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Abstract In models with an extended Higgs sector, such
as the (N)MSSM, scalar states mix with one another. Yet,
the concept of Higgs mixing is problematic at the radia-
tive level, since it introduces both a scheme and a gauge
dependence. In particular, the definition of Higgs masses
and decay amplitudes can be impaired by the presence of
gauge-violating pieces of higher order. We discuss in depth
the origin and magnitude of such effects and consider two
strategies that minimize the dependence on the gauge-fixing
parameter and field-renormalization of one-loop order in the
definition of the mass and decay observables, both in degen-
erate and non-degenerate scenarios. In addition, the intuitive
concept of mixing and the simplicity of its definition in terms
of two-point diagrams can make it tempting to include higher-
order corrections on this side of the calculation, irrespectively
of the order achieved in vertex diagrams. Using the global
SU (2)L-symmetry in the decoupling limit, we show that no
improvement can be expected from such an approach at the
level of the Higgs decays, but that, on the contrary, the higher-
order terms may lead to numerically large spurious effects.
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1 Introduction

Many models of new physics suggest the existence of an
extended Higgs sector. In such a context, the Higgs boson dis-
covered at the LHC [1–3] and presenting characteristics that
are approximately consistent with a Standard Model (SM)
interpretation [4–6], would be regarded as only one of many
scalar states. The absence of conclusive evidence for the
additional Higgs bosons admittedly constrains the available
parameter space but continues to spare multiple scenarios
where, in general, the decoupling of light new-physics states
from the SM particles requires a careful handling of the
Higgs mixing (see e.g. Ref. [7]). On the other hand, the
production of heavy states at colliders is kinematically sup-
pressed, hence leaving little constraints on new Higgs bosons
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beyond the TeV-range [8]. The prototype of such extensions
of the SM is the Two-Higgs-Doublet Model (THDM) [9] but
further enlargement through supersymmetric (SUSY) sec-
tors [10,11] or singlet fields are easy to motivate.

The presence of extended Higgs sectors opens up the
possibility for mixing between the Higgs fields. This con-
cept appears as relatively intuitive at the tree level, but is
in fact ill-defined when considering radiative corrections.
Indeed, corresponding definitions depend on the renormal-
ization scheme and on the chosen gauge. The effective-
potential approximation [12–16] offers a popular definition
of the loop-corrected mixing, preserving the unitarity of the
mixing matrix, but the missing momentum-dependent cor-
rections make it inappropriate – or insufficient – for a con-
sistent description of external legs in Feynman amplitudes, in
particular when considering the decays of such mixed states.
On the other hand, one may directly use the LSZ reduc-
tion formula in order to define the Higgs mixing in terms of
the loop corrections applying on an external Higgs leg in a
physical amplitude: this has been described in e.g. Refs. [17–
19]. Among the advantages of this approach, loop diagrams
applying on the external leg should be automatically con-
tained within the mixing matrix, making it formally suitable
for a ‘pseudo-on-shell’ treatment of the external legs. On
the other hand, unitarity of the mixing matrix is lost in the
inclusion of momentum-dependent pieces.

In this paper, we outline several shortcomings in the use of
a mixing matrix as a substitute to the loop expansion derived
from the LSZ reduction formula. These problems rest less
in the principle of the procedure than in its technical imple-
mentation. Indeed, the formalism described in e.g. Ref. [17]
is designed in such a way that it should coincide with the LSZ
expansion, at least at the order of the calculation. However,
the separation of the contributions of one-loop order between
mixing effects on one side, and vertex corrections (e.g. in the
case of a two-body Higgs decay) on the other, lends itself
to a misleading step, namely working with different orders
(or numerical parameters) on each side. While the resulting
mismatch is formally a higher-order effect, it can be numeri-
cally significant due to imperfect cancellations. Reasons for
distrusting these partial higher-order contributions appear
clearly when they violate a symmetry that is expected to hold,
either exactly or approximately in a given regime. The elec-
troweak gauge symmetry or the global SU (2)L-symmetry in
the limit of Higgs masses far above the electroweak scale are
examples of such handles on the validity of the calculation,
providing a guideline for the resolution of the unphysical
effects or at least an estimate of the associated uncertainties.

In practice, we work in the context of the Next-to-Minimal
Supersymmetric Standard Model [20,21] and aim at improv-
ing our previous work on the Higgs decays at one-loop elec-
troweak order in this model [18,22,23] – we refer the reader
to e.g. [19,24–29] for similar projects. However, our discus-

sion in this paper should be valid for a large class of exten-
sions of the SM based on a THDM framework (in particu-
lar the MSSM). In fact, as the symmetry arguments control
the properties of doublet, but not of singlet states, we focus
below on scenarios with doublet-dominated, MSSM-like
Higgs bosons. In addition, the SUSY context induces some
additional complications related to the connection between
the gauge and the quartic Higgs couplings. Indeed there are
then too few degrees of freedom available to simultaneously
renormalize all the Higgs masses on-shell. One advantage
is the gain in predictivity, since the mass of the SM-like
Higgs boson cannot be set to an arbitrary value, while the
mass-splitting between heavy doublet states is determined
by electroweak effects. On the other hand, this causes a dif-
ficulty in evaluating Feynman amplitudes involving a loop-
corrected mass as kinematical input and simultaneously pre-
serving gauge invariance. A priori, such an issue also exists
in a THDM, but there it can be easily evaded when working
in an on-shell scheme (see e.g. Ref. [30]). Consequently, we
study in some detail the gauge dependence in the observables
and suggest possible means of restoring a manifest gauge
invariance. All our one-loop calculations are performed with
the assistance of FeynArts [31], FormCalc [32,33] and
LoopTools [33]. Results at the two-loop order are derived
with the help of TwoCalc [34], TSIL [35] and TLDR [36].

In the following sections, we first analyze the electroweak
gauge dependence in Higgs masses and decays. This pro-
vides us with a first formal argument to disfavor the naive
inclusion and/or resummation of higher-order corrections in
the Higgs-propagator matrix. Then, we consider the global
SU (2)L-symmetry in the limit of massive doublet-like Higgs
states and compare the consequences of this symmetry at the
analytical and the numerical level for heavy-Higgs mass-
splittings and several decay channels. Finally, we conclude
as to a cautious and consistent use of mixing formalisms
and the combination of mixing contributions with the vertex
corrections in decay amplitudes.

2 Aspects of gauge invariance on the determination of
Higgs masses and decays

The loop-induced mixing in the Higgs sector is defined at the
level of the Higgs self-energies. However, the latter are not
gauge-invariant objects, in general, highlighting the artifi-
ciality of the loop-corrected mixing matrix. Below, we detail
how gauge invariance is ensured at the one-loop order in
observable quantities such as the Higgs masses and decays,
or how one could attempt to remedy its violation by terms of
higher order.

