (N , K ) = Qφ,χ (−N ,−K ) , (49b)

J (N , K ) = −J (−N ,−K ) . (49c)

From Eq. (19) it follows that the energy of the vortex-Q-
ball system can be presented as the sum of five terms

E = E (E) + E (B) + E (G) + E (T ) + E (P), (50)

where

E (E) = 1

2

∫
Ei Eid

2x = 2π

∞∫

0

1

2

[(a0

er

)′]2

rdr (51)

is the energy of the electric field,

E (B) = 1

2

∫
B2d2x = 2π

∞∫

0

1

2

(
a′

er

)2

rdr (52)

is the energy of the magnetic field,

E (P) =
∞∫

0

[V (|φ|) +U (|χ |)] d2x (53)

is the potential part of the energy,

E (G) = 2π

∞∫

0

[
v2F ′2 + (N + a)2

r2 v2F2

+σ ′2 +
(
K

r
+ q

e

a

r

)2

σ 2

]

rdr (54)

is the gradient part of the energy, and

E (T ) = 2π

∞∫

0

[(
ω − q

e

a0

r

)2
σ 2 + a0

2

r2 v2F2
]
rdr (55)

is the kinetic part of the energy. In Ref. [19], it was shown that
the parts of the energy of the vortex-Q-ball system satisfy the
virial relation

2
(
E (E) − E (B) + E (P)

)
− ωQχ = 0. (56)

The energy of the vortex-Q-ball system can be written in
several equivalent forms. For this, we integrate the energy
density of the electric field

[
(A0/(er))′

]2 by parts using
Gauss’s law (15) and taking into account the boundary con-
ditions (20a). As a result, we obtain the following expression
for the energy of the vortex-Q-ball system

E = ω

2
Qχ + E (B) + E (G) + E (P). (57)

Combining Eqs. (50) and (57), we obtain the expression for
the Noether charge Qχ in terms of E (E) and E (T )

Qχ = 2ω−1
(
E (E) + E (T )

)
. (58)

Next, Eqs. (56) and (58) result in the linear relation between
the parts of the energy of the vortex-Q-ball system

E (T ) + E (B) − E (P) = 0. (59)

Eqs. (56) and (58) form a system of two linear equa-
tions. Using this system, we can express the pairs of variables
(E (E), E (B)), (E (E), E (P)), (E (T ), E (B)), and (E (T ), E (P))

in terms of corresponding remaining variables. Substituting
these expressions in Eq. (50), we obtain four more expres-
sions for the energy of the vortex-Q-ball system

E = ω

2
Qχ + E (G) + 2E (P) − E (T ) (60a)

= ω

2
Qχ + 2E (B) + E (G) + E (T ) (60b)

= E (E) + E (G) + 2E (P) (60c)

= ωQχ − E (E) + E (G) + 2E (B). (60d)

The spatial components of the energy-momentum tensor
are expressed in terms of the ansatz functions as follows:

Ti j =
(
xi x j
r2 − 1

2
δi j

)
s (r) + δi j p (r) , (61)

where the radial functions

s (r) = −
[(a0

er

)′]2

− 2
(N + a)2

r2 v2F2

−2

(
K

r
+ q

e

a

r

)2

σ 2 + 2
(
v2F ′2 + σ ′2) (62)
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and

p (r) = 1

2

a′2

e2r2 +
(
ω − q

e

a0

r

)2
σ 2

+a0
2

r2 v2F2 − V (vF) −U (σ ) (63)

are the distribution of shear force and pressure, respectively.
The conservation of the energy-momentum tensor ∂i T ik = 0
results in the differential relation between the shear force s (r)
and the pressure p (r)

s′(r) + 2

r
s(r) + 2p′(r) = 0. (64)

To obtain the Laue condition [32,33] for the pressure distri-
bution
∫ ∞

0
rp(r)dr = 0, (65)

we multiply Eq. (64) by r2 and integrate by parts over r from
zero to infinity. It can be shown that the Laue condition (65)
is equivalent to virial relation (56).

4 Extreme regimes of the vortex-Q-ball system

In this section, we ascertain the properties of the vortex-Q-
ball system in several extreme regimes. First, we consider the
behaviour of the vortex-Q-ball system at extreme values of
gauge coupling constants, then we discuss the vortex-Q-ball
system at extreme values of phase frequency ω (thick-wall
and thin-wall regimes).

The two scalar fields φ and χ of the vortex-Q-ball sys-
tem interact with the Abelian gauge field Aμ. The intensity
of this interaction is determined by the two gauge coupling
constants e and q. Note that in the natural units h̄ = c = 1,
the electric charges of the scalar φ and χ -particles also equal
e and q, respectively. We suppose that the group associated
with the gauge symmetry of model (1) is the compact Abelian
group U (1). In this case, the electric charges (gauge cou-
pling constants) e and q are commensurable and thus the
ratio τ = q/e is a rational number. This means that some
minimal elementary electric charge exists and that all others
charges are multiples of this elementary charge.

Let us consider the extreme regime in which both e and
q tend to zero, while the ratio τ = q/e remains finite. It
can be ascertained both analytically and numerically that as
q = eτ → 0, the time component of gauge potential

A0 (r) = a0 (r)

er
→ α0 (r) e = α0 (r) τ−1q, (66)

where α0 (r) is some function of r that remains finite as q =
eτ → 0. It follows from Eq. (66) that a0(r)/(er) uniformly
tends to zero in the limit q = eτ → 0. Hence, the energy of
the electric field (51) also tends to zero (E (E) ∝ e2). Next,

after the change of radial variable r = ρ/mA = ρ/(
√

2ev),
Eq. (16) will not explicitly depend on the infinitesimal param-
eters e and q. Instead, it will depend only on the ratio
τ = q/e, which is finite. On the other hand, after the
change of radial variable r = ρ/mA = ρ/(

√
2ev), vari-

ations in the ansatz functions F̃(ρ) ≡ F(ρ/(
√

2ev)) and
σ̃ (ρ) ≡ σ(ρ/(

√
2ev)) will concentrate in a small neigh-

bourhood of ρ = 0. Hence, in the limit q = τe → 0, the
ansatz functions F̃(ρ) and σ̃ (ρ) in Eq. (16) can be replaced
by their limiting values of 1 and 0, respectively. After that,
Eq. (16) takes the simple form

ã′′(ρ) − ã′(ρ)

ρ
− (N + ã(ρ)) = 0, (67)

where ã(ρ) ≡ a(ρ/(
√

2ev)) = a(r). The solution of
Eq. (67) satisfying boundary condition (20b) can be written
as

ã(ρ) = N (ρK1 (ρ) − 1)

= N
[√

2evr K1

(√
2evr

)
− 1

]
, (68)

where K1 (ρ) is the modified Bessel function of the second
kind. From Eq. (68) it follows that in terms of the initial vari-
able r , the ansatz function a(r) spreads out over the interval
r ∈ [0,∞) as q = τe → 0. Specifically, for any finite r = r̄ ,
a (r̄) → 0 in this limit. At the same time, the ansatz func-
tions F(r) and σ(r) remain concentrated in a finite neigh-
bourhood of the origin as q = τe → 0 because Eq. (17)
does not explicitly depend on the gauge coupling constants,
and Eq. (18) depends on them only through the combina-
tion τ = q/e, which is finite. These facts and Eq. (66) lead
us to conclude that the gauge field Aμ decouples from the
Q-ball component of the vortex-Q-ball system, and thus the
Q-ball component tends to the nongauged Q-ball solution as
q = τe → 0. Hence, the energy of the Q-ball component
tends to the finite energy of the two-dimensional nongauged
Q-ball in the limit q = τe → 0.

