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Abstract We study the Hawking evaporation of a class of
black hole solutions in dRGT massive gravity, in which the
graviton mass gives rise to an effective negative cosmological
constant. We found that the effective emission surface can be
either proportional to the square of the effective AdS length
scale, or corresponds to the square of the impact parameter of
the null geodesic that falls onto the photon orbit of the black
hole. Furthermore, depending on the black hole parameters,
the emission surface could switch from one to another as
the black hole loses mass during the evaporation process.
Furthermore, the black holes can either evaporate completely
or become a remnant at late time. Our result is more generally
applicable to any asymptotically anti-de Sitter-like black hole
solution in any theory whose metric function has a term linear
in the coordinate radius, with massive gravity being only a
concrete example.

1 Introduction to massive gravity

Although general relativity has successfully described physics
within the scale of the solar system, there are still many
unsolved puzzles when it is applied to a larger scale, such
as the inconsistencies with the observation of galactic rota-
tion curves and the accelerated expansion of the universe.
Consequently, unknown entities, namely “dark matter” and
“dark energy”, were introduced to explain these anomalies.
However, despite the great efforts of searching for dark matter
and dark energy candidates, their true identities still remain
unknown. Thus, one may wonder whether it is possible to
modify the theory of gravity to explain the physics at those
larger scales, while maintaining the known behaviors at the
scale of the solar system. In other words, a viable theory of
modified gravity should not only explain away dark matter

a e-mail: haoxu_phys@163.com (corresponding author)
b e-mail: ycong@yzu.edu.cn

and/or dark energy, it should also reduce to general relativity
in the regime that the latter is well-tested.

For example, one of the candidates of these modified grav-
ity theory is conformal (Weyl) gravity [1,2], which has been
shown to be perturbatively renormalizable in four dimen-
sions and can produce the effective potential consistent with
the observed phenomena [3–7]. However, conformal (Weyl)
gravity is described by a pure Weyl squared action and the
field equations are fourth-orders, so it will introduce a ghost,
leading to a violation of unitarity. Indeed, according to the
theorem of Ostrogradsky [8], such a system is not kinemati-
cally stable.

Another candidate of modified gravity theory is massive
gravity, which is an extension of general relativity by endow-
ing graviton with a nonzero mass [9–16]. According to the
representation theory of the Poincaré’s group in four dimen-
sions, any massive spin-2 state has 5 degrees of freedom,
which corresponds to the helicity 0,±1,±2 states. The cor-
rect massive gravity action should be able to describe these
states. The first attempt to derive such a theory was done in
1939 by Fierz and Pauli [9]. They added – the only ghost-free
and tachyon-free – interaction terms in the linearized level
of general relativity, that describe all the above five states.
However, their theory suffered from a discontinuity in its
predictions: in the massless limit the theory does not reduce
to general relativity. This is known as van Dam–Veltman–
Zakharov (vDVZ) discontinuity [10–12], the result of which
is that light deflection around the Sun is off by 25%.

The vDVZ discontinuity inspired further studies to gen-
eralize Fierz–Pauli massive gravity to nonlinear cases. Vain-
shtein argued that the linearized theory cannot be trusted
inside some characteristic length scale, now called the “Vain-
shtein radius”, and the troublesome longitudinal mode can be
suppressed at measurable distances by nonlinear effects, thus
making the theory compatible with current observations [13].
However, the same nonlinear terms that made the suppres-
sion works will also generate a higher derivative term in the
field equation. This, much like the conformal Weyl gravity
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mentioned in the beginning, could potentially lead to a ghost
instability in the theory. Such ghost does in fact arise – it is
known as Boulware–Deser (BD) ghost [14], which acts as the
6th degree of freedom in the theory. Though infinitely heavy
on the Minkowski background, it becomes sufficiently light
and propagates on locally nontrivial backgrounds.

The existence of BD ghost essentially killed off the idea of
massive gravity for many decades, until it was revived again
in recent years, by introducing even more nonlinear terms
to exorcise the BD ghost. It was later proved that the theory
is indeed ghost-free, and furthermore the field equation is
at most second order in time derivatives. This theory, which
was constructed by de Rham, Gabadadze, and Tolley (dRGT)
[15,16] (ghost-freeness was proved by Hassan and Rosen in
[17–19]), revived the interests in massive gravity. One neces-
sary feature of the theory is that, in order to describe gravity
as arising from gravitons, there is a need for a background
metric on which the gravitons propagate. This “fiducial” met-
ric is fixed and must be chosen by hand. A natural choice is of
course the Minkowski background, but one must remember
that for each choice of the fiducial metric one is essentially
dealing with a different theory, that is, ghost-freeness cannot
be guaranteed in general.

Although the nonlinear terms lead to complexity in the
calculations, the advantages of dRGT gravity on both theo-
retical and phenomenological fronts had encouraged a wide
range of investigations in the literature. It must be empha-
sized here, however, that dRGT gravity does suffer from other
problems, including violation of causality [20–24], and the
lack of stable FLRW solution when the background is chosen
to be Minkowski [25,26]. For this reason, many practitioners
have moved on to bimetric theory (Hassan–Rosen theory), a
generalization of massive gravity in which the background
metric has also becomes dynamical [27]. Bimetric theory
admits good cosmological solution [28] and its causal struc-
ture appears to be richer and more robust [29], though more
detailed studies are required to understand the mathematical
structures of this complicated theory. Nevertheless, massive
gravity is still being applied in the context of holography,
since the graviton mass breaks diffeomorphism invariance,
and therefore can be used to model dual field theory that lacks
translational invariance (on in which momentum can be dis-
sipated), without resorting to more complicated procedures,
such as introducing a lattice [30,31].