123



Eur. Phys. J. C (2020) 80 :1124 Page 3 of 40 1124

2.1 Self-energies and gauge dependence

We first consider the gauge-dependent contributions to the
self-energies of one-loop order between two external Higgs
legs hi and h j (a priori mass eigenstates at the tree level) that
convey an external momentum p. The calculation applies to
extensions of the SM of type THDM – details concerning the
THDM Higgs sector are provided in appendix A – though
additional fields (e.g. scalar singlets) can be mixed to this
sector as long as they do not generate additional breaking of
the electroweak symmetry. For simplicity, we focus on the
terms associated with the electroweak charged current (the
generalization to the neutral current is straightforward). The
terms that depend on the gauge-fixing parameter ξ read

16 π2 �hi h j (p
2)

⊃
{

2 M2
W �e

[
ghi G

+W− g∗
h j G

+W−
]

− ghi W
+W− gh j W

+W−
}

×
⎧⎨
⎩

[
ξ − p2

M2
W

]2

B0

(
p2, ξ M2

W , ξ M2
W

)

−
[
ξ −

(
1 + p2

M2
W

)]2

B0

(
p2, M2

W , ξ M2
W

)

− ξ

M2
W

A0

(
M2

W

)
⎫⎬
⎭−

{
2 �e

[
ghi H

+G− g∗
h j H

+G−
]

−2
(
m2

H± − p2
)2

M2
W

�e
[
ghi H

+W− g∗
h j H

+W−
]}

× B0

(
p2, m2

H± , ξ M2
W

)

−
{
ghi G

+G− gh j G
+G− − p4

4 M4
W

ghi W
+W− gh j W

+W−

}

× B0

(
p2, ξM2

W , ξ M2
W

)

−
{

2 p2 �e
[
ghi G

+W− g∗
h j G

+W− + ghi H
+W− g∗

h j H
+W−

]

+CA

}
A0

(
ξ M2

W

)
. (1)

All the gxyz (x, y, z ∈ {hi, j ,G±, H±,W±}) represent
Higgs couplings, while MW , mH± , and mhi symbolize
the W , charged Higgs, and neutral Higgs masses, respec-
tively. We checked that Eq. (1) agrees with expressions
available in the literature, e.g. Eq. (3.1) of Ref. [37] (see
also Refs. [38,39]). Here, we have not explicitly written the
momentum-independent terms in A0

(
ξ M2

W

)
and just col-

lected them within CA. In particular, we expect additional
gauge-dependent terms of this form from the counterterms,
so that the expression for CA before renormalization is of
limited interest.

In order to exploit Eq. (1), it is useful to consider the var-
ious relevant couplings, which are fully determined by the
gauge symmetry:

ghi W
+W− = g2 MW

[
cβ X R

id + sβ X R
iu

]
, (2a)

ghi G
+W− = −g2

2

[
cβ

(
X R
id − ı X I

id

)
+ sβ

(
X R
iu + ı X R

iu

)]
,

(2b)

ghi H
+W− = −g2

2

[
sβ
(
X R
id − ı X I

id

)
− cβ

(
X R
iu + ı X R

iu

)]
,

(2c)

ghi G
+G− = −g2

2

m2
hi

MW

[
cβ X R

id + sβ X R
iu

]
, (2d)

ghi H
+G− = (

ghi G
+H−

)∗ = −g2

2

m2
H± − m2

hi

MW

×
[
sβ
(
X R
id − ı X I

id

)
− cβ

(
X R
iu + ı X R

iu

)]
.

(2e)

Here, mhi or mH± represent the tree-level Higgs masses (in
contrast with loop-corrected masses Mhi or MH± that we
consider later on). The symbol g2 is the SU (2)L-gauge cou-
pling and X R/I

iu/d (we also define Xik ≡ X R
ik + ı X I

ik) corre-
spond to the components of the external Higgs hi projecting
onto the real (R) or imaginary (I ) part of the doublet fields Hd

or Hu that take on a vacuum expectation value (v.e.v.) v cβ

or v sβ , respectively, with v = √
2 MW /g2. Then, the first

three lines of Eq. (1) obviously vanish as long as hi (or h j ) is
orthogonal to the neutral Goldstone boson. The other terms
amount to

16 π2 �hi h j (p
2) ⊃ ghi W

+W− gh j W
+W−

4 M4
W

(
p4 − m2

hi m
2
h j

)

B0

(
p2, ξ M2

W , ξ M2
W

)

+ 2

M2
W

�e
[
ghi H

+W− g∗
h j H

+W−
]

[
p4 − m2

hi m
2
h j

− m2
H±

(
2 p2 − m2

hi − m2
h j

)]

× B0

(
p2, m2

H± , ξ M2
W

)

− g2
2

4 M2
W

�e
[
Xid X∗

jd + Xiu X∗
ju

]

(
2 p2 − m2

hi − m2
h j

+ C̃A

)
A0

(
ξ M2

W

)
. (3)

The dependence of this expression on the tree-level Higgs
masses originates in the Higgs–Goldstone couplings, except
for the A0 term. For this latter term, one systematically
expects contributions of the same form from other origins,
e.g. tadpoles. In order to clarify, we may consider the example
of a SUSY framework with on-shell renormalization condi-
tions for the W , Z and charged-Higgs masses, and vanish-
ing tadpoles (see e.g. Ref. [40] for details in the MSSM):
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in such a ‘physical’ setup, all the mass parameters in the
doublet sector are determined by observable quantities; then
the tadpole and W -, Z -, H±-mass counterterms contribute
terms ∝ A0

(
ξ M2

W

)
that cancel out C̃A at the level of the

renormalized diagonal self-energies. Alternatively, still in
the SUSY case, we could employ DR conditions for the
W , Z , H± masses, so that a non-trivial C̃A would persist
at the level of the renormalized self-energies. We call such
a scheme ‘unphysical’ because the renormalized tree-level
mass parameters are not directly observable quantities then,
but implicitly gauge-dependent parameters. This would also
apply in a THDM with MS conditions.

2.2 Gauge dependence and masses

Since we are interested in the gauge dependence emerg-
ing from the electroweak one-loop order, we restrict our-
selves to a determination of the masses (and later decays)
at the strict one-loop (1L) level, i.e. all two-loop (2L)
contributions (whether included in the calculation or not)
are regarded as being objects of higher order. Obviously,
it is possible to include fully known two-loop orders –

e.g. O
(
αt,bαs, α2

t,b, etc.
)

– in the picture as well, but what

we comment about the gauge dependence only applies as
long as the two-loop electroweak order is not
considered.

In order to discuss gauge invariance, it is convenient
to work in a ‘physical’ scheme, as defined above, i.e. a
renormalization scheme where tree-level parameters are
directly related to observable quantities, making them gauge-
independent objects. Then, the dependence on the gauge-
fixing parameters is fully explicit in the radiative contribu-
tions and should explicitly vanish (at the considered order) in
any observable quantity. A similar analysis would be possible
in an ‘unphysical’ scheme as well, but only after extracting
the implicit gauge dependence contained in the tree-level
parameters, i.e. after relating them to observable quantities.
Thus, we assume below that we are working in a ‘physical’
scheme, and that e.g. mass parameters are fixed by on-shell
renormalization conditions.

