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Abstract We study the scattering of low-energy massless
and massive minimally coupled scalar fields by an asymptot-
ically flat traversable wormhole. We provide a comprehen-
sive treatment of this problem offering analytic expressions
for the transmission and reflection amplitudes of the corre-
sponding effective potential and the absorption cross section
of the wormhole. Our results, which are based on a recently
developed dynamical formulation of time-independent scat-
tering theory, apply to a large class of wormhole spacetimes
including a wormhole with a sharp transition, the Ellis worm-
hole, and a family of its generalizations.

1 Introduction

Wormholes have been a focus of attention for several
decades. Since the pioneering work of Einstein and Rosen
[1], their study was mainly directed at addressing two basic
questions: How can a traversable wormhole be constructed,
and how can such a wormhole be probed? Refs. [2–8] study
the existence of stable traversable wormholes in general rela-
tivity. Under the assumption that our universe is a four dimen-
sional asymptotically flat spacetime, they provide arguments
against their natural existence. These do not however exclude
the possibility of their occurrence in other theories of grav-
ity [9–17]. Nor do they exhaust the possibility of the presence
of wormholes with a sophisticated structure as proposed in
Refs. [18–20].

A physically more relevant task is to seek for the con-
sequences of the existence of wormholes and to devise
appropriate means for their detection. Refs. [21,22] suggest
using the gravitational lensing effects for probing wormholes,
while Refs. [23–26] study the effects of the gravitational pull
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of the objects residing in the vicinity of one of the mouths of
a wormhole on the trajectory of objects hovering around the
other mouth. These studies together with the spectroscopic
techniques [27] should, in principle, offer useful methods to
decide whether a given celestial body is a traversable worm-
hole [28].

The study of the effects of a background wormhole geom-
etry on the propagation of waves offer alternative means for
probing wormholes [29–33]. Pursuing this line of research,
the authors of Ref. [34] have conducted a numerical study of
the process of the transmission of a pulse through a wormhole
and its back-reaction to the wormhole geometry. Ref. [35],
uses the WKB formula for finding the quasinormal modes
of a wormhole spacetime and the corresponding S-matrix.
Ref. [36] shows that the WKB approximation can be used
to compute the shape function of a spherically symmetric
traversable wormhole near its throat from its high-frequency
quasinormal modes.

The recent construction of a class of wormholes in four-
dimensional asymptotically flat spacetimes, which are suffi-
ciently stable to be considered traversable [37,38], has pro-
vided added incentive for the study of wormholes. These
wormholes are nevertheless very fragile and can only be
probed using very low-energy waves. This provides our basic
motivation for the present investigation.

The scattering problem for scalar and electromagnetic
waves propagating in a background wormhole spacetime has
been perviously considered for specific cases in Refs. [29–
31]. Ref. [29] considers a scattering set-up where both the
source of the incident waves and the detector reside in one
of the two universes connected by the wormhole while the
Dirichlet boundary condition imposed at the wormhole’s
throat prohibits the transmission of the wave to the other
universe. The authors of Refs. [30,31] do not impose such
a boundary condition, but for technical reasons their results
apply to a specific class of wormholes and a discrete set of
energies of the incident wave that makes a detailed study of
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Fig. 1 Schematic
demonstration of a wormhole
with sharp transition (on the
left) and the Ellis wormhole (on
the right)

the transmission of low-energy waves through the wormhole
intractable.

Another problem of direct relevance to the study of the
scattering of waves by a wormhole is that of the determi-
nation of its absorption cross section. Ref. [39] addresses
this problem for massless scalar waves propagating in a fam-
ily of spacetimes that interpolate between a Schwarzschild
blackhole and a particular wormhole. The numerical results
reported in Refs. [39] show that, similarly to the case of
a Schwarzschild blackhole [40], as the energy of the inci-
dent wave approaches zero, the absorption cross section of
the wormhole tends to a positive value. The behavior of
the absorption cross section of more general blackholes for
low-energy massless scalar fields has been investigated in
Refs. [41–43].

In contrast to earlier investigations of the scattering prob-
lem for waves in a wormhole background, in the present
article we offer a comprehensive analytic treatment of the
low-energy scattering of massless as well as massive scalar
waves propagating in a large class of wormhole spacetimes.
Our basic tool is a recently developed dynamical formula-
tion of time-independent scattering theory in one dimension
[44,45] which provides a practical prescription for comput-
ing the reflection and transmission amplitudes to the leading
and next-to-leading order terms in powers of the wavenumber
[46].