In the present work we investigate a class of (3 + 1)-
dimensional spherically symmetric evaporating black holes
of dRGT massive gravity in anti-de Sitter (AdS) spacetime.
Studies on black hole evaporation process have been a fruitful
arena for theoretical physics research since the discovery of
Hawking radiation. Initial investigations mainly focused on
black holes in asymptotically flat spacetimes, while those
of AdS spacetimes are largely overlooked. This is because
massive particles emitted from the black hole will always be

reflected back by the effective potential of AdS spacetime
and get re-absorbed by the black hole. Massless particles can
reach the boundary of AdS and get reflected back as well if we
impose the natural reflective boundary condition. Thus large
AdS black holes can reach thermal equilibrium with their
own Hawking radiation. However, if we choose an absorbing
AdS boundary condition (corresponding to coupling the field
theory at the boundary with another auxiliary system that
absorbs the radiation), the black hole would evaporate [32–
34], and some can even evaporate completely. In [35], Page
adopted the absorbing AdS boundary condition and applied
the geometrical optics approximation to study the spherically
symmetric AdS black hole in Einstein’s gravity. One finds
that the lifetime of an arbitrarily large black hole is bounded
by a time of the order �3, where � is the AdS curvature radius.
This is in stark contrast with the asymptotically flat case in
which black hole lifetime goes as M3, where M is the initial
mass of the black hole. Recent studies have also extended
this to more complicated asymptotically AdS black holes
[36–40].

In this work we shall study the Hawking evaporation of
the dRGT massive black hole solutions, with their thermo-
dynamical properties given in [41]. The graviton mass gen-
erates three terms in the black hole metric, which are, respec-
tively, an effective cosmological constant term, a linear term
(linear in coordinate radius), and a “global monopole” term.
In the massless limit the black hole solution reduces to the
asymptotically flat Schwarzschild case. The thermodynam-
ical properties are also modified, depending on the features
of these three terms. Unlike the Schwarzschild-AdS case,
where there is always a Hawking–Page phase transition and
the black hole can evaporate away in a finite time, the black
hole thermodynamics in dRGT massive gravity is quite rich.
For some values of the black hole parameters, there can
be more than one horizon, and the existence of black hole
remnant at late time [42]. Thus the evolution of black holes
under Hawking evaporation will also be different from the
Schwarzschild-AdS case. In fact, the effective emission sur-
face can be proportional to the square of the effective AdS
length scale, or to the square of the impact parameter cor-
responding to the photon orbit. It is also possible that one
emission surface changes to another one as the black hole
losses its mass. We remark that while such a black hole solu-
tion arises in massive gravity, they can also be solutions to
other modified theories of gravity. Thus, more generally, our
study applies to black hole solutions in which there is a com-
petition between a linear term and a cosmological constant
term, e.g. in f (R) gravity (for an example in which a linear
term appears in f (R) gravity black hole, see [43]).

In the next section we give a brief review of the black hole
solution and their interesting thermodynamics. In Sect. 3 we
investigate the black hole evaporation process. In the last
section we summarize the result. We adopt the Planck unit
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system, setting the speed of light in vacuum c, the gravita-
tional constant G, the Planck constant h̄ and the Boltzmann
constant kB all equal to unity.

2 Thermodynamics of dRGT massive gravity black
holes

In this section we give a brief review on a class of black hole
solutions in dRGT massive gravity and its thermodynamics
[41]. The action of dRGT massive gravity can be written as
Hilbert–Einstein action with suitable nonlinear interaction
terms given by

IdRGT = 1

16π

∫
d4x

√−g
[
R + m2U (g, φa)

]
, (1)

where R is the Ricci scalar and U is the effective poten-
tial of graviton with nonzero graviton mass m. There are two
things worth noting here. Firstly, despite appearance this the-
ory should not be viewed as a scalar-tensor theory. Here the
so-called “Stückelberg scalars” were introduced as a mean
to restore the general covariance of the theory [44,45]. Sec-
ondly, the cosmological constant is not introduced by hand in
the action. Instead, an effective cosmological constant term
in the metric emerged from the graviton mass, which is also
the original motivation of the massive gravity to explain
the accelerating Universe without resorting to dark energy
(though that has proved a lot more challenging in practice).
The effective potential U reads

U
(
g, φa) = U2 + α3U3 + α4U4, (2)

where α3 and α4 are dimensionless free coefficients, and

U2 = [K ]2 −
[
K 2

]
,

U3 = [K ]3 − 3 [K ]
[
K 2

]
+ 2

[
K 3

]
,

U4 = [K ]4 − 6
[
K 2

]
[K ]2 + 8

[
K 3

]
[K ] + 3

[
K 2

]2

−6
[
K 4

]
, (3)

where

K μ
ν = δμ

ν −
√
gμσ fab∂σ φa∂νφb. (4)

Here fab is the non-dynamical reference metric (“fiducial
metric”) and the rectangular bracket denotes the traces,
namely [K ] = K μ

μ and
[
K n

] = (K n)μμ. The φa’s are
the Stückelberg scalars. Following the convention of [41],
we express α3 and α4 as

α3 = α − 1

3
, α4 = β

4
+ 1 − α

12
, (5)

where α and β are two arbitrary constants.