From the explicit form of the gauge-dependent terms in
Eq. (3), we observe that the ξ -dependent contribution to �hi hi
vanishes at p2 = m2

hi
– up to the C̃A term, which only disap-

pears after renormalization in a ‘physical’ scheme. Thus, no
gauge-dependent term contaminates the one-loop correction
to the mass of hi :

M2
hi ≈ m2

hi − �e
[
�̂hi hi

(
m2

hi

)]
, (4)

with �̂ denoting the renormalized self-energy. If, on the con-
trary, the Higgs mass is determined by the implicit condition

M2
hi = m2

hi − �̂hi hi

(M2
hi

)
(5a)

≈ m2
hi − �̂hi hi

(
m2

hi

)+ �̂hi hi

(
m2

hi

) d�̂hi hi

dp2

(
m2

hi

)+ · · ·
(5b)

with the complex pole M2
hi

= M2
hi

+ ı Mhi �hi consist-
ing of the (real) pole mass Mhi and the width �hi (and
derived through e.g. an iterative procedure), then the mis-
match between M2

hi
and m2

hi
generates a gauge-dependent

piece of two-loop order due to the terms in Eq. (3): this is
formally a contribution of higher order – as is exhibited in
the expansion of Eq. (5b) – and, though a source of uncer-
tainty, can be dismissed in principle in virtue of the expan-
sion. In addition, the off-shell renormalization of the Higgs
self-energy requires the introduction of field renormalization,
introducing an explicit (and unphysical) dependence on the
latter at the level of the Higgs masses as defined in Eq. (5); this
was already discussed in Ref. [41]. We apply DR-conditions
on the Higgs fields, so that the dependence on field renor-
malization is going to translate into a dependence on the
renormalization scale.

It is actually common practice [17,18,40,42–50] to include
the full propagator matrix in the determination of the Higgs
masses. The latter are then obtained from a complex pole
search using the following condition on the characteristic
polynomial of the inverse propagator matrix:

det
[
p2 − diag

(
m2

hi

)
+ �̂

(
p2
)]

= 0 . (6)

The impact of off-diagonal one-loop self-energies on the
Higgs-mass calculation is in general of two-loop order. Yet,
such off-diagonal terms intervene at one-loop order in the
case where they mix nearly degenerate tree-level states, justi-
fying a more intricate procedure. Let us first consider the case
where there is no approximate degeneracy with the state hi
(i.e. |m2

hi
− m2

h j
| 
 |�̂hi h j | for j �= i). Then, the condition

defining the Higgs mass amounts to the following expansion:

M2
hi = m2

hi − �̂hi hi

(
M2

hi

)

+
∑
j �=i

�̂hi h j

(
M2

hi

)
�̂h j hi

(
M2

hi

)

M2
hi

− m2
h j

+ · · · . (7)

From the expressions in Eq. (3), we observe that the off-
diagonal terms generate new gauge-dependent contributions
of two-loop order. In fact, even though the self-energies
would be evaluated at the tree-level mass m2

hi
, these gauge-

dependent terms would persist, indicating the need for a full
electroweak calculation of two-loop order to control gauge
invariance at this level.
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Now, let us consider the case where hi and h j are nearly

degenerate. Then, �̂hi hi

(
M2

hi

)
, �̂hi h j

(
M2

hi

)
, �̂h j hi

(
M2

hi

)

and �̂h j h j

(
M2

hi

)
all intervene with a weight of one-loop

order in the determination of the Higgs mass M2
hi

. However,

since |M2
hi

− m2
hi

| ≈ |M2
hi

− m2
h j

| = O(1L), the gauge-
violating pieces – see Eq. (3) – originating in the off-diagonal
terms are still of subleading order at the level of the Higgs
mass. We postpone further discussion of the degenerate case
to Sect. 2.5.

The presence of gauge-dependent pieces of two-loop order
in the one-loop-corrected Higgs masses obtained from the
pole search can be exploited in order to estimate (a lower
bound on) the uncertainty associated with such a determina-
tion. This was already performed in e.g. Ref. [50], and we
only consider one example point in a non-degenerate sce-
nario for illustration in Fig. 1.1 There, we consider the MSSM
with mH± = 1 TeV, tβ = 10, squark masses of ∼ 1.5 TeV
for the third generation (∼ 2 TeV for the other two) and elec-
troweakino masses in the range of a few 100 GeV. The ξ -
dependence from the diagonal self-energy is found to dom-
inate the ξ -variation (blue curve), when setting the external
momentum to the loop-corrected mass value. The effect is
sizable at large ξ for the SM-like Higgs and much smaller
for the heavy-doublet states (though in fact of comparable
magnitude at the level of the self-energies). This variation in
a broad range of ξ exposes the presence of a gauge-violating
piece in the definition of the Higgs masses via Eq. (5), hence
hinting at the necessity to separate genuine radiative effects
from spurious symmetry-violating artifacts in the interpreta-
tion of the results. However, before this gauge dependence
can be interpreted as an uncertainty applying to the itera-
tive mass determination with Eq. (5), one needs to assess
the relevant range of ξ -variation. Indeed, large values of ξ

introduce a new scale in the calculation, hence appear less
suited for reliable predictions. Stability in a ξ -range of order
unity would thus appear as a sufficient criterion. Restrict-
ing ourselves to ξ � 5, we observe that the typical mass
variation associated with gauge dependence for the SM-like
Higgs is of order 0.3–2 GeV (depending on the chosen scale
for field renormalization): in a fixed-order calculation, this
gauge uncertainty can only be reduced after inclusion of the
two-loop gauge corrections.

The off-diagonal contribution to the ξ -dependence (orange
curve) is heavily suppressed by the clear hierarchy in the CP-
even sector. The somewhat more-pronounced ξ -dependence
from the off-diagonal terms in Mh2 at ξ � 30 is due to
the crossing of thresholds in loop functions (e.g. originat-
ing from the G+–G− loop). In fact, this curve exhibits a
more troubling feature than ξ -dependence, which is its shift

1 We constrain our analysis to the case of an Rξ gauge with all gauge-
fixing parameters being equal.

away from the green curve, whereas both curves lie on top
of each other in the case of the CP-odd Higgs. This SU (2)-
violating effect will be discussed more in depth in Sect. 3
and is due to a non-decoupling feature of the matrix descrip-
tion in the non-degenerate case, requiring the inclusion of a
2L charged-Higgs mass counterterm for a consistent order
counting. Admittedly, the impact is numerically quite small
at the level of the mass itself, but competes in magnitude with
2L effects, opening the question of the relevance of applying
higher-order corrections to such states.