The situation is different for the vortex component, which
is topologically nontrivial. The topological nontriviality pre-
vents decoupling of the gauge field from the complex scalar
field φ as q = τe → 0. Indeed, it follows from Eqs. (52)
and (68) that the energy of the magnetic field remains finite
and tends to πv2N 2 as q = τe → 0. Moreover, it follows
from Eq. (43) that the magnetic flux diverges as e−1 in the
limit q = τe → 0. Nevertheless, the scalar field φ of the vor-
tex component tends to the nongauged global vortex solution
[34] because in the limit q = τe → 0, the ansatz function
a(r) uniformly tends to zero in the region where the ansatz
function F(r) differs appreciably from the limiting value of
1.

According to Derrick’s theorem [35], the energy of the
global vortex is infinite, hence the energy of the vortex
component of the vortex-Q-ball system tends to infinity in
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the limit q = τe → 0. Indeed, let us integrate the term
(N + a)2v2F2r−2 in gradient energy (54) over the region
r � mφ , where the ansatz function F(r) is close to 1. Using
Eq. (68) for the ansatz functiona(r), we obtain the expression
2π2N 2v2 ln

(
mφ/mA

) ∝ ln
(
e−1

)
, which diverges logarith-

mically as e → 0.
Now we consider another extreme regime in which both

gauge coupling constants e and q tend to infinity: q = τe →
∞. In this regime, the gauge field Aμ ceases to be dynamic.
Instead, it is expressed in terms of the complex scalar fields φ

and χ in the whole space, except for the infinitesimal neigh-
bourhood of the origin. Indeed, the Lagrangian density (1) is
written in terms of ansatz functions (14) as

L = 1

2

[(a0

er

)′]2

− 1

2

a′2

e2r2

−v2F ′2 +
(
a0

2 − (N + a)2
)

r2 v2F2

−λ

2
v4

(
F2 − 1

)2 − σ ′2

+
(
ω − q

e

a0

r

)2
σ 2 −

(
K

r
+ q

e

a

r

)2

σ 2

−m2σ 2 + g

2
σ 4 − h

3
σ 6. (69)

We see that as q = τe → ∞, the first two terms in Eq. (69)
tend to zero (provided that the corresponding derivatives
in Eq. (69) are finite) and thus can be neglected. In this
case, the field equations for the ansatz functions a0(r) and
a(r) become purely algebraic [terms with derivatives can
be neglected in Eqs. (15) and (16)], so a0(r) and a(r) are
expressed in terms of F(r), σ(r), and the model’s parame-
ters

a0 (r) −→
e→∞ rωτ

σ (r)2

v2F (r)2 + τ 2σ (r)2 , (70a)

a (r) −→
e→∞ −Nv2F (r)2 + K τσ (r)2

v2F (r)2 + τ 2σ (r)2 . (70b)

For K = 0, the ansatz functions a0(r) and a(r) uniformly
tend to their limiting values (70) on the interval r ∈ [0,∞).
At the same time, Eq. (70) cannot be used in the infinitesimal
neighbourhood of the origin (where r � m−1

A ∝ e−1) for
nonzero K . Indeed, it follows from Eq. (70b) that a(0) =
−N if K �= 0 (σ(0) = 0 in this case), but this contradicts
boundary condition (20b).

It was found that the behaviour of the vortex-Q-ball system
differs substantially for zero and nonzero K . From Eq. (70b)
it follows that for K = 0, the ansatz function a(r) varies
from 0 to the vicinity of −N on the interval ΔrA ∼ e0,
which does not depend on e. Hence, we obtain the sequence
of relations: a ∼ −b2r2/2, B = −a′/(er) ∼ b2/e, and
E (B) = ∫ (

B2/2
)
d2x ∝ e−2, where Eq. (24) is used. It

follows that for zero K , the energy of the magnetic field
tends to zero as q = τe → ∞.

On the other hand, for nonzero K , the ansatz function a(r)
varies from 0 to the vicinity of −N on the interval ΔrA ∼
m−1

A ∝ e−1, which shrinks to the origin as e → ∞. Thus
we have the chain of relations: a ∼ −m2

Ar
2 = −2e2v2r2,

B = −a′/(er) ∼ 4ev2, and E (B) = ∫ (
B2/2

)
d2x ∼

16πe2v4
∫ ΔrA

0 rdr ∝ e0. We see that unlike the previous
case, the energy of the magnetic field tends to a finite value
as q = τe → ∞. This is because the magnetic field strength
B increases indefinitely (∝ e) in the infinitesimal neighbour-
hood (ΔrA ∝ e−1) of the origin. At the same time, magnetic
flux (43) of the vortex-Q-ball system tends to zero as e−1 for
both K = 0 and K �= 0.

From Eq. (70a) it follows that for all values of K , the
time component a0/(er) of the gauge potential Aμ uniformly
tends to zero (∝ e−1) in the limit of large e. Furthermore, the
major part of variation of the ansatz function a0(r) happens
on the interval that does not depend on e. Thus it follows
that the energy of the electric field (51) also tends to zero
(E (E) ∝ e−2) in the limit q = τe → ∞.

Substituting Eqs. (70a) and (70b) in Eq. (36), we find that
the electromagnetic current vanishes as q = τe → ∞
jμ = e

(
jμφ + τ jμχ

)
−→
e→∞ 0. (71)

For K = 0, Eq. (71) is valid for all r ∈ [0,∞), while for
nonzero K , it is valid only on the interval (ΔrA,∞), where
ΔrA ∼ m−1

A ∝ e−1.
Next, let us consider the thick-wall regime of the vortex-

Q-ball system. In this extreme regime, the modulus of the
phase frequency tends to the mass of the scalar χ -particle:
|ω| → m. In this case, the Q-ball component of the vortex-Q-
ball system spreads over the two-dimensional space, so the
amplitude σ of the complex scalar field χ uniformly tends to
zero. The time component A0 = a0/(er) of the gauge poten-
tial also uniformly tends to zero in the thick-wall regime.
From Eqs. (16) and (17) it follows that the influence of the
Q-ball component on the vortex component of the vortex-Q-
ball system can be neglected in the thick-wall regime. Hence,
the vortex component of the vortex-Q-ball system tends to
the ANO vortex solution as |ω| → m. At the same time, the
energy and the Noether charge of the Q-ball component tend
to finite values in the thick-wall regime as they do for the
corresponding nongauged two-dimensional Q-ball [36,37].