Varying the action (1) we have the field equation of this
theory as

Gμν + m2χμν = 0, (6)

where Gμν is the usual Einstein tensor and the modification
term χμν reads

χμν = Kμν − K gμν − α

{
K 2

μν − K K μν + U2

2
gμν

}

+3β2
{
K 3

μν − K K 2
μν + Kμν

2
U2 − 1

6
gμνU3

}
.

Using the same choice for the nondynamical reference met-
ric1 as [30,47,48],

fab = diag(0, 0, c2, c2 sin2 θ), (7)

where c is a constant with dimension of length, we can obtain
the black hole metric as

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (8)

where

f (r) = 1 − 2M

r
+ r2

�2 + γ r + ε. (9)

Here M is an integration constant related to the black hole
mass, while �2, γ and ε, are defined by

�2 = 1

m2 (1 + α + β)
,

γ = −cm2 (1 + 2α + 3β) ,

ε = c2m2 (α + 3β) . (10)

These parameters play the roles of, respectively, the cosmo-
logical constant, linear term, and “global monopole” [41]. All
the above three terms are contributed by the graviton massm.
In the massless limit m → 0, the black hole solution reduces
to the Schwarzschild case in asymptotically flat spacetime.
This solution is similar with the result of [47], where the
cosmological constant is introduced by hand in the action,
while in our case the effective cosmological constant term is
emergent, as the result of the massive graviton.

For different choices of the parameters, the black hole
could have multiple horizons. Since we are considering the
asymptotically AdS case2, the black hole event horizon r+

1 The proof of ghost-freeness of dRGT theory [18,19] assumes that the
reference metric is invertible, so for a degenerate reference metric like
this, one has to establish ghost-freeness separately. This was done in
[46]. However, ghosts might still arise for some values of the black hole
parameters. We shall not deal with this subtle issue in our work.
2 Strictly speaking, due to the presence of the linear term, the asymptotic
is not strictly AdS. However since r2 term dominates over r in the
asymptotic region, for the sake of convenience we still loosely refer to
these spacetimes as asymptotically AdS, or asymptotically AdS-like.
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is defined as the largest root of f (r) = 0. We can write the
black hole mass as the function of r+. This gives

M = r+
2

(
1 + ε + r2+

�2 + γ r+

)
. (11)

The Hawking temperature is given by

T = 1

4πr+

(
1 + ε + 3r2+

�2 + 2γ r+

)
. (12)

The Bekenstein–Hawking entropy, which can be calculated
by using the first law of black hole thermodynamics dS =
dM/T , yields the standard area law S = πr2+.

3 Black hole evaporation in dRGT massive gravity

In the last section we have reviewed the black hole solu-
tion and thermodynamics of dRGT massive gravity. Now we
are ready to investigate the black hole evaporation process.
Because of the Hawking radiation, the black hole mass M
should be some monotonically-decreasing functions of time
t (we impose an absorbing boundary condition following
Page). Applying the geometrical optics approximation, we
assume all the emitted massless particles move along null
geodesics. If we orient the angular coordinate ϕ and normal-
ize the affine parameter λ, we have the geodesic equation of
the massless particles

(
dr

dλ

)2

= E2 − J 2 f (r)

r2 , (13)

where E = f (r) dt
dλ

is the energy and J = r2 dθ
dλ

is the angu-
lar momentum. Consider an emitted particle from the black
hole. If there is a turning point satisfying

( dr
dλ

)2 = 0, it will
turn back towards the black hole and thus cannot be detected
by an observer on the AdS boundary. Defining the impact
parameter as b ≡ J/E , the emitted particle can reach infin-
ity if

1

b2 >
f (r)

r2 , (14)

for all r > r+.
The impact factor bc can be defined by the maximal value

of f (r)/r2. Once we obtained bc, according to the Stefan–
Boltzmann law, the Hawking emission rate is

dM

dt
= −gCb2

c T
4, (15)

with the constant C = π3k4

15c3h̄3 . Since we are only con-
cerned about the qualitative features of the evaporation pro-

cess, without loss of generality, we will absorb this term
into the grey-body factor g [49], which we then set to be
unity: gC = 1. The Stefan–Boltzmann law implies that in
4-dimensional spacetime the emission power is proportional
to the 2-dimensional cross section b2

c and the photon energy
density T 4 in 3-dimensional space (spatial dimension only).
Since the T 4 term is of a higher order, the behavior of the tem-
perature T , especially its asymptotic behavior, is extremely
important in black hole evaporation process. Now we will
investigate the black hole evaporation for various features of
T and bc.

Solving the equation T (r+) = 0, we know there are two
roots, which read

r1 = �

3

(
−γ � +

√
γ 2�2 − 3ε − 3

)
(16)

and

r2 = �

3

(
−γ � −

√
γ 2�2 − 3ε − 3

)
. (17)

We also have ∂M
∂r+ (r+ = r1) = ∂M

∂r+ (r+ = r2) = 0.