In addition, all these definitions of the mass – from Eq. (5)
or Eq. (7) – explicitly depend (at two-loop order) on the
renormalization of the Higgs fields, as we commented above.
This introduces an explicit dependence on the renormaliza-
tion scale, as can be observed by comparing the left- and
right-hand side of Fig. 1. In contrast, the tiny scale depen-
dence in the masses obtained from Eq. (4) (green curves) is
implicit and originates in higher orders in the conversion of tβ
between the two choices of renormalization scale. In particu-
lar, we stress that the mass shift associated with Eq. (5) can be
given whatever sign at the level of the SM-like state, depend-
ing on the choice of field renormalization. It is thus devoid
of physical content as long as corresponding 2L effects, neu-
tralizing the dependence on field renormalization, are not
included. From this analysis, we see that there is no gain in
precision, at the one-loop order in the non-degenerate sce-
nario, in including the shifts of two-loop order of Eq. (5)
or Eq. (7) since these introduce a non-physical behavior for
the would-be observable masses: namely an explicit depen-
dence on ξ and the field renormalization. The combined
impact of these artifacts on the mass determination com-
petes with the magnitude of the leading two-loop corrections
of O

(
αt,bαs

)
– estimated in Fig. 1 through a variation of the

numerical input for the Yukawa couplings (solid vs. dashed
lines). Admittedly, the result obtained for low values of ξ

(e.g. equal to 1) with Eq. (5) looks comparatively close to
the gauge-independent result of Eq. (4). However, the scale
variation alone evidences a shift of ∼ 2 GeV at the level of
the SM-like Higgs mass, hence a sizable uncertainty due to
the explicit dependence on the field renormalization; such
contributions were neglected in the uncertainty estimates of
Refs. [51,52] for ‘fixed-order’ calculations, obtained without
or through a very narrow scale variation. Yet, we believe that
the SUSY scale should be as legitimate as the electroweak
scale for the renormalization of the Higgs fields. Thus, the
uncertainty originating in the prescription for the Higgs-pole
determination – as already discussed in Ref. [41] – should
be added to the previous assessments at fixed order (after
being adapted to the order controlled in the calculation).2

2 At ξ ∼ 1, most of the dependence of Mh on the field renormalization
in the O(2L) terms of Eqs. (5b) and (7) is neutralized by the inclusion of
the two-loop self-energies ofO(α2

t ), reducing this source of uncertainty
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Fig. 1 The gauge dependence of the MSSM Higgs masses is shown
for mH± = 1 TeV, tβ = 10. The horizontal green lines correspond to
the expansion of one-loop order as in Eq. (4). The blue curves corre-
spond to the ξ -dependence originating from the diagonal self-energy
(the off-diagonal terms are set to 0) as in Eq. (5). In the orange curves
(on top of the green curves for Mh and MA), the momentum in the diag-
onal self-energy is evaluated at the tree-level mass, so that no gauge-
dependence is introduced by this term, and the ξ -dependence originating
from the off-diagonal terms – see Eq. (7) – is studied. The plots on the
left-hand side are obtained for the renormalization scale μdim = mt ,

while those on the right-hand side use μdim = mSUSY ≡ 1.5 TeV. The
input parameters (tβ ) have been accordingly transformed so that the
two schemes consider the same point in parameter space. Finally, for
the Higgs masses at the one-loop order, it is formally equivalent to
employ Yukawa couplings and quark masses defined on-shell (dashed
curves) or QCD-corrected DR running masses, with a scale correspond-
ing to the Higgs mass (solid curves): the difference between these mass
predictions provides an estimate of the magnitude of leading two-loop
order effects

123



Eur. Phys. J. C (2020) 80 :1124 Page 7 of 40 1124

We thus believe that the violation of the gauge symmetry by
the inclusion of an incomplete electroweak two-loop order
indicates that the reliability of the prediction is not improved,
but rather that the uncertainty is inflated by the introduction
of symmetry-violating pieces. While we cannot materially
check that the dependence on the gauge-fixing parameters
will continue to vanish by pushing the expansion up to the
two-loop order (we miss the 2L electroweak terms), as sug-
gested in Ref. [53], we strongly believe this to be the case (at
least in the non-degenerate scenario). On the other hand, we
explicitly checked the cancellation of the dependence on 1L
field counterterms between 2L and 1L2 pieces (provided the
pieces are perturbatively combined).

2.3 Gauge dependence and decays in the non-degenerate
case

At the level of the Higgs decays, loop corrections on the exter-
nal Higgs leg appear explicitly unless the Higgs fields are
renormalized on-shell – in which case corresponding contri-
butions are entirely shifted to the vertex counterterms. Con-
trarily to the case of the Higgs-mass determination, where
only the diagonal self-energy was formally needed at the
one-loop order, both diagonal and off-diagonal self-energies
intervene at this order in the decays. As we discussed above,
the off-diagonal self-energies are gauge dependent at the one-
loop order even when we set p2 = m2

hi
: this indicates that

these objects – or the associated Higgs-mixing matrix at the
one-loop order – are not physical observables (obviously,
they are also scheme dependent), but simply intermediate
steps in the calculation of the decay width.

For definiteness, we can consider the example of the
decay hi → t t̄ . The vertex corrections (including the on-
shell renormalization of the top-quark fields) produce the
following gauge-dependent terms (still restricting ourselves
to the charged currents):

Avert[hi → t t̄
] ⊃ ı g3 mt

64 π2 M3
W

ū(pt )

× [(
p2 − m2

hi

)
Avert

1 + (
p2 − m2

H±
)
Avert

2 + Avert
3

]
v(pt̄ ) ,

(8a)

Avert
1 =

(
cβ X R

id + sβ X R
iu

)
I1
(−pt , pt̄ , m

2
b, ξ M2

W , ξ M2
W

)

+ (−sβ X∗
id + cβ Xiu

)
I2
(−pt , pt̄ , m

2
b, m

2
H± , ξ M2

W

)

+ (−sβ Xid + cβ X∗
iu

)
I2
(
pt̄ , −pt , m

2
b, m

2
H± , ξ M2

W

)
,

(8b)

Footnote 2 continued
in the scenario of Fig. 1 in the range of O(100 MeV); this is also the
setup of Refs. [51,52]. Of course, the pole search generates further field-
dependent terms beyond those considered here. On the other hand, the
gauge variation, also of the order of GeV for ξ � 5, cannot be reduced
without inclusion of the 2L gauge corrections, as we commented above.

Avert
2 = 1

tβ

[(−sβ X∗
id + cβ Xiu

)
PL + (−sβ Xid + cβ X∗

iu

)
PR
]

× B0
(
p2, m2

H± , ξ M2
W

)
, (8c)

Avert
3 = p2

2

(
cβ X R

id + sβ X R
iu

)
B0
(
p2, ξ M2

W , ξ M2
W

)

− 1

2 sβ

(
X R
iu − ı γ5 X I

iu

)
A0
(
ξ M2

W

)
(8d)

with the vertex functions

I1
(−pt , pt̄ , m

2
b, ξ M2

W , ξ M2
W

) ≡ ı 16 π2

mt

∫
dDk

(2 π)D

× � k (m2
t PR + m2

b PL
)− mt m2

b[
k2 − m2

b

] [
(k − pt )2 − ξ M2

W

] [
(k + pt̄ )

2 − ξ M2
W

] , (9a)

I2
(−pt , pt̄ , m

2
b, ξ M2

W , ξ M2
W

) ≡ ı 16 π2

mt

∫
dDk

(2 π)D

×
� k
(
m2

t t
−1
β PR − m2

b tβ PL
)

+ mt m2
b

(
tβ PR − t−1

β PL
)

[
k2 − m2

b

] [
(k − pt )2 − m2

H±
] [

(k + pt̄ )
2 − ξ M2

W

] .