To ascertain the behaviour of the vortex-Q-ball system
in the thick-wall regime, we rescale the ansatz functions
A0(r) = a0(r)/(er), σ(r), and the radial variable r as fol-
lows:

σ(r) = m−1/2Δωσ̄ (r̄), A0(r) = m−3/2Δ2
ω Ā0(r̄), (72)

where r = Δ−1
ω r̄ and Δω = [

m2 − ω2
]1/2

. Next we intro-
duce a new functional F that is related to the energy func-
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tional E = ∫ Ed2x by the Legendre transformation

F (ω) = E
(
Qχ

) − ωQχ . (73)

It can be shown that −F (ω) is equal to the Lagrangian L =
2π

∫ ∞
0 Lrdr on field configurations that satisfy Gauss’s law

(15). Next, using Eq. (72), we write the functional F(ω) as
the sum of the three terms

F(ω) = F0 + Δ2
ωF2 + Δ4

ωF4. (74)

In Eq. (74), F0, F2, and F4 are written as the integrals
of the corresponding densities: F0 = 2π

∫ F0rdr , F2 =
2π

∫ F2r̄dr̄ , and F4 = 2π
∫ F4r̄dr̄ , where

F0 = 1

2

a′2

e2r2 + v2F ′2

+ (N + a)2

r2 v2F2 + λ

2
v4

(
F2 − 1

)2
, (75)

F2 = m−1σ̄ ′2 + m−1σ̄ 2 − 2−1m−2gσ̄ 4

+2m−5/2ωq Ā0σ̄
2 − m−3e2v2 Ā2

0

+m−1r̄−2 (K − τN )2 σ̄ 2, (76)

and

F4 = −2−1m−3 Ā′2
0 − m−4q2 Ā2

0σ̄
2 + 3−1m−3hσ̄ 6. (77)

Note that in Eq. (75), the prime means the differentiation
with respect to the radial variable r , while in Eqs. (76) and
(77), it means the differentiation with respect to the rescaled
radial variable r̄ = Δωr . Note also that as Δω → 0, we have
replaced the ansatz functions a (r) = a

(
Δ−1

ω r̄
) ≡ ā (r̄) and

F (r) = F
(
Δ−1

ω r̄
) ≡ F̄ (r̄) by their limiting values −N and

1, respectively.
Eq. (76) does not contain the derivative of Ā0, and thus

Ā0 can be expressed in terms of the ansatz function σ̄ and
the model’s parameters

∂F2

∂ Ā0
= 0 ⇒ Ā0 (r̄) = m1/2ωq

e2v2 σ̄ 2 (r̄) . (78)

Substituting Eq. (78) into Eq. (76), we obtain the new expres-
sion for F2

F2 = m−1σ̄ ′2 + m−1σ̄ 2 + m−1r̄−2 (K − τN )2 σ̄ 2

−
(

2−1m−2g − τ 2v−2
)

σ̄ 4 − Δ2
ωτ 2σ̄ 4

(
m2v2

)−1
.

(79)

We see thatF2 is explicitly dependent on the small parameter
Δω. Hence, Eq. (74) can be rewritten as

F(ω) = F0 + Δ2
ω F̄2 + Δ4

ω F̄4, (80)

where F0 is the same as in Eq. (74), F̄2 = 2π
∫ F̄2r̄dr̄ ,

F̄4 = 2π
∫ F̄4r̄dr̄ , and the corresponding densities are

F̄2 = m−1σ̄ ′2 +
(
m−1 + m−1r̄−2 (K − τN )2

)
σ̄ 2

−
(

2−1m−2g − τ 2v−2
)

σ̄ 4, (81)

F̄4 = −2−1m−3 Ā′2
0 − m−4q2 Ā2

0σ̄
2

−τ 2
(
m2v2

)−1
σ̄ 4 + 3−1m−3hσ̄ 6. (82)

We see that none of F0, F̄2, and F̄4 depend on the phase
frequency ω.

Using the known properties of the Legendre transforma-
tion, we obtain the Noether charge Qχ and the energy E of
the vortex-Q-ball system as functions of the phase frequency
ω

Qχ (ω) = −dF (ω)

dω
= 2F̄2ω + 4F̄4ωΔ2

ω, (83)

and

E (ω) = F (ω) − ω
dF (ω)

dω

= F0 + Δ2
ω

(
F̄2 + F̄4Δ

2
ω

)
+ 2ω2

(
F̄2 + 2F̄4Δ

2
ω

)
.

(84)

From Eqs. (83) and (84) it follows that the energy and the
Noether charge of the vortex-Q-ball system tend to the finite
values Etk = F0 +2ω2

tk F̄2 and Qχ tk = 2ωtk F̄2, respectively,
as ω → ωtk = ±m. Moreover, Eqs. (83) and (84) make
it possible to obtain the dependence of the energy on the
Noether charge, which is valid for both signs of Qχ in the
thick-wall regime

E
(
Qχ

) = Etk − mΔQχ + O
[
ΔQ2

χ

]
, (85)

where ΔQχ = ∣∣Qχ tk
∣∣ − ∣∣Qχ

∣∣.
Although the influence of the Q-ball component on the

vortex component is negligible in the thick-wall regime, but
the reverse is not true. Indeed, by varying the functional F̄2 =
2π

∫ F̄2r̄dr̄ in σ̄ , we obtain the differential equation for σ̄ ,
which is valid in the thick-wall regime

σ̄ ′′ + σ̄ ′

r̄
−

(
1 + r̄−2 (K − τN )2

)
σ̄

+
(
m−1g − 2mτ 2v−2

)
σ̄ 3 = 0. (86)

We see that Eq. (86) depends on the parameters N and v

of the vortex component, hence, the influence of the vortex
component on the Q-ball component can not be neglected in
the thick-wall regime.

Eq. (81) tells us that the functional F̄2 = 2π
∫ F̄2r̄dr̄

depends on the gauge coupling constants e andq only through
the combination τ = q/e. Hence, the limiting value Qχ tk =
2ωtk F̄2 depends on e and q only through the combination
τ = q/e. At the same time, we see from Eq. (75) that the
functional F0 = 2π

∫ F0rdr (the energy of the ANO vortex
for given e, λ, v, and N ) depends solely on the gauge coupling
constant e. Hence, the limiting energy Etk = F0 + 2m2 F̄2

of the vortex-Q-ball system depends on e and q separately.
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In particular, it diverges logarithmically (∝ ln(e−1)) when e
tends to zero and τ remains fixed.

Finally, we consider the thin-wall regime of the vortex-Q-
ball system. This extreme regime occurs when the absolute
value |ω| of the phase frequency tends to the minimum pos-
sible value ωtn. As a result, the energy E = 2π

∫ ∞
0 Erdr

and the Noether charge Qχ = 2π
∫ ∞

0 j0
χrdr increase indef-

initely as ω → ωtn. In the thin-wall regime, the field con-
figuration of the vortex-Q-ball system can be divided into
three regions: the central transitional region, the basic interior
region, and the exterior transitional region. The spatial size of
the internal region increases indefinitely as the vortex-Q-ball
system approaches the thin-wall limit. The characteristic fea-
ture of the thin-wall regime is that the ansatz functions σ(r),
Ω(r) = ω − τa0(r)/r , and F(r) tends to constant values in
the internal region as ω → ωtn. Equating the derivatives in
Eqs. (15), (17), and (18) to zero (Eq. (15) should be rewritten
in terms of Ω(r) as it is in Eq. (39)), we obtain a system of
three algebraic equations

Ω2 − m2 + gσ 2 − hσ 4 = 0, (87)

τ 2σ 2Ω − v2F2(ω − Ω) = 0, (88)

(ω − Ω)2 + τ 2λv2
(

1 − F2
)

= 0. (89)

One more equation can be obtained from Eq. (59). Indeed, in
the thin-wall regime, the energy of the magnetic field tends to
zero, while the potential and kinetic parts of energy increase
indefinitely. Hence, the term E (B) can be neglected in the
thin-wall regime and Eq. (59) takes the form E (T ) − E (P) =
0. This fact and Eqs. (53) and (55) result in the fourth alge-
braic equation

Ω2σ 2 + τ−2v2(ω − Ω)2F2

= 2−1λv4
(

1 − F2
)2 + m2σ 2 − 2−1gσ 4 + 3−1hσ 6.