Similarly, solving the equation ∂
∂r

f (r)
r2 = 0, we can also

find there are two roots

rp1 = −ε − 1 + √
6Mγ + ε2 + 2ε + 1

γ
, (18)

and

rp2 = −ε − 1 − √
6Mγ + ε2 + 2ε + 1

γ
. (19)

These correspond to the photon orbits. The maximal value
rp1 goes to 3M as ε → 0 and γ → 0. Furthermore, if we
compare the effective potential f (rp1)/r2

p1 at rp1 with the

result 1/�2 at infinity, we can define a critical mass

Mc = − (ε + 1)2

8γ
, (20)

such that for M > Mc we have 1
�2 >

f (rp1)

r2
p1

, while for M <

Mc we have f (rp1)

r2
p1

> 1
�2 .

Of course the values of r1, r2, Mc, and rp1, rp2 depend on
our choices of the coefficients, and they could be complex or
correspond to results which are unphysical (for example, if
there are two horizons, then like the more familiar Reissner-
Nordström case in general relativity, r is a timelike coordinate
in between the horizon, and rp can no longer be interpreted as
a photon orbit if it lies in said region). Now let us investigate
the different cases in details.

In the following plots, the values of the parameters are
chosen such that the interesting features can be nicely plotted.
Sometimes this results in values that are “too small”, e.g.
M < 1 is less than a Planck mass in our units, and there is no
reason to expect that black hole evaporation still obeys the
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usual Stefan–Boltzmann equation at the Planck scale. Our
choice is therefore for convenience only. The same features
are present also for reasonably larger values of the mass. In
fact, such a simple evaporation model utilizing geometric
optics approximation could break down much earlier before
Planck mass regime is reached. In this work, we are primarily
concerned with studying the difference between dRGT black
hole and that of the usual Schwarzschild and Schwarzschild-
AdS black hole of general relativity, assuming that the simple
model holds.

3.1 γ 2�2 < 3(ε + 1)

Let us first consider the case in which both r1 and r2 are
unreal3 roots. This demands γ 2�2 < 3(ε+1). In this case the
temperature never vanishes. The behavior of the temperature
T resembles the case of AdS-Schwarzschild with Hawking–
Page phase transition, and the black hole mass is a monotonic
function of r+. The coefficient γ can be positive or negative,
and the sign of γ does not affect the qualitative features of
M and T in this case. In Fig. 1 we present some examples.

However, the sign of γ affects the features of the effec-
tive potential f (r)

r2 . For the case of γ > 0, the effec-
tive potential admits its maximal value at r = rp1 =
−ε−1+

√
6Mγ+ε2+2ε+1

γ
, and the impact factor bc = rp1√

f (rp1)
.

There is no critical mass Mc. For the case of γ < 0, on the
other hand, rp1 and rp2 correspond to the maximal and min-
imal value of effective potential respectively4. For M > Mc,
the impact parameter is bc = �. For M < Mc, the impact
parameter becomes bc = rp1√

f (rp1)
. We present some exam-

ples of f (r)
r2 in Fig. 2.

Now we can investigate the black hole evaporation using
Stefan–Boltzmann law. By scaling analysis we know M ∼ l,
T ∼ l−1 and bc ∼ l, where l denotes some length. However,
note that the linear coefficient γ also scales as γ ∼ l−1.
Defining the dimensionless variables5 x ≡ r+/� and y ≡ γ �,
we can express M , T and rp1 as

M = M (x, y, ε)� = x

2

(
1 + ε + x2 + xy

)
�, (21)

T = T (x, y, ε)�−1 = 1

4πx

(
1+ε+3x2+2xy

)
�−1,

(22)

3 By unreal we mean it is an element of C\R.
4 At the minimum of the potential, the photon orbit is stable, which
indicates that the spacetime might be unstable (because backreaction of
massless particles accumulating on said orbit would modify the black
hole metric); see also [50]. However in this work we do not consider all
the various ways that the black holes might be unstable, and only focus
on the Hawking process.
5 Of course in our units everything is dimensionless. The point is the
quantities x and y are dimensionless in any unit one may choose.

rp1 = R(x, y, ε)�

=
(

−ε − 1+
√

3xy(1+ε+x2+xy)+(ε+1)2

)
1

y
�,

(23)

whereM (x, y, ε),T (x, y, ε),R(x, y, ε) are all dimension-
less functions. Inserting the above M and rp1 into bc =

rp1√
f (rp1)

, we find that the impact parameter bc can also be

written as

bc = B(x, y, ε)�

= R(x, y, ε)√
1 + ε − 2M (x,y,ε)

R(x,y,ε) + R2(x, y, ε) + R(x, y, ε)y
�.

(24)

In the case of γ > 0, the black hole impact factor is
bc = rp1√

f (rp1)
. Inserting equations (21), (22), and (24) into

the Stefan–Boltzmann law, we have

dt = −∂M (x, y, ε)

∂x

�3

B2(x, y, ε)T 4(x, y, ε)
dx . (25)

If we set y and ε to be constant, we can obtain the black hole
lifetime by integrating the above formula from ∞ to 0. This
integration turns out to be finite, and the black hole lifetime
is of the order �3.