(9b)

Here, hi is identified with the field (mass eigenvector) that
is associated with the tree-level mass mhi . Yet we allow its
external momentum p to be ‘free’, with p = pt + pt̄ (pt
and pt̄ are the external momenta associated with the on-shell
quark lines). In the expression above, m2

hi
originates in the

Higgs–Goldstone couplings, while p2 appears in scalar prod-
ucts of external momenta. Obviously, the ξ -dependence in
the three-point vertex functions I1,2 only disappears if the
mass appearing in the Higgs–Goldstone coupling coincides
with the kinematical one. Thus, employing a loop-corrected
mass under the claim that it provides a better description
of the kinematical situation would also generate a gauge-
violating contribution of two-loop order from these terms:
it is consequently arguable whether this choice brings any
actual improvement at the numerical level.

The gauge-dependent B0 and A0 terms in Eq. (8) must be
combined with the contributions from loop corrections on
the external Higgs leg, as prescribed by the LSZ reduction
formula. Then, the terms of Eq. (3) generate

Amix[hi → t t̄
] ⊃ − ı g3 mt

64 π2 M3
W

ū(pt )

×
[(

p2 − m2
hi

)
Amix

1 +
(
p2 − m2

H±
)
Amix

2 + Amix
3

]

× v(pt̄ ) , (10a)

Amix
1 = Xiu PL + X∗

iu PR

4 sβ

×
[
2
∣∣−sβX

∗
id + cβXiu

∣∣2 (p2 + m2
hi − 2m2

H±
)

× ∂p2 B0

(
p2, m2

H± , ξ M2
W

)
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+
(
cβ X R

id + sβ X R
iu

)2 (
p2 + m2

hi

)

× ∂p2 B0

(
p2, ξ M2

W , ξ M2
W

)]

+ 1

2 sβ

∑
j �=i

X ju PL + X∗
ju PR

p2 − m2
h j

×
[
2 �e

[(−sβ X∗
id + cβ Xiu

)(−sβ X jd + cβ X∗
ju

)]

×
(
m2

h j
− m2

H±
)
B0

(
p2, m2

H± , ξ M2
W

)

+
(
cβ X R

id + sβ X R
iu

)
(
cβ X R

jd + sβ X R
ju

)
m2

h j
B0

(
p2, ξ M2

W , ξ M2
W

)

− �e
[
Xid X∗

jd + Xiu X
∗
ju

]
A0

(
ξ M2

W

)]
, (10b)

Amix
2 = 1

tβ

[(−sβ X∗
id + cβ Xiu

)
PL

+ (−sβ Xid + cβ X∗
iu

)
PR
]
B0

(
p2, m2

H± , ξ M2
W

)

(10c)

Amix
3 = p2

2

(
cβ X R

id + sβ X R
iu

)
B0

(
p2, ξ M2

W , ξ M2
W

)

− 1

2 sβ

(
X R
iu − ı γ5 X I

iu

)
A0

(
ξ M2

W

)
. (10d)

Adding Eqs. (8a) and (10a), we observe the cancellation of
the B0 and A0 terms up to the remainder inAmix

1 of Eq. (10b).
The latter (generically) disappears only if its prefactor is
zero, i.e. the kinematical mass p2 and the tree-level massm2

hi
appearing in the Higgs–Goldstone couplings coincide.

The ξ -dependence from the electroweak neutral current
vanishes in a similar way; additional terms from the mixing
of the external Higgs with internal Z and G0 cancel out sep-
arately up to contributions proportional to (p2 − m2

hi
). This

cancellation has already been discussed, e.g. in Refs. [17,22].
So far, we have checked how the LSZ reduction for-

mula ensures gauge invariance in the decay amplitude, up
to higher-order terms ∝ (p2 − m2

hi
). Now, let us turn to the

mixing formalism of Refs. [17,18]. The loop-corrected field
is defined as Hk = Zki hi , where the loop-corrected mixing
matrixZ is built out of eigenvectors (Zk)i=1,... of the effective
mass matrix [diag(m2

hi
)−�̂(M2

Hk
)] for the associated eigen-

value M2
Hk

and satisfying the normalization condition [δi j +
�̂′
i j (M2

Hk
)] Zki Zk j = 1 [18]. By construction, in the

absence of degeneracies, Zki Atree
[
hi → t t̄

]
coincides with

the expansionAtree + Amix[hk → t t̄ ] at the one-loop order.
Similarly, Avert

[
Hk → t t̄

] = Zki Avert
[
hi → t t̄

]
coincides

withAvert
[
hk → t t̄

]
at this order. If degeneracies are present,

the same formal expansion as above applies (though ill-
converging). Gauge invariance is thus satisfied at the strict
one-loop order in all the cases. However, there remain gauge-
dependent pieces of higher order. The terms ∝ (p2 − m2

hi
)

of Eqs. (8) and (10) become ∝ Zki (M2
Hk

− m2
hi

), which is
an object of one-loop order, hence generates gauge-violating
contributions of two-loop order. In addition, there are gauge-
violating effects beyond those contained in the LSZ expan-
sion, due to the resummation of mixing effects in the mixing
matrix and the inclusion of terms from the product of mixing
and vertex corrections. The restoration of gauge invariance
will thus prove more difficult in this formalism.

In Fig. 2, we show the ξ -dependence in the decay widths
�[hi → bb̄] in the MSSM for the point considered in Fig. 1.
The latter is threefold, originating firstly in the explicit ξ -
dependence of the decay width from the terms of Eqs. (8)
and (10) when the Higgs mass is set to a loop-corrected
value, secondly in a possible processing of mixing and ver-
tex corrections on different footings, thirdly in the implicit
ξ -dependence of the mass when it is derived from e.g. Eq. (7).
In order to illustrate these features, we plot several definitions
of the decay widths:

• the solid black curves correspond to the (inclusive) QCD-
corrected tree-level decay widths, where however the
kinematical factors employ the loop-corrected masses of
Eq. (4);

• a first version of the decay widths of full one-loop order
is shown in solid green: there, the amplitudes are eval-
uated at the tree-level Higgs mass, while the kinemat-
ics employs the mass determination of Eq. (4), leading
to an explicitly gauge-independent result (for the heavy-
doublet states, this curve is hardly distinguishable from
the blue and orange ones); the difference with the solid
black curves provides the magnitude of the (non-QCD)
radiative corrections;

• for the dashed blue curves, the ξ -independent Higgs mass
of Eq. (4) is employed everywhere, leading to explicit
ξ -dependent decay widths due to the terms of Eqs. (8)
and (10); this gauge-dependence is found to be rather
mild in the example, showing only at the level of the
light Higgs through threshold effects;

• the dashed red curves show the impact of keeping a term
|Avert|2 in the decay width: the ξ -dependence is sizable
for all the states, competing with the absolute magnitude
of the electroweak effects;

• finally, the dot-dashed orange curve corresponds to a
decay width of one-loop order employing a ξ -dependent
loop-corrected Higgs mass, i.e. adding to the explicit
gauge dependence of the decay width the implicit one
contained in Eq. (5): the effect is mostly relevant for the
light Higgs, as could be expected from the impact at the
level of the mass determination.