2 Scalar fields in a wormhole spacetime

Consider a pair of Minkowski spacetimes M±, and choose a
common time variable t and spherical coordinates (r±, ϑ, ϕ)

to parameterize the spatial slices �±
t of M± corresponding

to t = constant. Let x := ±r±. Then (x, ϑ, ϕ) with x ∈ R

mark the points of the disjoint union of �−
t and �+

t with
their origins identified. This shows that the Minkowski line
element,

ds2 = −dt2 + dx2 + x2d�2, (1)

with d�2 := dϑ2 + sin2 ϑdϕ2, and the radial coordinate x
taking both negative and positive values describes a space-
time M consisting of a pair of Minkowski spacetimes, namely
M±, that are glued together along their t-axes (r± = 0).

Roughly speaking M corresponds to a static wormhole
with a sharp transition [8], if we replace the t-axes along
which M± are glued in the above construction with the cylin-
ders C± = ∪t∈R({t} × B±

t ) having spatial slices B±
t :={

(r±, ϑ, ϕ) ∈ �±
t | r± ≤ r0

}
, for some r0 ∈ R

+. The exte-
rior of the wormhole is the disjoint union of the flat space-
times obtained by removing C± from M±. Its points are
parameterized by the coordinates (t, x, ϑ, ϕ) with |x | > r0.
The interior of the wormhole is parameterized by the same
coordinates with |x | < r0. The interior and exterior of the
wormhole are then glued along their boundaries x = ±r0.
See Fig. 1. The more realistic variant of this construction,
which would correspond to its r0 → ∞ limit, is the one in
which M± are asymptotically flat spacetimes and the role of
B±
t is played by their suitable deformations such that M is

a smooth manifold. A typical example is the Ellis wormhole
[47] which is also depicted in Fig. 1.

In general a static wormhole can be more precisely
described by a line element of the form,

ds2 = −p(r)2dt2 + q(r)2dr2 + r2d�2, (2)

where r is a radial spherical coordinate, and p and q are real-
valued functions [48]. We demand that the latter take strictly
positive values, so that the wormhole does not have an event
horizon. Let us perform a coordinate transformation, r → x ,
where x takes values in the whole real line and satisfies

dx = q(r)dr. (3)

Then (2) reads

ds2 = −p(r)2dt2 + dx2 + r2d�2. (4)

In terms of x , the exterior of the wormhole correspond to
|x | > x0, where x0 fulfills r(x0) = r0. We can view the
latter as an initial condition for the differential equation (3).
Therefore, (x0, r0) are the numerical data determining the
wormhole for given functions p and q. For example, setting

p(r) = 1, r(x) =
√
x2 + r2

0 , (5)
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in (4), we arrive at the line element for the Ellis wormhole
[47], while

p(r) = 1, r(x) =
{
r0 for |x | ≤ x0,

|x | − x0 + r0 for |x | > x0,
(6)

correspond to a wormhole with a sharp transition [8]. Note
that the choice x0 = r0 = 0 in (6) reduces (4) to the line
element of the degenerate wormhole (1).

Now, consider a minimally coupled complex scalar field
� of mass m. By definition, it satisfies

(−g)−
1
2 ∂μ

[
(−g)

1
2 gμν∂ν�

]
− m2� = 0, (7)

where gμν are local components of the metric tensor asso-
ciated with the line element (4), gμν are the entries of the
inverse of the matrix g := [gμν], and g := det g.

Because the wormhole spacetime is asymptotically flat,
for |x | → ∞ the solutions of the field equation (7) tend
to those of a free Klein–Gordon equation propagating in a
Minkowski spacetime. This shows that (7) admits asymptot-
ically plane-wave solutions that we can employ to define a
proper scattering problem. As a first step towards addressing
this problem, we use the t-independence and spherical sym-
metry of the metric to construct time-harmonic solutions of
(7) that have the following form.

�(t, x, ϑ, ϕ) = e−iωt eu(x)Ym
l (ϑ, ϕ)ψ(x) (8)

where ω is a positive real parameter,

u(x) := −1

2
ln
[
r2 p(r)

] ∣∣∣
r=r(x)

, (9)

Ym
l are the spherical harmonics, l ∈ {0, 1, 2, . . .}, m ∈

{0,±1,±2, . . . ,±l}, and ψ is a complex-valued function.
Substituting (8) in (7), we can identify the latter with a solu-
tion of the time-independent Schrödinger equation,

−ψ ′′(x) + v(x)ψ(x) = k2ψ(x), (10)

where a prime stands for derivation with respect to x , k :=√
ω2 − m2, and

v(x) :=
{
l(l+1)

r2 +u′(x)2−u′′(x)+(k2+m2)

[
1− 1

p(r)2

]}∣∣∣∣
r=r(x)

.

(11)

This argument reduces the scattering problem defined by the
field equation (7) to a problem of potential scattering in non-
relativisitic quantum mechanics.