(90)

Before we go any further, let us ascertain the behaviour of
the ansatz function a(r) in the internal region of the vortex-Q-
ball system in the thin-wall regime. From Eq. (16) it follows
that in this case, the behaviour of a(r) is described by the
differential equation

a′′(r) − a′(r)
r

− βa(r) − γ = 0, (91)

where

β = 2e2
(
v2F2

tn + τ 2σ 2
tn

)
,

γ = 2e2
(
Nv2F2

tn + K τσ 2
tn

)
, (92)

and Ftn and σtn are the limiting values of the correspond-
ing ansatz functions in the thin-wall regime. The appropriate

solution of Eq. (91) is

a(r) = CrK1

(√
βr

)
− β−1γ, (93)

where K1
(√

βr
)

is the modified Bessel function of the sec-
ond kind and C is a positive constant. We see that in the
internal region of the vortex-Q-ball system, a(r) tends to the
constant value

atn = −γ

β
= −N − τK

σ 2
tn

v2F2
tn

+ τ 2N
σ 2

tn

v2F2
tn

+ O
[
τ 3

]
.

(94)

Note that the limiting value (94) does not equal the boundary
value −N of a(r) at spatial infinity.

It follows from Eq. (94) that the behaviour of a(r) is deter-
mined by the thin-wall background values Ftn and σtn of
F(r) and σ(r), respectively. At the same time, Eqs. (17)
and (18) tell us that in the thin-wall regime, the backward
influence of a(r) on F(r) and σ(r) can be neglected in
the internal region of the vortex-Q-ball system. Indeed, the
ansatz functions a0(r) and Ω(r) are connected by the rela-
tion a0 = τ−1r (ω − Ω), and the constancy of Ω in the
internal region of the vortex-Q-ball system results in the lin-
ear growth of a0 in r there. Conversely, the ansatz function
a(r) is bounded in the internal region of the vortex-Q-ball
system and the ratio a(r)/a0(r) tends to zero there, because
the size of the internal region increases indefinitely in the
thin-wall regime.

Thus, we have the system of four algebraic equations (87)–
(90), which are valid in the thin-wall regime. These equations
allow us to determine the limiting thin-wall values Ωtn, σtn,
and Ftn of the corresponding ansatz functions and the limit-
ing thin-wall value ω tn of the phase frequency. The solution
of system (87)–(90) cannot be obtained analytically, in gen-
eral. However, this solution can be obtained as series in the
parameter τ = q/e, provided it is small enough

ωtn = ωtn0

(
1 + 3

8

g

hv2 τ 2 + O
[
τ 4

])
, (95a)

Ωtn = ωtn0

(
1 − 3

8

g

hv2 τ 2 + O
[
τ 4

])
, (95b)

σtn = σtn0

(

1 − ω2
tn0

gv2 τ 2 + O
[
τ 4

])

, (95c)

Ftn = 1 + 9

32

g2ω2
tn0

λh2v6 τ 2 + O
[
τ 4

]
, (95d)

where

σtn0 =
√

3

2

√
g

h
and ωtn0 = m

√

1 − 3

16

g2

hm2 (96)

are the limiting thin-wall values of σ(r) and ω for the non-
gauged Q-ball. Note that the system (87)–(90) does not
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depend on the integers K and N , hence the thin-wall val-
ues Ωtn, σtn, Ftn, and ωtn also does not depend on K and N .
Furthermore, the system (87)–(90), and consequently, Ωtn,
σtn, Ftn, and ωtn depends on the gauge coupling constants e
and q only through the combination τ = q/e.

Using Eqs. (95a)–(95d), we can obtain the thin-wall val-
ues of the energy, Noether charge, and angular momentum
density

Etn = Etn0

(

1 − 2
ω2

tn0

gv2 τ 2 + O
[
τ 4

])

, (97a)

j0
χ tn = j0

χ tn0

(
1 − 2

m2

gv2 τ 2 + O
[
τ 4

])
, (97b)

j0
φ tn = −τ j0

χ tn0

(
1 + O

[
τ 2

])
, (97c)

Jtn = N j0
φ tn + K j0

χ tn, (97d)

where

Etn0 = 2ω2
tn0σ

2
tn0 and j0

χ tn0 = 2ωtn0σ
2
tn0 (98)

are the corresponding densities for the nongauged Q-ball. It
follows from Eqs. (95a), (97a), and (97b) that the ratio

Etn

j0
χ tn

= ωtn0

(
1 + 3

8

g

hv2 τ 2 + O
[
τ 4

])
= ωtn (99)

as it should be in the thin-wall regime.

5 Numerical results

The system of differential equations (15)–(18) with bound-
ary conditions (20) is a mixed boundary value problem on
the semi-infinite interval r ∈ [0,∞). It is obviously that this
problem can be solved only by numerical methods. To solve
this problem, we use the boundary value problem solver pro-
vided in the Maple package [38]. The correctness of numer-
ical results is controlled with the help of Eq. (13) and the
Laue condition (65).

The mixed boundary value problem (15)–(18), and (20)
depends on the eight parameters: m, g, h, λ, v, e, q, and ω.
Without loss of generality, the number of the parameters can
be reduced, if we rescale the radial variable r and the ansatz
function σ as follows:

r = m−1r̃ , σ = mg−1/2σ̃ . (100)

After rescaling, the vortex-Q-ball system will be described
solely by the six dimensionless parameters: h̃ = m2g−2h,
λ̃ = gv4m−4λ, ṽ = g1/2m−1v, ẽ = g−1/2e, q̃ = g−1/2q,
and ω̃ = m−1ω, whereas the two dimensionless parameters
m̃ and g̃ will be equal to 1. In most numerical calculations,
we use the following values for the nongauged dimension-
less parameters: h̃ = 0.2, λ̃ = 0.125, ṽ = 2. The dimension-
less gauge coupling constants ẽ and q̃ are taken to be equal

Fig. 1 Dependence of the energy Ẽ of the vortex-Q-ball system on the
phase frequency ω̃ for different values of gauge coupling constants. The
curves correspond to parameters m̃ = 1, g̃ = 1, h̃ = 0.2, λ̃ = 0.125,
ṽ = 2, N = 1, and K = 0

(τ = q̃/ẽ = 1), and may vary in some interval. In addition to
these parameters, the mixed boundary value problem (15)–
(18), and (20) also depends on the two integers: N (topo-
logical winding number of the vortex component) and K
(nontopological winding number of the Q-ball component).
We shall consider the vortex-Q-ball systems with the vortex
winding number N = 1, while the Q-ball winding number
K may take a range of values.