This comparison in particular shows that while the explicit
gauge dependence of the decay width at strict (truncated)
one-loop order remains rather mild, the predictivity of the
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Fig. 2 The ξ -dependence in the Higgs decay widths into bb̄ is shown
in the scenario of Fig. 1. The solid black curve represents the QCD-
corrected tree-level width, while the solid green line corresponds to a
full one-loop calculation where the one-loop functions are evaluated at
the tree-level value of the Higgs mass. In both cases, the kinematics
employs the loop-corrected mass of Eq. (4). For the dashed blue curve,
this same loop-corrected mass is also used in the one-loop functions. In

addition, a |Avert|2 piece is kept in the squared amplitude for the dashed
red curve. In the dot-dashed orange curve, no explicit contribution to
the decay of two-loop order is included, but the momentum is set to
the ξ -dependent Higgs mass of Eq. (5). The renormalization scale is set
to mt on the left-hand side, and to mSUSY on the right-hand side. The
decay widths for the pseudoscalar state have been omitted since they
are essentially identical to those of the heavy CP-even state (lower row)

calculation can be wasted when vertex and mixing contri-
butions are not consistently combined so as to neutralize
the gauge dependence. In addition, we also vary the renor-
malization scale between mt (left) and mSUSY = 1.5 TeV

(right): the associated effects appear to be mostly driven
by the dependence on the Higgs mass (dot-dashed orange
curves), hence essentially affect the decays of the light Higgs
(where the mass prediction is most sensitive to the varia-
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tions in ξ ). There, even at small ξ , the fluctuations associated
with the scale dependence compete in magnitude with the
absolute size of the electroweak corrections. For the heavy-
doublet Higgs states, the percent-level shift of the decay
widths of strict one-loop order (solid green curve) should be
seen as belonging to the higher-order uncertainty and remains
much smaller than the magnitude of the one-loop corrections,
which are dominated by effects of Sudakov type as explained
in Ref. [23]. The shift of the tree-level widths (solid black
curves) by 10% is associated with the scheme conversion,
i.e. the modified value of tβ .

2.4 Restoring gauge invariance in the non-degenerate case

From the perspective of a strict order-counting, it can
appear superfluous to worry about the gauge-violating pieces
described above, since they correspond to a higher order in
the expansion. In fact, gauge dependence can be exploited as
a means to estimate part of the theoretical uncertainty, as we
showed at the level of the Higgs masses in Fig. 1. On the other
hand, the gauge-violating effects can numerically dominate
the radiative contributions to the decays, because internal
cancellations caused by symmetries are no longer enforced.
Thus, the violation of the Ward identity in hi → γ γ [22,54]
can sizably unsettle the corresponding estimate of the decay
width. In hi → WW , infrared (IR) divergences do not can-
cel between virtual QED corrections and soft photon radi-
ation [22,24,55]. We thus believe that it is meaningful for
reliable predictions to employ decay amplitudes that satisfy
the symmetry principles.

A first obvious method neutralizing explicit gauge depen-
dence would simply consist in expanding the loop functions
in terms of the external Higgs masses appearing as argu-
ment, in the vicinity of the tree-level value, then truncating
the expansion at the order achieved in the calculation. In this
way, the ξ -dependent terms in Eqs. (5), (8) and (10) would
explicitly vanish indeed. We stress that only the ‘amplitudes’
or ‘form-factors’ need to be expanded and truncated in this
fashion: the kinematical factors continue to be written in
terms of kinematical (i.e. loop-corrected) masses, as e.g. in
the green curves of Fig. 2. The usual prejudice against this
procedure arises from the fact that the thus shifted argument
of the loop functions displaces or even obstructs internal
effects, e.g. thresholds. This is especially true in the case
of a light Higgs state (with mass at or below the electroweak
scale), since radiative effects can compete with the tree level.
Nevertheless, as we argued above, it is unlikely that directly
inputting a loop-corrected mass in the loop functions actu-
ally improves the reliability of the calculation, since it then

introduces gauge-violating pieces and explicit dependence
on the field renormalization.3

Thus, if one chooses to inject a loop-corrected mass in
the decay amplitudes, gauge dependence should be carefully
analyzed, either for an estimate of the associated uncertain-
ties or for an attempt at restoring the symmetry. The latter
obviously requires the addition of a two-loop order piece
absorbing the ξ -dependent terms in Eqs. (5), (8) and (10).
Below, we continue to focus on a ‘physical’ scheme, since
it makes the analysis of gauge dependence more convenient.
Here, we observe that:

• the ξ -dependence in the three-point functions only
appears at the level of the vertex diagrams; thus, this
gauge dependence must be neutralized separately;

• the ξ -dependence in the two-point functions appears
both in vertex diagrams and self-energies; therefore, both
objects must be combined consistently in order to neu-
tralize this form of gauge dependence;

• the ξ -dependence in the one-point functions appears in
the vertex and self-energy diagrams, as well as countert-
erms (e.g. tadpoles);

• the ξ -dependence in the two- and three-point functions
originates in the mismatch between the kinematical mass
and the tree-level mass appearing in the Higgs–Goldstone
couplings, while additional sources intervene at the level
of the A0 functions.

A strategy outlined in e.g. Refs. [22,24] would simply
upgrade the Higgs–Goldstone couplings – see Eq. (2) –
by substituting a kinematical mass to the tree-level one.
This solution works at the level of the three-point functions
and sets IR divergences under control. However, applied to
the two-point functions of Eq. (5) or Eq. (10), it shifts the
amplitude by an ultraviolet (UV)-divergent piece (as already
noticed in Ref. [50]). Such UV-divergences can admittedly
be regularized in an ad-hoc fashion, but this means that UV-
logarithms are thus arbitrarily introduced. In addition, the
gauge-dependent A0 term is not removed by this method.
We detail below how far one has to extend this procedure
to fully restore gauge invariance in the determination of
masses through an iterated pole search and in decay ampli-
tudes evaluated at a loop-corrected mass. We do not believe
these methods to be competitive with the simple ‘truncation’
approach, but we expose them for the sake of closing on
the ‘generalized-coupling’ procedure considered in earlier
works.