If p(r) = 1, (11) takes the following simple form.

v(x) = l(l + 1)

r(x)2 + r ′′(x)
r(x)

. (12)

For the Ellis wormhole r(x) is given by (5), and (12) yields

v(x) = vE(x) := l(l + 1)

x2 + r2
0

+ r2
0

(x2 + r2
0 )2

. (13)

For a wormhole with a sharp transition, we can use (6) to
show that

r(x) := r0 + (|x | − x0) θ(|x | − x0)

= r0 + (x − x0) θ(x) θ(x − x0)

−(x + x0) θ(−x) θ(−x − x0), (14)

where θ(x) stands for the Heaviside step function. Substitut-
ing this equation in (12), we find the following expression for
the scattering potential associated with the sharp-transition
wormhole.

v(x) = vS.T.(x) := l(l + 1)w(x)

r2
0

+ 1

r0
[δ(x + x0) + δ(x − x0)] , (15)

where

w(x) :=
⎧
⎨

⎩

1 for |x | ≤ x0,

r2
0

(|x | − x0 + r0)2 for |x | > x0.

Figure 2 shows the plots of these potentials for r0 = x0 = 1,
l = 0 and l = 1.

In general, for x → ±∞, r → |x | and p(r) → 1. In view
of (9) this implies that the potentials (11) and (12) have iden-
tical asymptotic behavior. The first term on the right-hand
side of (12) is a short range potential.1 The same holds for
the second term provided that there is a positive real number
α such that

lim
x→±∞ xαr ′′(x) = 0. (16)

If this condition holds, (11) is a short-range potential and
we can employ the standard tools of potential scattering for
short-range potentials [49] to address the scattering problem
for the scalar fields by the wormhole.

We close this section by the following remarks.

1 A potential is said to be a short-range potential provided that, for
|x | → ∞, it decays to zero faster than a constant multiple of 1/|x |.
This is certainly the case for the potentials (13) and (15).
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Fig. 2 Plots of the potentials
(13) for the Ellis wormhole
(dashed red curve) and (15) for a
wormhole with sharp transition
(solid blue curve) with
r0 = x0 = 1 and l = 0 (on the
left) and l = 1 (on the right).
The vertical lines represent the
delta-functions appearing in (15)

1. For l = 0, vS.T. coincides with the double-delta function
potential,

vS.T.(x) = 1

r0
[δ(x + x0) + δ(x − x0)] , (17)

whose scattering properties are quite well-known [50–
55].

2. For l > 0, we can identify the term l(l + 1)/r(x)2 in
the potentials (11) and (12) with a barrier potential whose
hight is proportional to l(l + 1). As a low-energy wave
passes through such a barrier, it is exponentially attenu-
ated. Therefore, the contribution of this term to the trans-
mission coefficient of the potentials (11) and (12) is negli-
gibly small. In other words, for low-energy incident waves
only their s-wave component contributes to the trans-
mission through the wormhole. Because the traversable
wormholes of our interest are fragile, they can serve as the
background spacetime only for the low-energy waves. The
above argument shows that if the source of such a low-
energy incident wave is located in one of the universes
connected through the wormhole, the non-spherical com-
ponent of the wave gets filtered by the wormhole as it
passes through its throat, and the transmitted wave that
reaches an observer O− residing in the other universe will
be spherical; such a wormhole will then appear to O− as
a source of low-energy s-waves. An observer O+ residing
in the same universe as the source of the incident wave
will see part of the spherical component of this wave gets
absorbed. The details of the frequency-dependence of the
corresponding absorption cross section can then provide
crucial information for O+ to decide if the source of the
absorption is a wormhole or some other celestial body
such as a blackhole.

3. In view of the preceding remark, the transmission of low-
energy waves through a wormhole with p(r) = 1 is gov-
erned by the potential,

v(x) := r ′′(x)
r(x)

. (18)

Because the wormhole is asymptotically flat, we demand
that r(x) admits the asymptotic expression,

r(x) = ±x + c± + f±(x−1)

xε
as x → ±∞, (19)

where c± and ε are real constants, ε > 0, and f ± : R →
R are functions that are analytic at 0. Using (19), we can
easily verify that r ′′(x) satisfies (16) for α = 2, and (18)
defines a short-range potential belonging to the function
space L1

2(R), where L1
σ (R) with σ ∈ R stands for the

space of functions ξ : R → C fulfilling
∫∞
−∞ dx (1 +

|x |σ )|ξ(x)| < ∞.
4. For the cases where p(x) 	= 1, (11) is an energy-

dependent potential. In this sense, it is analogous to the
optical potentials one encounters in the study of the prop-
agation of light in effectively one-dimensional dielectric
media. This in turn suggests the possibility of realizing
optical analogs of wormhole scattering.

3 Potential scattering and its dynamical formulation

The solutions of the Schrödinger equation (10) for a short-
range potential v(x) and k ∈ R

+ have plane-wave asymp-
totics, i.e., there are possibly k-dependent complex coeffi-
cients A± and B± such that

ψ(x) → A± eikx + B± e−ikx for x → ±∞. (20)

The transfer matrix for such a potential is the k-dependent
2 × 2 matrix M that relates A± and B± according to

[
A+
B+

]
= M

[
A−
B−

]
. (21)

This relation determinesM in a unique manner, if we demand
that it is independent of A− and B−, [56].