For the case of γ < 0, there is a critical mass Mc. For
M > Mc the impact factor is bc = �, while for M < Mc it is
bc = rp1√

f (rp1)
. Solving the equation M = Mc we can obtain

the corresponding xc satisfying

M (xc, y, ε) = − (1 + ε)2

8y
, (26)

which depends on the values of y and ε. Once we set y and ε to
be constant, xc is also fixed. Applying the Stefan–Boltzmann
law, the lifetime of an arbitrarily large black hole reads

t = −
∫ ∞

xc

∂M (x, y, ε)

∂x

�3

T 4(x, y, ε)
dx

−
∫ xc

0

∂M (x, y, ε)

∂x

�3

B2(x, y, ε)T 4(x, y, ε)
dx . (27)

Thus we see that the black hole lifetime is still of the order
�3.

In Fig. 3 we present the evolution of the black hole for
γ 2�2 < 3(ε + 1). For the left figure we choose ε = 0,
y = γ � = 1, and for the right figure we choose ε = 0,
y = γ � = −1. In each figure from left to right the curves
correspond to � = 1, � = 2 and � = 3 respectively. We find
that the black hole lifetime is always finite, and it is of the
order �3.
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Fig. 1 Behavior of the black hole mass M and temperature T as function of the horizon radius r+ in case of γ 2�2 < 3(ε + 1). We set ε = 0,
� = 1. The solid and dashed curves correspond to γ = 1 and γ = −1 respectively

Fig. 2 Behavior of the effective potential f (r)/r2 as function of r in the case γ 2�2 < 3(ε + 1). In the left figure we set ε = 0, � = 1, γ = 1
and M = 1/5. In the right figure ε = 0, � = 1, γ = −1, while the upper and lower curves correspond to M = 1/10 < Mc and M = 1/5 > Mc,
respectively

3.2 γ 2�2 > 3(ε + 1), γ > 0, ε + 1 > 0

For the second case, we shall consider the situation that the
roots r1 and r2 are both real but negative. This demands
γ 2�2 > 3(ε + 1), γ > 0, ε + 1 > 0. For the physical
domain r+ > 0, the black hole mass is a monotonic func-
tion of r+. The Hawking temperature T again resembles the
case with Hawking–Page phase transition, which is similar
to the cases in Fig. 1. The effective potential admits a maxi-
mal value at rp1. We always have bc = rp1√

f (rp1)
. Again from

Stefan–Boltzmann law, we have

dt = −∂M (x, y, ε)

∂x

�3

B2(x, y, ε)T 4(x, y, ε)
dx . (28)

Setting y and ε to be constant and integrating the above for-
mula from ∞ to 0, we can also check that this integration is
finite and the black hole lifetime is again of the order �3. In
Fig. 4 we present some examples of the black hole evolution.
We set γ � = 2, ε = 0, and from left to right the curves
correspond to � = 1, � = 2 and � = 3 respectively.
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Fig. 3 The evolution of the black hole for γ 2�2 < 3(ε + 1). For the left figure we have ε = 0, y = γ � = 1. For the right figure we have ε = 0,
y = γ � = −1. In each figure from left to right the curves correspond to � = 1, � = 2 and � = 3 respectively

Fig. 4 The evolution of the black holes for γ 2�2 > 3(ε + 1), γ > 0,
ε + 1 > 0. We set γ � = 2, ε = 0. From left to right the curves
correspond to � = 1, � = 2 and � = 3 respectively

3.3 γ 2�2 > 3(ε + 1), ε + 1 < 0

For the third case, we consider the case that both the roots
r1 and r2 are real, but only the larger root r1 is positive.
This demands γ 2�2 > 3(ε + 1), ε + 1 < 0. This situation
is qualitatively different from the two cases we discussed
above. The temperature T and ∂M

∂r+ vanish at r+ = r1. Since
the mass M → 0 as r+ → 0, and M → ∞ as r+ → ∞,
the root r1 corresponds to a minimal value of M which is
negative. This is due to the global monopole term ε + 1 < 0
in our case, so the metric function is similar to the hyperbolic
Schwarschild-AdS black hole. We cannot yet conclude that
M < 0 is unphysical since the ground state may not be M =
0 (for the hyperbolic Schwarzschild-AdS case, see [51,52]
for further discussion). In Fig. 5 we present some examples
of the behavior of the black hole mass M and temperature T
as function of the horizon radius r+. The solid and dashed
curves correspond to γ = 1 and γ = −1 respectively. For
completeness, as well as to aid understanding, we present the
whole curves, but it should be emphasized that the region in

which T < 0 and ∂M
∂r+ < 0 need to be excluded as they are

not physical.
For different sign of γ the qualitative features of the effec-

tive potential are also different. See Fig. 6 for examples. For
γ > 0, we have bc = rp1√

f (rp1)
, while for γ < 0, we have

bc = �. For M < 0 the term f (r)
r2 admits a minimal value

inside the horizon, which is not of physical relevance. Again,
applying the Stefan–Boltzmann law, we have

dt = −∂M (x, y, ε)

∂x

�3

B2(x, y, ε)T 4(x, y, ε)
dx (29)

for γ > 0, and

dt = −∂M (x, y, ε)

∂x

�3

T 4(x, y, ε)
dx (30)

for γ < 0. However, in both cases we always have

T (x, y, ε) = 0 at x = r1
�

= 1
3

(
−y + √

y2 − 3ε − 3
)

,

so the integration from any initial x down to x = 1
3(

−y + √
y2 − 3ε − 3

)
is always divergent. The black hole

can lose away a huge amount of mass from arbitrarily large
initial mass to a finite mass within a finite time. However
the evaporation becomes increasingly difficult when it gets
near to the T = 0 state, as expected. The black hole effec-
tively becomes a remnant [53]. Note that this phenomenon
also obeys the third law of black hole thermodynamics (the
final asymptotic remnant state is an extremal black hole).