In order to simultaneously work with loop-corrected
masses, preserve gauge invariance, and keep control over
the UV-divergences, a more elaborate and consistent pro-

3 Of course, the terms of two-loop order are legitimate if the considered
order is fully under control.
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cedure needs to be constructed than just shifting the Higgs–
Goldstone couplings. The cancellation of the gauge-
dependent terms in the two- and three-point functions makes
it clear that the promotion of the Higgs–Goldstone couplings
is a necessary step if one aims at restoring ξ -independence.
However, we note that this ‘upgrade’ is just a subset,
restricted to these specific couplings, of a larger transfor-
mation of the Higgs potential that would impose the loop-
corrected Higgs mass as a tree-level value of the new poten-
tial. Such a reshaping of the Higgs potential is straightforward
to implement as the THDM parameters (or at least specific
linear combinations) can be expressed in terms of the masses
and mixing angles [56] – see Ref. [57] for such a reconstruc-
tion in the context of a THDM with an additional singlet. In
addition, it is not possible in general to preserve the properties
of a SUSY tree-level Higgs sector when upgrading the Higgs
masses to their loop-corrected value, because this operation
spoils the connection of the quartic Higgs parameters with
the electroweak gauge couplings. Properties of the tree-level
spectrum, such as m2

H± = m2
A + M2

W , are violated at the
radiative level (though still constrained by the electroweak
symmetry). Relaxing these relations appears as a necessary
sacrifice in order to restore gauge invariance in a controlled
fashion. As a consequence, the gauge counterterms appear-
ing in the Higgs self-energies in the SUSY context lose any
sort of meaning in the generalized framework, and are insuf-
ficient in order to absorb the UV-divergences. Therefore, the
calculation of the Higgs self-energies needs to be performed
in the new framework (after re-definition of the Higgs cou-
plings), that of a THDM (with singlet) with SUSY matter
content.

A detailed procedure allowing to map the MSSM onto
a THDM+SUSY framework is provided in appendix B and
can be applied to the recursive determination of the Higgs
masses of Eq. (5). Then, the Feynman amplitudes employ the
value of the loop-corrected Higgs masses as tree-level input
parameters both explicitly – when the Higgs states appear in
propagators – and implicitly – in the cubic and quartic Higgs
couplings. The generated shift is still formally of two-loop
order with respect to the original calculation in the SUSY
context and, indeed, allows one to restore gauge invariance.
Nevertheless, as explained in appendix B, the extension of the
renormalization conditions of the (N)MSSM to the THDM
(with singlet) framework for the parameters of the Higgs
potential is not unambiguous in general. Several choices may
appear as ‘natural’, such as restoring the logarithms of the
SUSY self-energies at tree-level on-shell external momenta,
or employing logarithms of the same form as those appearing
in the gauge counterterms. Failing to identify a physical prin-
ciple determining these logarithms, we must concede that,
while the UV-divergences are now under control, the added
UV-logarithms are still largely arbitrary. This arbitrariness
can be exploited in the form of a scale dependence (which we

denote as μmap below) as a measure of the uncertainty intro-
duced in the mapping. This form of uncertainty replaces that
of the field renormalization in the original SUSY calculation
with off-shell external momentum, while the ξ -dependence
has been neutralized: the result satisfies the symmetry prin-
ciple.

On the left-hand side of Fig. 3, we show the mapping-
scale dependence in the recursive mass determination for
the same scenario as in Fig. 1. A comparison of the range
of variation with that of Fig. 1 is not meaningful, since the
ξ -dependence in the latter is polynomial, hence problematic
as ξ → ∞, while the scale dependence in Fig. 3 is loga-
rithmic and has been freed of symmetry-violating effects. In
terms of predictivity, there is no obvious gain with respect
to the mass determination of Eq. (4), except perhaps in the
control of the uncertainty associated with electroweak cor-
rections of higher order.

Let us now assume that the physical Higgs masses are
calculated in a consistent fashion (either via the truncation
method or through the mapping procedure) and are gauge-
independent objects. We turn to the question of the Higgs
decays. In order to define ξ -independent transition ampli-
tudes, we can employ the same strategy as for the mass deter-
mination, i.e. work in a THDM+SUSY framework where
the physical masses are tree-level masses. However, such a
framework where tree-level and loop-corrected masses coin-
cide is that of a THDM with on-shell renormalization con-
ditions for the Higgs masses: indeed, the Higgs potential of
the THDM possesses enough degrees of freedom to allow
for an on-shell definition of the masses. In contrast to the
mass calculation, there is no arbitrariness in the renormal-
ization conditions for the definition of the decay amplitude
(except in the case of Higgs-to-Higgs transitions). The pre-
cise implementation of this on-shell THDM+SUSY is dis-
cussed in appendix C: it can be viewed as a simple switch of
renormalization scheme with respect to the MSSM. The arbi-
trariness of renormalization that we mentioned at the level of
the mass determination is now lifted (though the associated
uncertainty is still hidden in the input values for the Higgs
masses). Corresponding results are shown on the right-hand
side of Fig. 3 in the case of neutral Higgs decays into bottom
quarks. The explicit uncertainty associated with the matching
procedure (variations of the blue curves) is very small. The
implicit dependence on the mapping scale (orange curves)
when the input values of the Higgs masses are defined by the
recursive condition in the THDM mostly matters for the SM-
like state. Finally, we note that the predictions for the decay
widths obtained with this matching procedure are very close
to that of the truncation method in the MSSM (green curve)
and spread far less than the ξ -dependent results of Fig. 2.

Nevertheless, there is another source of uncertainty in this
mapping/matching procedure of the MSSM onto a THDM,
because the Higgs potential of the THDM is not fully deter-
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Fig. 3 Left: The scale dependence associated with the mapping pro-
cedure is shown for the neutral Higgs masses derived by the recursive
condition of Eq. (5) with ξ -independent self-energies in a THDM for
the scenario of Fig. 1 (orange curves). The mapping scale is varied
between MW and 1.5 TeV. The masses obtained in the MSSM from the
expansion of Eq. (4) (‘truncation’ method) are shown in green for ref-
erence. The solid and dashed curves employ different definitions of the
fermion masses, offering an estimate of the magnitude of the O(αqαs

)
corrections. Right: The scale dependence associated with the match-
ing procedure is shown for the Higgs decays into bottom quarks at
the kinematic Higgs masses given by the loop-corrected value from the

expansion of Eq. (4). The green curves display the ξ -independent widths
in the MSSM, i.e. with an evaluation of the decay amplitude at the tree-
level Higgs masses (‘truncation’); the other curves are obtained in the
THDM framework (‘matching’), i.e. they are free of gauge-violating
terms by construction. The blue curves are derived using the ‘trun-
cated’ Higgs masses of the MSSM (with Eq. (4)) as matching input.
They illustrate the (small) explicit scale dependence of the widths. The
orange curves characterize the parametric dependence, originating in
the mass determination via a pole search in a THDM framework (‘map-
ping’), when the latter is chosen as input instead. The quark masses are
set to running masses at the scale of the decaying Higgs

mined by the identification of the (four) Higgs masses, lead-
ing to an arbitrariness in the choice of the (seven) λi param-
eters (out of which three are complex). The simplest choice

consists in applying λ5,6,7
!= 0, as in the MSSM, and can be

justified formally. However, if the radiative corrections to the
Higgs masses involve large effects of λ5,6,7-type, such as a
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large splitting between the two neutral heavy-doublet Higgs
bosons, the inadequate mapping of these effects onto λ1,2,3,4

can lead to possibly large spurious Higgs-to-Higgs correc-
tions: this means that the exact form of the THDM must be
carefully chosen in order to be consistent with the Higgs
spectrum. As yet, we do not have a systematic recipe to opti-
mize this selection. The latter would require assessing sev-
eral Higgs-to-Higgs transitions in order to shape the radiative
Higgs potential in a more realistic way.