Among the solutions of the Schrödinger equation (10)
there are the so-called scattering or Jost solutions ψl/r that,
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by definition, satisfy

ψl(x) →
{
eikx + Rle−ikx for x → −∞,

T eikx for x → ∞,

ψr (x) →
{
T e−ikx for x → −∞,

e−ikx + Rreikx for x → ∞,

(22)

where Rl/r andT are the left/right reflection and transmission
amplitudes of the potential. In view of (20)–(22), we can
express them in terms of the entries Mi j of M;

Rl = −M21

M22
, Rr = M12

M22
, T = 1

M22
. (23)

These in turn imply

M = 1

T

[
T 2 − Rl Rr Rr

−Rl 1

]
. (24)

The solution of the scattering problem for a short-range
potential v(x) means the determination of its reflection and
transmission amplitudes. According to (24), this is equivalent
to finding the transfer matrix of the potential.

The transfer matrix has been used as an effective tool for
the study of wave propagation in multilayer media since the
1940’s [57–60]. This is mainly because of its composition
property which allows for expressing the transfer matrix of
such a medium as the product of the transfer matrices for
its layers. In terms of the scattering potential v(x) modeling
the medium, this means that if we dissect R into N intervals
(ai−1, ai ), with i ∈ {1, 2, . . . , N } and

−∞ =: a0 < a1 < a2 < · · · < aN−1 < aN := ∞,

and let Mi be the transfer matrix for the truncated potential,

vi (x) :=
{

v(x) for x ∈ (ai−1, ai ),
0 for x /∈ (ai−1, ai ),

then the transfer matrix of v(x) is given by [55]

M = MNMN−1 . . .M1. (25)

Refs. [44,45] offer a straightforward derivation of this rela-
tion which is based on a curious identification of the transfer
matrix with the S-matrix of an effective non-unitary two-level
quantum system.

Consider a two-level system whose dynamics is deter-
mined by the time-dependent Schrödinger equation, i∂x�(x)
= H(x)�(x), where x plays the role of time, H(x) is the
interaction-picture Hamiltonian given by,

H(x) := v(x)

2k

[
1 e−2ikx

−e2ikx −1

]
, (26)

and v(x) is a given short-range scattering potential. Let
U(x, x0) denote the evolution operator defined by

i∂xU(x, x0) = H(x)U(x, x0), U(x0, x0) = I, (27)

where x0 is an initial value of x , and I is the 2 × 2 identity
matrix. We can express U(x, x0) as the time-ordered expo-

nential, U(x, x0) = T exp
{
−i

∫ x
x0
dx ′ H(x ′)

}
, where T is

the time-ordering operator. Ref. [44] shows that

M = U(∞,−∞) = T exp

{
−i

∫ ∞

−∞
dx H(x)

}
(28)

= I +
∞∑

�=1

(−i)�
∫ ∞

−∞
dx�

∫ x�

−∞
dx�−1 . . .

×
∫ x2

−∞
dx1H(x�)H(x�−1) . . .H(x1). (29)

This result has found interesting applications in addressing
a number of basic problems of scattering theory [61–69].

A simple application of (29) is in treating delta-function
potentials,

va(x) := z δ(x − a), (30)

where a ∈ R is arbitrary. To see this first we express (26) in
the form,

H(x) := v(x)

2k
e−ikxσ 3K eikxσ 3, (31)

where σ j with j ∈ {1, 2, 3} are Pauli matrices, and K :=
σ 3 + iσ 2. We then substitute (30) in (31) and use the identity,
K2 = 0, to establish,

H(x1) := z

2k
e−ikaσ 3K eikaσ 3δ(x1 − a),

H(x2)H(x1) = 0, (32)

where x1, x2 ∈ R are arbitrary and 0 labels the 2 × 2 null
matrix. In view of the second equation in (32), the Dyson
series in (29) truncates, and we obtain the following formula
for the transfer matrix of the delta-function potential va .

M = Ma := I − iz

2k
e−ikaσ 3K eikaσ 3

= 1

2k

[
2k − iz −ize−2ika

ize2ika 2k + iz

]
. (33)

4 Scattering by a wormhole with sharp transition

For a wormhole with a sharp transition, p(r) = 1, and the
separable solutions (8) of the field equation (7) take the form,
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�(t, x, ϑ, ϕ) = e−iωt Ym
l (ϑ, ϕ)

ψ(x)

r(x)
, (34)

where r(x) is given by (6) and ψ(x) is a solution of the
Schrödinger equation (10) for the potential (15). This equa-
tion admits exact scattering solutions in terms of the spher-
ical Hankel functions. Therefore, the scattering problem for
this wormhole is exactly solvable for all angular momen-
tum quantum numbers l. Because the formulas for the reflec-
tion and transmission amplitudes are rather complicated and
we are mainly interested in low-energy waves that can pass
through the wormhole, here we confine our attention to the
s-waves, i.e., l = 0. We present the results for general l in
“Appendix A”.