Figure 1 shows the dependence of the dimensionless
energy Ẽ = gm−2E of the vortex-Q-ball system on the
dimensionless phase frequency ω̃ = m−1ω. The presented
curves correspond to the vortex-Q-ball system at six differ-
ent values of the gauge coupling constants and to the non-
gauged two-dimensional Q-ball. We see that with decreasing
ω̃, the system passes into the thin-wall regime in which the
energy and the Noether charge increase indefinitely. When
ω̃ → 1, the vortex-Q-ball system passes into the thick-wall
regime. In this regime, the behaviour of the vortex-Q-ball
system differs considerably from that of the nongauged two-
dimensional Q-ball. In particular, the energy of the Q-ball
decreases monotonically as ω̃ → 1, whereas the behaviour
of the energy of the vortex-Q-ball system is more compli-
cated, as follows from the subplot in Fig. 1. We see that for
the vortex-Q-ball system, the curves Ẽ(ω̃) are s-shaped in the
vicinity of ω̃ = 1. This fact is due to the nontrivial interaction
between the vortex and Q-ball components of the soliton sys-
tem. Note that in Ref. [19], we have not managed to obtain,
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Fig. 2 Dependence of the Noether charge Q̃χ of the vortex-Q-ball
system on the dimensionless phase frequency ω̃ in the vicinity of ω̃ = 1.
The parameters of the vortex-Q-ball system are the same as in Fig. 1

by numerical methods, the s-shaped parts of the Ẽ(ω̃) and
Q̃χ (ω̃) curves.

It follows from the subplot in Fig. 1 that the limit value
Ẽ(1) is not a constant for the vortex-Q-ball system, but
increases with a decrease of ẽ. It was found numerically that
for small values of ẽ, the value Ẽ(1) ≈ a+ b ln(ẽ−1), where
a and b depend on the gauge coupling constants through the
ratio τ = q̃/ẽ in accordance with the conclusion of Sect. 4.

Beyond the neighbourhood of ω̃ = 1, the rescaled Noether
charge Q̃χ = gm−1Qχ depends on ω̃ similar to the dimen-
sionless energy Ẽ = gm−2E in Fig. 1. However, the
behaviour of the curves Q̃χ (ω̃) and Ẽ(ω̃) is different in the
neighbourhood of ω̃ = 1. Indeed, Figs. 2 and 3 show the
curves Q̃χ (ω̃) in neighbourhoods of ω̃ = 1 for different val-
ues of the gauge coupling constants. The curves in Fig. 2
correspond to the same values of the gauge coupling con-
stant as in Fig. 1, while those in Fig. 3 correspond to larger
values of the gauge coupling constants. We see that unlike
the curves Ẽ(ω̃) in the subplot in Fig. 1, the curves Q̃χ (ω̃)

end at the same point. It follows that the limiting thick-wall
value Q̃χ (1) does not depend on the gauge coupling con-
stants ẽ and q̃ separately. Instead, it depends only on their
ratio τ = q̃/ẽ in accordance with the conclusion of Sect. 4.

Figures 2 and 3 show that the form of the curves Q̃χ (ω̃)

changed with the increase in the gauge coupling constants. In
Fig. 2, the curves Q̃χ (ω̃) are s-shaped similar to the curves
Ẽ(ω̃) in the subplot in Fig. 1. At the same time, it follows
from Fig. 3 that by increasing the gauge coupling constants,
the curves Q̃χ (ω̃) cease to be s-shaped, and the turning points
of s-shaped Q̃χ (ω̃) curves turn into a single inflection point
of monotonically increasing Q̃χ (ω̃) curves.

Figure 4 presents the energy Ẽ of the vortex-Q-ball system
as a function of its Noether charge Q̃χ for the same values of
the gauge coupling constants as in Fig. 1. We see that all the
curves Ẽ(Q̃χ ) that correspond to the vortex-Q-ball system
have one cuspidal point, whereas there is no cuspidal point on
the curve Ẽ(Q̃χ ) for the two-dimensional nongauged Q-ball.
The next characteristic feature is that the Q̃χ -coordinates

Fig. 3 The same as in Fig. 2, but for large values of the gauge coupling constants
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Fig. 4 Dependence of the energy Ẽ of the vortex-Q-ball system on the
Noether charge Q̃χ for different values of the gauge coupling constants.
The straight dashed line corresponds to the linear dependence Ẽ = Q̃χ .
The subplot presents the dependence of the difference ΔẼ = Ẽ− Q̃χ −
Ẽv on Q̃χ in the neighbourhood of cuspidal points

for the rightmost points of the upper branches of the curves
Ẽ(Q̃χ ) coincide. Of course, this is a consequence of the fact
that the value Q̃χ (1) depends on ẽ and q̃ only through the
ratio τ = q̃/ẽ, which is the same for all vortex-Q-ball curves
in Fig. 4.

In Fig. 4, the dashed straight line corresponds to the plane-
wave field configuration of the complex scalar field χ . We
see that the energy of the two-dimensional nongauged Q-ball
is less than that of the plane-wave field configuration, except
for the point of contact, at which they are equal. Hence, the
two-dimensional nongauged Q-ball is stable against decay
into massive scalar χ -bosons. It follows from Fig. 4 that
except for the neighbourhood of cuspidal points, the energy
of the vortex-Q-ball system is less than that of the plane-
wave field configuration. Hence, the Q-ball component of
the vortex-Q-ball system is stable against decay into massive
scalar χ -bosons provided that Ẽ < Q̃χ .

To ascertain the possibility of decay of the Q-ball com-
ponent of the vortex-Q-ball system, we introduce the value
ΔẼ = Ẽ − Q̃χ − Ẽv, where Ẽv is the energy of the vortex
component of the system. We define Ẽv as the energy of the
ANO vortex at a given value of the gauge coupling constant
ẽ. The curves Ẽv(Q̃χ ) are presented in the subplot in Fig. 4.
It is obvious that decay of the Q-ball component into scalar
χ -bosons is possible only if ΔẼ is positive. It follows from
the subplot in Fig. 4 that for all gauge coupling constants, ΔẼ
is positive on the upper branches of curves Ẽ(Q̃χ ). Further-
more, ΔẼ is also positive on the lower branches of Ẽ(Q̃χ )

curves in neighbourhoods of their cuspidal points. Hence,

the vortex-Q-ball system is unstable in the area presented in
the subplot in Fig. 4. The instability, however, can be either
classical (the presence of one or more unstable modes in the
functional neighbourhood of the soliton system) or quantum-
mechanical (the possibility of quantum tunneling of the soli-
ton system to another state). It was shown in Refs. [36,39]
that the appearance of a cusp on the energy-Noether charge
curve indicates the onset of a mode of instability. Hence, the
Q-ball components of the soliton systems lying on the upper
branches of the Ẽ(Q̃χ ) curves are classically unstable.

Let us note that in Figs. 1, 2 and 3, the s-shaped parts of
Ẽ(ω̃) and Q̃χ (ω̃) curves lie to the right of the minimum point.
The minimum point of Ẽ(ω̃) and Q̃χ (ω̃) curves is mapped
to the cuspidal point of the corresponding Ẽ(Q̃χ ) curve in
Fig. 4. Hence, the s-shaped parts of Ẽ(ω̃) and Q̃χ (ω̃) curves
correspond to some part of the upper branch of Ẽ(Q̃χ ) curve.
It follows that the s-shaped parts of Ẽ(ω̃) and Q̃χ (ω̃) curves
correspond to unstable states of the vortex-Q-ball system.