In Fig. 7 we present the examples of black hole evapora-
tion. We set ε = −2. For both cases of y = ±1 and various
choices of �, the black holes have infinite lifetime.

3.4 γ 2�2 > 3(ε + 1), ε + 1 > 0, γ < 0

For the last case, let us consider the case such that both r1 and
r2 are real and positive. This turned out to be the most com-
plicated case since we have discuss 3 different mass ranges.
In general the temperature behaves like the example in Fig. 8.
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Fig. 5 Behavior of the black hole mass M and temperature T as functions of the horizon radius r+. We set ε = −2, � = 1. The solid and dashed
curves correspond to γ = 1 and γ = −1 respectively. Negative temperature is unphysical, but negative mass is not necessarily unphysical.

Fig. 6 Behavior of the effective potential f (r)
r2 as function of r . In the left figure we set ε = −2, � = 1, γ = 1 and M = 1. In the right figure

ε = −2, � = 1, γ = −1, M = 1

Here we present the whole curve of the temperature T as the
function of r+ for clarity, but negative T is not physical. The
temperature T → ∞ as r+ → 0 and r+ → ∞, and T van-
ishes at r1 and r2. The exact values of ε and γ do not change
the qualitative features of T , but they affect the black hole
mass M . In the following we will consider the features of M
in three different ranges.

3.4.1 0 < M(r1) < Mc < M(r2)

Substituting r+ = r2 into M(r+) it is easy to verify that
M(r2) is always positive and larger than the critical mass

Mc. Firstly we consider the case for which Mc is larger that
M(r1), and M(r1) is positive. A positive M(r1) requires

− 2
√

ε + 1 < γ� < −√
3(ε + 1), (31)

and in order to have Mc > M(r1) we need

γ � < −3
√

6(ε + 1)

4
. (32)

Putting the above two conditions together we have

− 2
√

ε + 1 < γ� < −3
√

6(ε + 1)

4
. (33)
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Fig. 7 The evolution of the black hole for the case of γ 2�2 > 3(ε + 1), ε + 1 < 0. For the left figure we have ε = −2, y = γ � = 1. For the right
figure we have ε = −2, y = γ � = −1. In each figure from left to right the curves correspond to � = 1, � = 2 and � = 3 respectively

Fig. 8 Behavior of the temperature T as function of the horizon radius
r+ in γ 2�2 > 3(ε + 1), ε + 1 > 0, γ < 0. We set ε = 0, γ = −2,
� = 1

In Fig. 9 we present the behavior of M as the function of
r+. We set ε = 0, γ = −1.9, � = 1. In this situation 0 <

M(r1) < Mc < M(r2). There are two points worth noting
here. Firstly, for the case of M(r1) < M < M(r2), since
the black hole event horizon is defined as the largest root,
the region b-c-d should be excluded, thus the solution is
branched. One branch is from M → ∞ to point b, and the
other is from point d to M = 0. Secondly, for M(r1) < M <

Mc the term f (r)
r2 admits a maximal value that is larger than 1

�2 ,
but this value is inside the horizon radius r+, so it is not a part
of the effective potential and the impact factor is still bc = �.
See Fig. 10 for example. For 0 < M < M(r1) the maximal
value is outside of the horizon, so we have bc = rp1√

f (rp1)
.

In conclusion, the black hole solution is branched. One
is from M → ∞ to point b, and the impact factor bc = �.
One is from point d to M = 0, and the impact factor is

Fig. 9 Behavior of the black hole mass M as function of the horizon
radius r+ in −2

√
ε + 1 < γ� < −3

√
6(ε + 1)/4, ε+1 > 0, γ < 0. We

set ε = 0, γ = −1.9, and � = 1. We have 0 < M(r1) < Mc < M(r2)

bc = rp1√
f (rp1)

. We can study the black hole evaporation for

each branch. For the first branch the initial mass can be taken
to be arbitrarily large, while for the second branch, the initial
mass should be slightly smaller than the M(r1).

For the first branch we have

dt = −∂M (x, y, ε)

∂x

�3

T 4(x, y, ε)
dx . (34)

The finial state corresponds to T = 0 so the lifetime of the
black hole is always infinite. For the second branch we have

dt = −∂M (x, y, ε)

∂x

�3

B2(x, y, ε)T 4(x, y, ε)
dx . (35)

The initial x for the point d only depends on the value of ε

and y, thus for fixed ε and y the initial x is a constant. The
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Fig. 10 Behavior of f (r)
r2 as function of r for which −2

√
ε + 1 <

γ� < −3
√

6(ε + 1)/4, ε + 1 > 0, γ < 0. We set ε = 0, γ = −1.9,
� = 1, and M = Mc ≈ 0.0658. The dashed line corresponds to the
black hole horizon. One can check that the maximal value of f (r)/r2

is inside the black hole horizon

integration from the initial x at point d to 0 is finite, so the
lifetime of the black hole is in the order of �3.