As we noted above, for l = 0, (15) reduces to the double-
delta-function potential (17). We can easily compute the
transfer matrix of this potential using the formula (33) for
the transfer matrix of the single-delta-function potential (30)
and the composition rule (25). This yields

M = Mx0M−x0

=

⎡

⎢⎢
⎣

1 − i
K

{
1 + e−2i x̂0K sin(2x̂0K)

2K

}
− i

K

{
cos(2x̂0K) + sin(2x̂0K)

2K

}

i
K

{
cos(2x̂0K) + sin(2x̂0K)

2K

}
1 + i

K

{
1 + e2i x̂0K sin(2x̂0K)

2K

}

⎤

⎥⎥
⎦ ,

(35)

where M±x0 stands for Ma of Eq. (33) with a = ±x0 and
z = r−1

0 , and we have introduced

K := kr0, x̂0 := x0

r0
.

Expanding the right-hand side of (35) in powers of K, we
find

M = − i(1 + x̂0)

K
K + (1 − 2x̂2

0 )I

+2

3
x̂2

0 K [4i x̂0 σ 3 − (̂x0 + 3)σ 2] + O(K2), (36)

where O(Kn) stands for terms of order n and higher in powers
of K.

In view of (23), (35), and (36), we find the following
expression for the reflection and transmission amplitudes of
the sharp-transition wormhole for s-waves.

Rl = Rr = −i[cos(2x̂0K) + sin(2x̂0K)/2K]
K + i[1 + e2i x̂0K sin(2x̂0K)/2K]

= −1 + i
(
2x̂2

0 − 1
)
K

x̂0 + 1
+ O(K2), (37)

T = K

K + i[1 + e2i x̂0K sin(2x̂0K)/2K]
= − iK

x̂0 + 1
−

(
2x̂2

0 − 1
)
K2

(̂x0 + 1)2 + O(K3). (38)

In “Appendix A”, we give the generalization of these equa-
tions for the scalar waves with arbitrary l. For K 
 1, the
leading order contribution to T turns out to be proportional
to K2l+1. This confirms our expectation that the transmission
coefficient |T |2 for low-energy waves with l > 0 is much
smaller than the one for l = 0. Figure 3 provides a graphical
demonstration of the behavior of |T |2 for different values of
x̂0 and l.

5 Low-energy scattering by a wormhole with p(r) = 1

For p(r) = 1, Eq. (4) corresponds to a class of ultra-
static wormholes that includes the Ellis wormhole [70,71].
For this class of wormholes Eq. (34) still holds, but we
do not have access to the exact scattering solutions of the
Schrödinger equation (10). We can still use the general results
on low-energy potential scattering to determine the structure
of the reflection and transmission amplitudes for small val-
ues of the wavenumber k. These results which have been
obtained within the framework of mathematical scattering
theory apply to specific classes of potentials. For example,
Refs. [72,73] report the basic results on low-energy scatter-
ing for potentials belonging to L1

σ (R) with 1 ≤ σ ≤ 2. As
we noted in Sect. 2, for the class of wormholes with p(r) = 1
and r(x) having the asymptotic form (19), the problem of the
transmission of low-energy scalar waves is described by the
potential (18) which belongs to L1

2(R). Therefore, we can
benefit from the results reported in [72,73]. Recently, two of
us have obtained an alternative prescription for determining
the low-energy scattering properties of this class of poten-
tials [46]. In the following, we describe this prescription and
discuss its application for the scattering of low-energy scalar
waves passing through a wormhole with p(r) = 1.

5.1 Transfer matrix at low energies

The transfer matrix M for a scattering potential v(x) belong-
ing to L1

2(R) admits a series expansion of the form,

M = 1

k
m(−1) + m(0) + o(k0), (39)

where m(n) are k-independent matrices and o(kα) stands for
a function of k such that o(kα)/kα → 0 as k → 0. A key
observation made in Ref. [46] is that the evolution operator
U(x, x0), which gives M via (28), satisfies

U(x,−∞) = − i

2k
φ′

1(x)K + 1

2

{[φ1(x) − xφ′
1(x)](I + σ 1)

+φ′
2(x)(I − σ 1)

} + o(k0), (40)
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Fig. 3 Graphs of the transmission coefficient |T |2 as a function of kr0
for a sharp-transition wormhole with l = 0 and x0 = r0 (thick solid
blue curve), x0 = r0/2 (dashed red curve), and x0 = 2r0 (thin solid

green curve) on the left, and x0 = r0 and l = 0 (thick solid blue curve),
l = 1 (dashed red curve), and l = 2 (thin solid green curve) on the right

where φ1, φ2 : R → C solve the zero-energy Schrödinger
equation,

−φ′′(x) + v(x)φ(x) = 0. (41)