Next we present the ansatz functions of the vortex-Q-ball
system for different values of gauge coupling constants. Fig-
ure 5 presents the ansatz functions a0(r̃)/r̃ and σ̃ (r̃), and
Fig. 6 presents the ansatz functions a(r̃) and F(r̃). It follows
from Fig. 5 that a0 (r̃) /r̃ |r̃=0 increases monotonically and
a0 (r̃) /r̃ tends to limiting form (70a) as ẽ and q̃ increase.
In particular, a0 (r̃) /r̃ |r̃=0 reaches the maximum limit value
ω̃/τ = 0.7 as ẽ = q̃ → ∞, which is consistent with Eqs. (42)
and (70a). The ansatz function σ̃ (r̃) also tends to a limiting
form as the gauge coupling constants increase indefinitely.
Figure 6 shows that similar to a0(r̃)/r̃ , the ansatz function
a(r̃) is sensitive to the magnitude of ẽ and q̃ . In particular,
it tends to zero at any finite r̃ as ẽ = q̃ → 0 and tends to
limiting form (70b) as ẽ = q̃ → ∞. The dependence of F(r̃)
on the the gauge coupling constants is not as strong as that
of a(r). It follows from Fig. 6 that F(r̃) tends to a limiting
form as ẽ = q̃ → ∞ and to the global vortex solution as
ẽ = q̃ → 0.

Like two and three-dimensional nongauged Q-balls, radi-
ally excited states in the vortex-Q-ball system exist. The
ansatz function σ(r) that describes the Q-ball component of
a radially excited state vanishes in a number of finite points
ri called radial nodes. It follows that the scalar field χ of
the Q-ball component of a radially excited state vanishes on
the spatial spheres whose radii coincide with the nodes of
σ(r). The number of nodes of σ(r) will be denoted by n. In
Fig. 7, we can see the curves Ẽ(ω̃) for the unexcited (n = 0)
and the first six (n = 1, . . . , 6) radially excited states of the
vortex-Q-ball system. As in the previous (unexcited) case,
the radially excited system passes into the thin-wall regime
as ω̃ → ω̃tn and into the thick-wall regime as ω̃ → 1. Like
curves in Fig. 1, the curves Ẽ(ω̃) of radially excited vortex-
Q-ball systems are s-shaped in the vicinity of ω̃ = 1. Next,
we see that at fixed ω̃, the energy of the the vortex-Q-ball
system increases with an increase in n. It was found numeri-
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Fig. 5 Profile functions a0/r̃ (solid curves) and σ̃ (dashed curves) of
the vortex-Q-ball system for different values of the gauge coupling
constants. The curves correspond to parameters ω̃ = 0.7, m̃ = 1,
g̃ = 1, h̃ = 0.2, λ̃ = 0.125, ṽ = 2, N = 1, and K = 0

Fig. 6 Profile functions a (solid curves) and F (dashed curves) of
the vortex-Q-ball system for different values of the gauge coupling
constants. The parameters of the vortex-Q-ball system are the same as
in Fig. 5

cally that at fixed ω̃, the energy and Noether charge increase
quadratically in n starting with n = 2:

Ẽ ≈ a + bn2, Q̃χ ≈ c + dn2, (101)

where a and b are positive constants, whereas the signs of
constants c and d coincide with that of ω̃. The behaviour of
Q̃χ (ω̃) curves is similar to that of Ẽ(ω̃) curves in Fig. 7. In
particular, the values Q̃χ (1) are different for different n.

Fig. 7 Dependence of the energy Ẽ of the vortex-Q-ball system on the
phase frequency ω̃ for the first few radially excited states. The curves
correspond to parameters m̃ = 1, g̃ = 1, h̃ = 0.2, λ̃ = 0.125, ṽ = 2,
ẽ = q̃ = 0.1, N = 1, and K = 0

Fig. 8 Dependence of the energy Ẽ of the vortex-Q-ball system on the
Noether charge Q̃χ for the first few radially excited states. The straight
dashed line corresponds to the linear dependence Ẽ = Q̃χ . The subplot
presents the dependence of the difference ΔẼ = Ẽ − Q̃χ − Ẽv on Q̃χ

in neighbourhoods of cuspidal points

Figure 8 presents the curves Ẽ(Q̃χ ) for the unexcited and
the first six radially excited states of the vortex-Q-ball system.
All curves Ẽ(Q̃χ ) have cuspidal points in which Ẽ and Q̃χ

reach minimum values. Numerically, we found that starting
with n = 2, the minimum values of Q̃χ in the cusp points are
well described by a quadratic dependence: Qχc = ac +bcn2.
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Fig. 9 Profile functions σ̃ for the first 10 radially excited states of the
vortex-Q-ball system. The curves correspond to parameters ω̃ = 0.7,
m̃ = 1, g̃ = 1, h̃ = 0.2, λ̃ = 0.125, ṽ = 2, ẽ = q̃ = 0.1, N = 1, and
K = 0

It follows that at a given Q̃χ , the number of radially excited
states of the vortex-Q-ball system does not exceed

nmax =
⌊
b−1/2

c

(
Q̃χ − ac

)1/2
⌋

, (102)

where �x� denotes the floor of x (the greatest integer less
than or equal to x). We see that at large Q̃χ , the number of

radially excited states rises ∝ Q̃1/2
χ .

It follows from Fig. 8 that at a given Q̃χ , the lower-branch
energy Ẽ increases with n. Hence, radially excited vortex-
Q-ball states lying on lower branches of Ẽ(Q̃χ ) curves are
unstable with respect to the transition into less excited states.
Furthermore, we can see from the subplot in Fig. 8 that the
Q-ball components of radially excited vortex-Q-ball states
are unstable with respect to decay into scalar χ -bosons in
neighbourhoods of cuspidal points (the upper branches and
small parts of the lower branches of Ẽ(Q̃χ ) curves).

Figures 9 and 10 present ansatz functions for the first 10
radially excited states of the vortex-Q-ball system. We see
from Fig. 9 that oscillations of the σ̃ (r̃) curves are inhar-
monious. In particular, amplitudes of peaks and valleys of
σ̃ (r̃) curves are decreased with the increase in the number of
oscillations, whereas the distances between adjacent peaks
and valleys of σ̃ (r̃) curves are increased. As seen in Fig. 10,
the ansatz functions ã0(r̃)/r̃ and a(r̃) also oscillate. In par-
ticular, the positions of local maxima of ã0(r̃)/r̃ and a(r̃)
approximately coincide with those of peaks and valleys of
σ̃ (r̃), whereas the positions of local minima of ã0(r̃)/r̃ and
a(r̃) are approximately the same as those of nodes (zeros) of
σ̃ (r̃).