In Fig. 11 we present some examples of the black hole
evaporation process for the two branches for fixed y = −1.9,
ε = 0, and � = 1, 2, 3. For the first branch the lifetime is
always infinite, while for the second branch the lifetime is of
the order �3.

3.4.2 0 < Mc < M(r1) < M(r2)

Secondly we consider the case of 0 < Mc < M(r1) <

M(r2). This requires

− 3
√

6(ε + 1)

4
< γ� < −√

3(ε + 1). (36)

In Fig. 12 we present the behavior of M as the function of
r+. We set ε = 0, γ = −1.8, � = 1 so we have 0 < Mc <

M(r1) < M(r2). Similarly the solution is also branched and
the region a-b-c should be excluded. For the branch from
M → ∞ to point a, the impact factor is bc = �. For the
branch from point c to M = 0, since the black hole only
admits one horizon, the impact factor is bc = rp1√

f (rp1)
as

M < Mc, while bc = � as Mc < M < M(r1).
In Fig. 13 we present some examples of the black hole

evaporation process for the two branches for fixed y = −1.8,
ε = 0, and � = 1, 2, 3. For the branch from M → ∞ to point
a, since the temperature at point a is always zero, the black
holes have infinite lifetime. For the branch from point c to
M = 0, we have

t = −
∫ x(c)

xc

∂M (x, y, ε)

∂x

�3

T 4(x, y, ε)
dx

−
∫ xc

0

∂M (x, y, ε)

∂x

�3

B2(x, y, ε)T 4(x, y, ε)
dx, (37)

where x(c) and xc denote the value of x ≡ r+/� at point c
and d respectively. For fixed y ≡ γ � and ε, both x(c) and xc
are constants, thus the integration on x is also a constant. The
lifetime is in order of �. In Fig. 13 we present some numerical
examples on both branches.

Fig. 11 The evolution of the black hole for the case satisfying
−2

√
ε + 1 < γ� < −3

√
6(ε + 1)/4, ε + 1 > 0, γ < 0. We set

ε = 0, γ � = −1.9. For the left figure we consider arbitrarily large
black hole evaporation (from M → ∞ down to point b in Fig. 9). For

the right figure we consider the black hole evaporation from point d to
M = 0. In each figure from left to right the curves correspond to � = 1,
� = 2 and � = 3 respectively
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Fig. 12 Behavior of the black hole mass M as function of the horizon
radius r+ in −3

√
6(ε + 1)/4 < γ� < −√

3(ε + 1), ε + 1 > 0, γ < 0.
We set ε = 0, γ = −1.8, and � = 1. We have 0 < Mc < M(r1) <

M(r2)

3.4.3 M(r1) < 0 < Mc < M(r2)

Lastly, we consider the case of M(r1) < 0 < Mc < M(r2).
The critical mass Mc is always positive and smaller than
M(r2), so we only need to consider the condition M(r1) < 0,
which is γ � < −2

√
ε + 1. In Fig. 14 we present the example

of M as function of r+. We set γ = −3, ε = 0, � = 1. Since
the black hole radius is defined as the largest root, we know
in this case the black hole has only one branch, which is from
M → ∞ to M(r1). The critical mass Mc is located between
M = 0 and M(r2). As we have explained before, for cases
with three roots, the maximal value of f (r)

r2 is inside of the

Fig. 14 Behavior of the black hole mass M as function of the horizon
radius r+ in γ � < −2

√
ε + 1. We set ε = 0, γ = −3, and � = 1. We

have M(r1) < 0 < Mc < M(r2)

horizon, thus it is not part of the effective potential and the
impact factor is still bc = �.

In Fig. 15 we present some examples of black hole evap-
oration in ε = 0, γ � = −3 and various �. There is only one
branch and the final state M(r1) corresponds to T = 0, so
the black hole lifetime is always infinite, satisfying the third
law of black hole thermodynamics.

Fig. 13 The evolution of the black hole for the case of − 3
√

6(ε+1)
4 <

γ� < −√
3(ε + 1), ε + 1 > 0, γ < 0. We set ε = 0, γ � = −1.8. For

the left figure we consider the arbitrarily large black hole evaporation

(M → ∞ to point a in Fig. 12). For the right figure we consider the
black hole evaporation from point c to M = 0. In each figure from left
to right the curves correspond to � = 1, � = 2 and � = 3, respectively
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Fig. 15 The evolution of the black hole for the case of γ � <

−2
√

ε + 1, ε + 1 > 0, γ < 0. We set ε = 0, γ � = −3. From left
to right the curves correspond to � = 1, � = 2 and � = 3, respectively

4 Conclusion

Massive gravity is an extension of general relativity by a non-
zero graviton mass term. For years it suffers from the vDVZ
discontinuity and BD ghost, but a new model, known as the
dRGT massive gravity, revived the interests in massive grav-
ity. By choosing the coefficients of the effective field theory
order by order, dRGT massive gravity leads to the resumma-
tion of the entire infinite series of the terms in the effective
Lagrangian, and the field equation is at most second order
in time derivatives. Such ghost-free theory still appears to be
somewhat problematic, however it is useful as an effective
field theory in holographic applications to allow momentum
dissipation in the dual field theory. In view of holography,
black hole solutions in dRGT gravity deserve further inves-
tigation.