Demanding that U(−∞,−∞) = I, we find

lim
x→−∞[φ1(x) − xφ′

1(x)] = 1, lim
x→−∞ φ′

1(x) = 0,

lim
x→−∞[φ2(x) − xφ′

2(x)] = 0, lim
x→−∞ φ′

2(x) = 1.
(42)

Substituting (40) in (28), we obtain (39) with

m(−1) = − ia1

2
K,

m(0) = 1

2
[b(I + σ 1) + a2(I − σ 1)], (43)

where, for i ∈ {1, 2},

ai := lim
x→+∞ φ′

i (x),

b := lim
x→+∞

[
φ1(x) − xφ′

1(x)
]
. (44)

Next, we note that for every potential v ∈ L1
2(R), there

is a solution φ0 : R → C of (41) and real numbers c± such
that as x → ±∞

φ0(x) = ±x + c± + o(x0),

φ′
0(x) = ±1 + o(x−1). (45)

We can use these relations to show that

φ1(x) = φ0(x)
∫ x

−∞
du

φ0(u)2 ,

φ2(x) = c−φ1(x) − φ0(x). (46)

Inserting these in (44), we find

a1 = s :=
∫ ∞

−∞
dx

φ0(x)2 ,

a2 = c−s − 1, b = c+s − 1. (47)

In view of (39) and (43)–(47),

M = − is

2k
K + 1

2

{ [
(c+ + c−)s − 2

]
I + (c+ − c−)s σ 1

}

+ o(k0). (48)

Finally, we use (23) and (48) to derive the following
asymptotic expressions for the reflection and transmission
amplitudes.

Rl = −1 − 2i
(
c−s−1

)
k + o(k1), (49)

Rr = −1 − 2i
(
c+ − s−1

)
k + o(k1), (50)

T = −2is−1k + 2s−1(c+ + c−2s−1)k2 + o(k2). (51)

If v is an even function, we can use the fact that φ0 satisfies
(41) to show that φ0 is also an even function. In light of (46),
this implies that c− = c+, and (49)–(51) reduce to

Rl = Rr = −1 − 2i
(
c+ − s−1

)
k + o(k1), (52)

T = −2is−1k + 4s−1(c+ − s−1)k2 + o(k2). (53)

5.2 Application to ultrastatic wormholes

Consider a ultrastatic wormhole with p(r) = 1 and r(x) ful-
filling (19). The low-energy scattering of scalar waves pass-
ing through such a wormhole is described by a potential of
the form (18) which belongs to L1

2(R). The principal exam-
ple is the Ellis wormhole and the family of its generalization
corresponding to

r(x) = (x2n + r2n
0 )1/2n, (54)

123
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where n ∈ Z
+, [31]. In general, the function r(x) has a min-

imum value, corresponding to the radius of the wormhole’s
throat, which is attained at x = 0. In analogy to (54), we
denote it by r0, i.e., r0 := r(0).

In the preceding section we have reduced the problem
of determining the low-energy asymptotic behavior of the
reflection and transmission amplitudes of a potential belong-
ing to the class L1

2(R) to that of finding a solution φ0 of
the zero-energy Schrödinger equation (41) satisfying (45).
For the potentials of the form (18) which arise in the discus-
sion of wormholes, the identification of φ0 requires no effort;
according to (18) and (19), the function r(x) satisfies both
(41) and (45). Therefore, we only need to set φ0(x) = r(x)
for the calculation of the c± and s that appears in (49)–(53),
i.e., substitute

c± = lim
x→±∞[r(x) − |x |],

s =
∫ ∞

−∞
dx

r(x)2 , (55)

in these equations.
For a wormhole with a sharp transition that is defined

using (6), v is the double-delta-function potential (17) which
is even, and (55) gives

c± = r0 − x0 = r0(1 − x̂0), s = 2(x0 + r0)

r2
0

= 2(̂x0 + 1)

r0
,

(56)

where x̂0 := x0/r0. Plugging these equations in (52) and
(53), we recover (37) and (38).

For the generalized Ellis wormholes corresponding to
(54), v is again an even potential, and (55) yields

c± = 0, s = 22−1/n√π �
(
1 + 1

2n

)

r0�
( 1+n

2n

) ,

with � denoting the Gamma function, and (52) and (53)
become

Rl = Rr = −1 + 2ik

s
+ o(k1),

T = −2ik

s
− 4k2

s2 + o(k2).

For the Ellis wormhole, which corresponds to setting n = 1,
s = π/r0.