Fig. 10 Ansatz functions a, 3a0/r̃ , and F for the first 10 radially
excited states of the vortex-Q-ball system. The parameters of the vortex-
Q-ball system are the same as in Fig. 9

Fig. 11 Dependence of the energy Ẽ of the vortex-Q-ball system on
the phase frequency ω̃ for the first few azimuthally excited states. The
curves correspond to parameters m̃ = 1, g̃ = 1, h̃ = 0.2, λ̃ = 0.125,
ṽ = 2, ẽ = q̃ = 0.1, and N = 1

It was shown in Ref. [27] that the number of radially
excited states of the three-dimensional gauged Q-ball is
finite. At the same time, we found no indication of the finite-
ness of the number of radially excited states for the vortex-Q-
ball system. Of course, the reason for this difference is that
the three-dimensional gauged Q-ball possesses an electrical
charge, whereas the two-dimensional vortex-Q-ball system
is electrically neutral. As a result, the electric charge density
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of the three-dimensional gauged Q-ball is always either pos-
itive or negative, whereas that for the vortex-Q-ball system
is alternating. This difference is apparent in the behaviour
of the ansatz function Ω(r) defined in Eq. (40). Indeed, it is
shown in Ref. [3] that in the case of the three-dimensional
gauged Q-ball, Ω(r) is a bounded (0 < Ω(r) < ω) and
monotonically increasing function of r . For the vortex-Q-
ball system, the ansatz function Ω(r) is also bounded in the
interval (0, ω) as it is seen from Eq. (41). However, Ω(r)
need not be monotonic in this case. Indeed, the oscillating
behaviour of ã0(r̃)/r̃ shown in Fig. 10 results in the oscil-
lating behaviour of Ω(r̃) = ω − τ ã0(r̃)/r̃ . The monotonic
increase of Ω(r) leads to the restriction of the number of radi-
ally excited states for the three-dimensional gauged Q-ball,
because in this case, Ω(r) reaches its maximum value ω for
a finite number of oscillations of σ(r). In contrast, the non-
monotonic oscillating behaviour of Ω(r) makes it possible
for vortex-Q-ball systems with an arbitrarily large number
of oscillations (and hence nodes) of σ(r) to exist; thus, there
are no restrictions on the number of radially excited states of
the vortex-Q-ball system.

Now we turn to a description of the vortex-Q-ball’s
azimuthally excited states. These states correspond to a
nonzero integer-valued parameter K in Eq. (14b). Figure 11
shows the curves Ẽ(ω̃) for the first few states with nonzero
K . It follows from Fig. 11 that any two Ẽ(ω̃) curves whose
parameters K ′ and K ′′ satisfy the condition K ′ + K ′′ = 2
tend to the same limit in the thick-wall regime when ω̃ → 1.
A similar statement is valid for the Q̃χ (ω̃) curves. This facts
can be explained as follows. In the thick-wall regime, the
limiting energy of the vortex-Q-ball system is written as
Etk = F0+2m2 F̄2, where F0 is the energy of the ANO vortex
with a given e, and 2m2 F̄2 is the energy of the Q-ball com-
ponent. It follows from Eq. (81) that F̄2 is expressed solely
in terms of the rescaled ansatz function σ̄ . Next, the rescaled
ansatz function σ̄ satisfies differential equation (86). We see
that Eq. (86) depends on the integer-valued parameters K and
N only through the combination � = (K − τN )2. It follows
that the parameters K ′ and K ′′, which satisfy the relation
K ′ + K ′′ = 2τN , lead to the same value of �. Because both
K ′ and K ′′ are integers, the value of 2τN is also an integer,
thus the parameter τ = e/q is an integer or half-integer. If
2τN is a noninteger, then Ẽ(ω̃) curves corresponding to dif-
ferent K will not tend to the same limit as ω̃ → 1. In our
case, the parameters N and τ are equal to one, so 2τN = 2.
Thus, differential equation (86) will have the same form for
any two vortex-Q-ball systems whose parameters satisfy the
condition K ′ + K ′′ = 2.

Eq. (86) is valid for all r̄ except those in the interval
0 ≤ r̄ � Δωm

−1
A,φ whose width tends to zero in the thick-

wall regime. This is because the rescaled ansatz functions
ā(r̄) ≡ a(Δ−1

ω r̄) and F̄(r̄) ≡ F(Δ−1
ω r̄) are different from

their limiting values in this infinitesimal interval of r̄ . Next,

Fig. 12 Dependence of the energy Ẽ of the vortex-Q-ball system on
the Noether charge Q̃χ for the first few azimuthally excited states. The
straight dashed line corresponds to the linear dependence Ẽ = Q̃χ . The
subplot presents the dependence of the difference ΔẼ = Ẽ − Q̃χ − Ẽv

on Q̃χ in neighbourhoods of cuspidal points

the ansatz functions σ̄K ′(r̄) and σ̄K ′′(r̄) (the dependence of
σ̄ on K is shown explicitly) satisfy the same boundary con-
ditions: σ̄ (0) = 0 and σ̄ (∞) = 0. The only exception is
in the case K = 0 for which the left boundary condition is
σ̄ ′(0) = 0. However, it was found numerically that in this
case, σ̄ (0) → 0 as Δω → 0, and the left boundary condition
for K ′ = 0 becomes essentially the same as that for the com-
plementary case K ′′ = 2. It follows that the ansatz functions
σ̄K ′(r̄) and σ̄K ′′(r̄) that satisfy the condition K ′ + K ′′ = 2
tend to the same limit in the thick-wall regime and so do the
corresponding functionals F̄2K ′ and F̄2K ′′ . Hence, the ener-
gies (Noether charges) of the two vortex-Q-ball systems with
K ′+K ′′ = 2 tend to the same value in the thick-wall regime.
Note that there is no complementary vortex-Q-ball system for
the system with K = 1. Indeed, in this case the parameters
K ′ and K ′′ are the same: K ′ = 1, K ′′ = 1 ⇒ K ′ + K ′′ = 2.

It follows from Eq. (47) that the two vortex-Q-ball systems
with the same Noether charges and with integer parameters
K ′ and K ′′ such that K ′ + K ′′ = 2τN possess the oppo-
site angular momenta. Hence, the angular momenta of two
vortex-Q-ball systems with K ′+K ′′ = 2 tend to the opposite
values in the thick-wall regime, whereas the angular momen-
tum of the state with K = 1 vanishes.

Figure 12 presents the Ẽ(Q̃χ ) curves for the same K as in
Fig. 11. We see that just as in Figs. 4 and 8, the curves Ẽ(Q̃χ )

have cuspidal points. The only exception is the Ẽ(Q̃χ ) curve
for K = 1; in this case, the absence of a cuspidal point
follows from the monotonicity of the corresponding Ẽ(ω̃)
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Fig. 13 Profile functions -a0/(ẽr̃) (solid curves) and σ̃ (dashed curves)
of the vortex-Q-ball system for the first few azimutally excited states.
The curves correspond to parameters ω̃ = 0.7, m̃ = 1, g̃ = 1, h̃ = 0.2,
λ̃ = 0.125, ṽ = 2, ẽ = q̃ = 0.1, and N = 1

curve in Fig. 11. The conservation of the Noether charge
and the angular momentum leads to the conclusion that the
parts of Ẽ(Q̃χ ) curves lying below the line Ẽ = Ẽv + Q̃χ

correspond to stable vortex-Q-ball systems. In the subplot in
Fig. 12, we can see the parts of Ẽ(Q̃χ ) curves that lie above
the line Ẽ = Ẽv + Q̃χ and thus correspond to unstable
vortex-Q-ball systems.