In the present work we investigate a class of (3 + 1)-
dimensional spherically symmetric evaporating black holes
of dRGT massive gravity in AdS spacetime. The graviton
mass term generates three terms in the black hole metric,
which are, an effective cosmological constant term r2/�2, a
linear term γ r , and a global monopole term ε. These terms
modify the thermodynamical properties of general relativity
black hole. Unlike the well-known Schwarzschild-AdS case,
the black hole thermodynamics in dRGT massive gravity is
quite rich. There are cases with more than one horizon, as
well as existence of effective black hole remnant. Applying
the geometrical optics approximation and an absorbing AdS
boundary condition, we can study the black hole evaporation
by Stefan–Boltzmann law (15). The effective emission sur-
face can be proportional to the square of the effective AdS
length, or the square of the impact parameter corresponding
to the photon orbit. For certain cases it is also possible that
one emission surface changes to another one as the black
hole losses its mass. Since the T 4 term is of a higher order,
the behavior of the temperature T , especially the asymptotic

Fig. 16 The parameter region in (γ �, ε + 1) plane. The solid curve
γ 2�2 = 3(ε + 1) and the axis γ � separate the region into four parts,
which correspond the cases in Sects. 3.1–3.4. The dotted and dashed

curves, respectively, are γ � = − 3
√

6(ε+1)
4 and γ � = −2

√
ε + 1 that

separate Region 3.4 into three parts that correspond to the different
features of M in Sect. 3.4. Specifically, the portion between horizontal
axis and the dashed curve corresponds to Sect. 3.4.3, the portion between
the dashed curve and the dotted curve corresponds to Sect. 3.4.1, and
the portion between the dotted curve and the solid curve is discussed in
Sect. 3.4.2

behavior, is very important in the process of black hole evap-
oration.

We consider different cases of black hole evaporation,
which we now summarized. Depending on the features of
zero points of T , we can divide the parameter region into four
parts in (γ �, ε + 1) plane by the solid line γ 2�2 = 3(ε + 1)

and the axis γ � in Fig. 16. When the zero points of T are both
unreal or negative (Region 3.1 and 3.2), setting γ � = const,
the lifetime of arbitrarily large black hole is in the order of �3.
When the temperature admits only one positive root (Region
3.3), the lifetime of the black hole is infinite, and the black
hole effectively becomes an effective remnant near the T = 0
state, which is in accordance to the third law of black hole
thermodynamics. For the cases of two positive zero points T
(Region 3.4), the black hole evaporation process also depends
on the features of M . The black hole solution can be branched
(region between the dashed line γ � = −2

√
ε + 1 and solid

line γ � = −√
3(ε + 1)), with one branch admitting infinite

lifetime while the other is of order �3. Alternatively, there
could also be only one single branch (region between the
dashed line γ � = −2

√
ε + 1 and axis γ �) and the black

hole lifetime is always infinite in that case.
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Of course we can also consider the cases of ε+1 = 0 and
γ 2�2 = 3(ε + 1). For ε + 1 = 0 (that is, on the horizontal
axis of Fig. 16), we have the temperature

T = 1

4π

(
3r+
�2 + 2γ

)
, (38)

which admits one zero point at r+ = − 2
3γ �2. For γ � 0 the

final state corresponds to a remnant, thus the lifetime of black
holes is infinite. For γ > 0 the lifetime is also in the order of
�3 as γ � =const. Note that for � → ∞ we have a peculiar
feature in which the black hole has a constant temperature.
The lifetime of this black hole is infinite as shown in [54] – it is
an example of the “complementary third law”, in which under
some reasonable assumptions, it was proved therein that if
towards the end the temperature is finite and nonzero yet the
black hole goes to zero size, then such a state is unattainable
in finite time. This is consistent with the result here since this
amounts to a lifetime of �3, which of course tends to infinity.

In the case of γ 2�2 = 3(ε +1), we have r1 = r2 = − γ �2

3 .
For γ > 0 the lifetime is of the order �3, while for γ < 0 the
solution is branched and we have the point a and b coincide in
Fig. 12. One branch admits infinite lifetime while the other
is of order �3. Similarly if we consider the cases of γ � =
−3

√
6(ε + 1)/4 and γ � = −2

√
ε + 1, we will find that they

correspond to Mc = M(r1) and M(r1) = 0, respectively.
The qualitative features of the black hole evaporation stay
the same.

This also means that the discussion in [42] is too simplis-
tic. In that work, it was argued that if our universe is fun-
damentally anti-de Sitter-like with a transient accelerating
phase, then massive gravity could result in black hole rem-
nants that could in turn ameliorate the information paradox
(and possibly also provide an explanation for dark matter).
From the discussions in this work, we now know that the
various parameters have to be chosen with care in order for
this to happen.
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