6 Discussion and conclusions

In potential scattering in one dimension, both the source of
the wave and the detector can be placed at x = ±∞. Given

a source located at x = +∞ the intensities of the wave
detected by an observer at x = +∞ and x = −∞ are respec-
tively proportional to the reflection and transmission coeffi-
cients, |Rr |2 and |T |2. The same holds for the scattering of a
scalar wave by a wormhole. If the source of the incident wave
lies in the region of the space corresponding to x = +∞,
an observe O+ located in the same region will detect the
scattered wave that reaches x = +∞, while an observe O−
located in the other side of the wormhole, at x = −∞, will
detect the transmitted wave.

For the observer O+ the transmission of the wave through
the wormhole will appear as the partial absorption of the
spherical component of the wave by a celestial body. As we
show in “Appendix B”, the absorption cross section has the
form σ = π |T |2/k2. Substituting (51) in this equation and
making use of (55), we find

σ = A + o(k), (57)

where A := 4πρ2 and ρ := 1/s. Notice that o(k) on the
right-hand side of (57) implies that the coefficient of linear
term in k vanishes.

It is well-known that for a spherically symmetric black-
hole the zero-frequency limit of the absorption cross section
associated with a minimally coupled massless scalar field
coincides with the area of its event horizon [41]. See also
[42,43]. Equation (57) shows that using the extreme low-
energy scattering data for a massless field the observer O+
cannot distinguish between the wormhole and a blackhole
with event horizon area A (radius ρ).

Reference [40] calculates the same absorption cross sec-
tion for an arbitrary scalar field that is minimally couple to
a Schwarzschild blackhole. In our notation, the result of this
calculation, i.e., Eq. (78) of [40], reads

σ =
√

π A3/2(v2 + 1)ω

2v2[1 − e−√
π A(v+v−1)ω/2] , (58)

where again A is the area of the event horizon, and ω and
v := k/ω are respectively the angular frequency and speed
of the incident wave. For a massless field, where ω = k and
v = 1, this formula reduces to

σ =
√

π A3/2 ω

1 − e−√
π Aω

= A +
√

π

2
A3/2k + O(k2). (59)

Comparing (57) and (59), we see that unlike the case of a
wormhole, the slop of the absorption cross section, ∂kσ , for a
Schwarzschild blackhole tends to a nonzero value as k → 0.
Therefore, the observer O+ can distinguish the wormhole
from a Schwarzschild blackhole, if her low-energy scatter-
ing data allows her to decide about the next-to-leading order
contribution to σ in powers of k.

123
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The situation is different for a massive field. In the limit
that k → 0, ω → m, v ≈ k/m, and (58) gives σ ≈√

π m3A3/2/2k2, i.e., the blackhole’s absorption cross sec-
tion diverges quadratically as k → 0. This is in sharp con-
trast to the case of a wormhole, for according to (57), in
this limit the absorption cross section of the wormhole for a
massive scalar field tends to A which is finite. Therefore, the
observer O+ can easily differentiate between a wormhole
and a Schwarzschild blackhole by examining the scattering
data for a massive scalar field whose wavenumber is much
smaller than its mass; k 
 m.

The observer O− will view the wormhole as a source of
spherical waves whose intensity is proportional to the cross
section (57). In the limit k → 0, the wormhole will appear to
O− as a whitehole, if she detects low-energy massless scalar
fields.

Our results apply to wormholes determined by the line ele-
ment (4) with p(r) = 1 and r(x) having the asymptotic form
(19). They are obtained under the assumption that r0k 
 1.
Because r0 signifies the size of the wormhole, these results
hold for a wide range of frequencies provided that the worm-
hole is sufficiently small; for a wormhole with r0 ≈ 100 nm,
they even apply to frequencies in the ultraviolet spectrum. If
the wormhole is unstable, the observer O− will see it emit a
spherical pulse and disappear.
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Appendix A: Rl/r and T for the potential (15)

In this appendix we outline the derivation of the formulas for
the reflection and transmission amplitudes for the potential
(15). We can write this potential in the form v = v0 +v1+v2,

where

v0(x) := 1

r0
[δ(x − x0) + δ(x + x0)]] ,

v1(x) := l(l + 1)

r2
0

θ(x0 − |x |),

v2(x) := l(l + 1)

(|x | − x0 + r0)2 θ(|x | − x0).

To solve the time-independent Schrödinger equation (10) for
this potential it is sufficient to use the well-known solution
of this equation for the barrier potential v1 in the interval
[−x0, x0] and use the delta functions in v0 to patch them to
the solutions of (10) for the truncated inverse square potential
v2 in (−∞,−x0] and [x0,∞). The latter are linear combina-
tions of the functions, gi (y) := y h(i)

l (y), where i ∈ {1, 2},
y := k(|x | − x0 + r0), and h(i)

l label the spherical Han-
kel functions of order l. Using the asymptotic expression for
these functions we can determine the appropriate linear com-
binations of gi (y) that yield the Jost solutions (22) and read
off the reflection and transmission amplitudes. This gives

Rl = Rr = X (Y + Z) ,

T = X (Y − Z) , (60)

where

X := (−1)(l+1)e2iK(1−x̂0)g2(K)

2g1(K)
, Y := W ∗ − K−1(q cot qx̂0 + 1)

W − K−1(q cot qx̂0 + 1)
,

Z := W ∗ + K−1(q tan qx̂0 − 1)

W + K−1(q tan qx̂0 − 1)
, W := g′

1(K)

g1(K)
,

K := r0k, x̂0 := x0/r0, and q := √
K2 − l(l + 1).