It follows from Fig. 12 that the curves ẼK ′ (Q̃χ ) and
ẼK ′′ (Q̃χ ) with K ′ + K ′′ = 2τN = 2 approximately coin-
cide starting with

(
K ′, K ′′) = (4,−2). Hence, the energies

of the two vortex-Q-ball systems that correspond to coinci-
dent curves ẼK ′ (Q̃χ ) and ẼK ′′ (Q̃χ ) are approximately the
same at given Qχ . Note that the parameter K − τN has
opposite values for the curves ẼK ′ (Q̃χ ) and ẼK ′′ (Q̃χ ) with
K ′ +K ′′ = 2τN . Hence, the angular momenta J̃K ′ (Q̃χ ) and
J̃K ′′ (Q̃χ ) are opposite, as it follows from Eq. (47). Further,
Eqs. (49a)–(49c) tell us that under the reverse (K , N ) →
(−K ,−N ), the energy and the Noether charge of the vortex-
Q-ball system do not change, whereas the angular momen-
tum changes the sign. The parameter K − τN also changes
the sign under the reverse (K , N ) → (−K ,−N ). Hence,
the functions E(N , K ), Qχ (N , K ), and J (N , K ) become in
essence functions of one argument K −τN when the param-
eter |K − τN | � 3.

The reason for this is the presence of the centrifugal term
−r−2 (K + τa (r))2 σ (r) in Eq. (18). The contribution of
this term is proportional to r−2 (K − τN )2 when a(r) is
in the vicinity of the limiting value of −N . The growth of
|K − τN | leads to the growth of the factor � = (K − τN )2

in the centrifugal term. The growth of � must be compen-
sated, otherwise, the solution of mixed boundary value prob-

Fig. 14 Ansatz functions a (solid curves) and F (dashed curves) of the
vortex-Q-ball system for the first few azimuthally excited states. The
parameters of the vortex-Q-ball system are the same as in Fig. 13

lem (15)–(18) and (20) will not exist. Such compensation
is achieved through the shift of the ansatz function σ(r)
towards higher values of r . The shift results in reducing the
factor r−2 in the centrifugal term which compensates for
the growth of the factor �. With increasing r , we can pass
from the ansatz function a(r) to the shifted ansatz function
Δa(r) = N + a(r). Then the system (15)–(18) will depend
on the parameters K and N only through the combination
K − τN .

Figures 13 and 14 show the ansatz functions for the
same K as in Fig. 11. We see that for K �= 0, the
ansatz functions σ̃ (r̃) have a slightly asymmetric bell-
shaped form. Numerically, we found that the radial posi-
tions of maxima of the σ̃ (r̃) curves increase approxi-
mately linearly with |K − τN |. It follows from Fig. 13
that with an increase in |K − τN |, the ansatz functions
a0(r̃)/(ẽr̃) also form maxima whose radial positions are
approximately the same as those of the corresponding σ̃ (r̃)
curves. Next, we see from Fig. 14 that the forms of a(r̃)
curves strongly depend on K − τN . In particular, with
an increase in |K − τN |, the minimum of a(r̃) appears
for positive K and the maximum (together with the left
adjacent minimum) of a(r̃) appears for negative K . The
radial positions of these extremes of a(r̃) approximately
coincide with those of the maxima of the corresponding
σ̃ (r̃). Such a difference in the behaviour of the a(r̃) curves
with positive and negative K is explained by the fact that
the driving term −2eq(K − τN )σ (r)2 in Eq. (16) has
the opposite sign in these cases. Finally, it follows from
Fig. 14 that the forms of the F(r̃) curves weakly depend
on K .
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6 Conclusion

In the present paper, we continued the study of the vortex-Q-
ball systems started in Ref. [19]. We investigated properties
of the unexcited vortex-Q-ball systems at different values
of gauge coupling constants and properties of the radially
excited vortex-Q-ball systems. We also investigated proper-
ties of the azimuthally excited vortex-Q-ball systems. The
vortex-Q-ball system is composed of a vortex (topological
soliton) and a two-dimensional Q-ball (nontopological soli-
ton), thus it combines properties of both topological and
nontopological solitons. In particular, the vortex-Q-ball sys-
tem possesses a quantized magnetic flux and satisfies basic
relation (13) for nontopological solitons. Furthermore, the
vortex-Q-ball system possesses a nonzero angular momen-
tum even when its vortex and Q-ball components have zero
angular momenta.

In Refs. [22,23,25], azimuthally excited states of string-
like objects called Q-vortices were studied. In Ref. [23], radi-
ally excited states of the Q-vortex were also investigated. The
Q-vortices are invariant under translations along the z-axis
and are therefore equivalent to two-dimensional Q-balls. The
properties of the vortex-Q-ball system are significantly dif-
ferent from the properties of these two-dimensional Q-balls.
Firstly, unlike the vortex-Q-ball system, the two-dimensional
Q-balls do not possess any magnetic flux. Furthermore, the
Q-ball component of the vortex-Q-ball system possesses an
electric charge, which is compensated by the opposite elec-
tric charge of the vortex component. On the contrary, the
two-dimensional Q-balls are electrically neutral because any
two-dimensional electrically charged object will have infinite
energy. Secondly, both the unexcited and excited (radially or
azimuthally) vor- tex-Q-ball systems possess nonzero angu-
lar momenta, whereas the unexcited and radially excited Q-
balls have zero angular momentum. Thirdly, the interaction
between the vortex and Q-ball components leads to substan-
tial change in the E(ω) and E(Qχ ) curves for the vortex-Q-
ball system in comparison with that of the two-dimensional
Q-balls. In particular, in the case of the vortex-Q-ball system,
some of E(ω) curves are s-shaped in the vicinity of ω = m
and the E(Qχ ) curves have cuspidal points, whereas none
of these features hold for the two-dimensional Q-balls.

There exist several extreme regimes for the vortex-Q-ball
system. We investigated four of them: the thick-wall regime
in which the phase frequency ω tends to the maximum value,
the thin-wall regime in which ω tends to the minimum value,
and regimes of small and large gauge coupling constants. In
particular, we found that the limiting thick-wall value of the
Noether charge depends on the gauge coupling constants e
and q only through the ratio τ = q/e. We also found that
the limiting thick-wall energies of two vortex-Q-ball systems
whose azimuthal parameters K ′ and K ′′ satisfy the condition
K ′ + K ′′ = 2τN are the same. As for extreme values of

gauge coupling constants, the gauge field Aμ is decoupled
from the vortex and Q-ball components as q = τe → 0
and is expressed in terms of the scalar fields φ and χ as
q = τe → ∞. The latter means that the gauge field Aμ

ceases to be a dynamic object as q = τe → ∞.
Note that the very possibility of the existence of radi-

ally excited vortex-Q-ball states results from the nonlinear
character of mixed boundary value problem (15)–(18) and
(20). Indeed, a linear homogeneous boundary value prob-
lem is the Sturm–Liouville problem. Solutions with different
numbers of nodes correspond to different eigenvalues of the
Sturm–Liouville problem. It follows that these solutions sat-
isfy different differential equations because the eigenvalue
is a parameter of differential equation. In contrast, a nonlin-
ear boundary value problem with fixed parameters may have
more than one solution, as it is in the case of the vortex-Q-ball
system. In this case, the second and subsequent solutions of
the mixed nonlinear boundary value problem correspond to
the radially excited states of the vortex-Q-ball system.
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