Appendix B: Determination of the absorption cross sec-
tion

Consider the propagation of scalar fields in a wormhole back-
ground with p(r) = 1. Recall that in our notation x is the
extended radial coordinate, which takes values in the whole
real line, and that x = ±∞ mark spatial regions in the uni-
verses M± connected by the wormhole. The scattering setup
where the source of the incident wave lies at x = +∞ cor-
responds to a solution,

�(t, x, ϑ, ϕ) = e−iωt�(x, ϑ, ϕ), (61)

of the field equation (7) such that � satisfies the following
asymptotic boundary conditions.

�(x, ϑ, ϕ) →
{
eik0·x + f +(ϑ, ϕ) x−1eikx for x → +∞,

f −(ϑ, ϕ) (−x)−1e−ikx for x → −∞,

(62)
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where k0 is the incident wave vector, x := |x |(sin ϑ cos ϕ,

sin ϑ sin ϕ, cos ϑ), and f ± are the scattering amplitudes
measured by observers O± residing at x = ±∞. Our aim is
to relate f ± to the reflection and transmission amplitudes
of the potential (12) associated with the wormholes with
p(r) = 1.

First, we multiply both sides of (34) by Ym
l (ϑ, ϕ)∗ and

integrate over the unit sphere S2. In view of the orthonor-
mality of the spherical harmonics and Eq. (61), this gives

ψ(x) = r(x)
∫

S2
d� Ym

l (ϑ, ϕ)∗�(x, ϑ, ϕ), (63)

where d� := sin ϑdϑdϕ. Substituting (62) in (63) and mak-
ing use of (19), we can show that

ψ(x) →
{
x
∫
S2 d� Ym

l (ϑ, ϕ)∗eik0·x + f +
lm eikx for x → +∞,

f −
lm e−ikx for x → −∞,

(64)

where

f ±
lm :=

∫

S2
d� Ym

l (ϑ, ϕ)∗ f ±(ϑ, ϕ). (65)

Next, we use the properties of the spherical harmonics
[74] to show that

∫

S2
d� Ym

l (ϑ, ϕ)∗eik0·x = 4π i l ζlm jl(kx), (66)

where jl stands for the spherical Bessel functions, ζlm :=
Y l
m(ϑ0, ϕ0)

∗, and (ϑ0, ϕ0) are the spherical angular coordi-
nates marking the unit vector k0/k, i.e., the direction of the
incident wave. Equation (66) together with the fact that

jl(kx) → i−(l+1)

2kx

[
eikx − (−1)l e−ikx

]
for x → ∞,

allow us to express (64) in the form

ψ(x) → 2π(−1)l iζlm
k

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[

e−ikx + (−1)l+1

(

1 + ik f +
lm

2πζlm

)

eikx
]

for x → +∞,

(−1)l+1ik f −
lm

2πζlm
e−ikx for x → −∞.

Comparing this relation with (22), we see that ψ is a scalar
multiple of the Jost solution ψr with

Rr = Rr
lm := (−1)l+1

(

1 + ik f +
lm

2πζlm

)

,

T = Tlm := (−1)l+1ik f −
lm

2πζlm
. (67)

The total scattering cross sections measured by the
observers O± are given by

σ± :=
∫

S2
d� | f ±(ϑ, ϕ)|2 =

∞∑

l=0

l∑

m=−l

| f ±
lm |2,

where we have used (65) and the orthonormality of the spheri-
cal harmonics. According to O+, σ+ is the total cross section
of the wave detected by her detector, while σ− is a measure
of the power transmitted to M−. Therefore, O+ will identify
σ− with the absorption cross section of the wormhole, which
we denote by σ in Sect. 6.

We can use (67) to express σ± in terms of Rr
lm and Tlm .

This gives

σ+ = 4π2

k2

∞∑

l=0

l∑

m=−l

|ζlm |2
∣∣∣Rr

lm + (−1)l
∣∣∣
2
,

σ− = 4π2

k2

∞∑

l=0

l∑

m=−l

|ζlm |2 |Tlm |2 .

Because for non-spherical low-energy waves |Tlm | is negli-
gibly small, to a very good approximation,

σ = σ− = 4π2|ζ00|2 |T00|2
k2 = π |T |2

k2 ,

where we have employed the identity, ζ00 = Y 0
0 (ϑ0, ϕ0)

∗ =
1/

√
4π .
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