2.5 Gauge-dependence in the (near-)degenerate case

The procedures that we discussed above, restoring explicit
gauge invariance in the renormalized diagonal self-energies
or the transition amplitudes, are well-defined only in scenar-
ios where Higgs states do not receive large mixing effects
at the radiative level (i.e. in scenarios where the LSZ expan-
sion applies). Now we consider the near-degenerate case.
The main difficulty consists in defining the mixed state in
a gauge-invariant way, because of the gauge dependence
present in the off-diagonal self-energies. Let us focus on a
two-dimensional near-degenerate subspace, generated by the
tree-level fields hi and h j (larger degenerate sectors follow
the same logic). Then, the pole equation reads

[
p2 − m2

hi + �̂hi hi

(
p2
)] [

p2 − m2
h j

+ �̂h j h j

(
p2
)]

= �̂hi h j

(
p2
)

�̂h j hi

(
p2
)

. (11)

The right-hand side – of two-loop order – is not neglected
because both factors in the left-hand side are of one-loop
order each (since

∣∣m2
hi

−m2
h j

∣∣ ∼ ∣∣�̂hi h j

(
p2
)∣∣ and the differ-

ence between p2, m2
hi

and m2
h j

is of one-loop order when

p2 coincides with the pole mass). At this leading (non-
trivial) order, one can freeze the momentum in the self-

energies, e.g. �̂hkhl (p
2) → �̂hkhl

(
1
2 (m2

hk
+ m2

hl
)
)

for k, l ∈
{i, j}. Then, the only gauge-dependent pieces in Eq. (11)
appear in the off-diagonal self-energies and are due to the
term ∝ (p4 −m2

hi
m2

h j
) → (m2

hi
−m2

h j
)2/4 of Eq. (3). How-

ever, as m2
hi

− m2
h j

= O(1L) (by assumption), such terms
are formally of three-loop order and could be explicitly set
to 0 in the self-energy. This would again imply an arbitrary
regularization of the associated UV-divergence, which, as
before, may be translated into a scale uncertainty – equiva-
lently, the ξ -dependence could be kept and varied in order
to estimate the associated uncertainties. The corresponding
object (with possibly neutralized ξ -dependence) is denoted
as �̃hi h j

( 1
2 (m2

hi
+ m2

h j
)
)
. Another feature in the choice of

momenta as presented above is the independence of the thus
defined Higgs masses from field renormalization, hence the
absence of corresponding uncertainties. We can then consider

the effective mass matrix in the degenerate sector,

M2 eff ≡ diag
(
m2

hi ,m
2
h j

)
− �̂eff ,

�̂eff ≡
⎛
⎝ �̂hi hi

(
m2

hi

)
�̃hi h j

(
1
2

(
m2

hi
+ m2

h j

))

�̃h j hi

(
1
2

(
m2

hi
+ m2

h j

))
�̂h j h j

(
m2

h j

)
⎞
⎠ ,

(12)

which is symmetric, hence diagonalizable in an orthogo-
nal basis with eigenvalues m̃2

Hk
, and eigenvectors Hk =

S∗
ki hi + S∗

k j h j . This definition of the masses and fields at
the one-loop order essentially extends the truncation pro-
cedure to the degenerate case. We stress that the inclusion
of the off-diagonal elements is only meaningful because
m2

hi
−m2

h j
= O(1L). Indeed, in the non-degenerate case, the

off-diagonal element is a piece contributing at an incomplete
higher order, hence it only increases the uncertainty in the
determination of the Higgs properties. Setting its argument
to the average squared mass, or the explicit neutralization of
its ξ -dependence also become transformations of this object
by one-loop effects, depriving it of any quantitative meaning.
Of course, assessing the exact point of transition between the
near- and non-degenerate regimes remains largely arbitrary.

Further momentum-dependent corrections (though for-
mally subleading) may be included as ‘diagonal’ effects

according toM2
Hk

= m̃2
Hk

−Skm Skn
[
�̂
(
M2

Hk

)
− �̂eff

]
hmhn

,

but explicit ξ -dependence would be re-introduced unless
Skm Skn �̂hmhn (M2

Hk
) is again re-defined by a shift of two-

loop order absorbing such dependence. This can be achieved
in the context of a THDM+SUSY with tree-level fields H̄k

absorbing both the tree-level rotation by Un and the loop-
level rotation by S of the MSSM. Still, the imaginary parts
in S induce further complications for the mapping, so that
the complex rotation S is conveniently replaced by a real
rotation S′ minimizing the size of the off-diagonal term in
S′ ·M2 eff ·S′T . Again, the form of the Higgs potential should
be carefully chosen so that mass corrections are appropriately
mapped.

Having defined the external states in an explicitly gauge-
invariant way, we may now consider the decay amplitudes.
In the ‘truncation’ approach, one can define the gauge-
independent object as

Ã[Hk → XX ]

= Ski

{
Atree[hi → XX ]

[
1 − 1

2

d�̂hi hi

dp2

]

−Atree[hl → XX ]
�̂hi hl − �̃eff

hi hl

m2
hi

− m2
hl

+ Avert[hi → XX ]

}

p2=m2
hi

(13)
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where �̃eff
hi hl

= �̃hi hl

(
1
2 (m2

hi
+ m2

hl
)
)

if both hl and hi

belong to the same degenerate subsystem, and �̃eff
hi hl

= 0
otherwise. Alternatively, it is again possible to embed the
Higgs masses in an on-shell model with SUSY matter con-
tent. The only difference with respect to the non-degenerate
case is that in the on-shell model, the S(′)-rotation must be
included in the definition of the mixing matrixUn → S(′)·Un ,
so that the tree-level fields differ in the SUSY model and its
on-shell counterpart.

We illustrate this discussion for the degenerate case with
Fig. 4. We consider a CP-violating scenario with tβ = 30,
mH± = 0.5 TeV, mSUSY = 1 TeV, At = 3 TeV, ϕAt ∈[
0, π

2

]
– likely to exhibit several phenomenological short-

comings (e.g. direct searches for heavy Higgs bosons [8],
B-meson decays [58], electric dipole moments [59]), but
solely presented here in order to exemplify the impact of
gauge dependence in degenerate systems. The phase of the
trilinear stop couplings induces a mixing between the (tree-
level) CP-even and CP-odd neutral heavy-doublet compo-
nents, which are close in mass due to the SU (2)L-symmetry.
This CP-violating mixing strictly appears at the radia-
tive level (the tree-level MSSM Higgs sector is still CP-
conserving) and does not involve the gauge sector: the mix-
ing term is thus automatically ξ -independent, without need
of further manipulations. We then consider the effective mass
matrix M2 eff of Eq. (12) and compare the mixing with the
mass-splitting between the diagonal entries: this is depicted
in the plot in the upper left-hand quadrant. The degeneracy
at the tree level (green curve) is partially lifted by the diag-
onal loop corrections (blue curve), but the mixing (orange
curve) still competes in the vicinity of ϕAt ∼ 0.5. We then
introduce the rotation matrix S (we omit ′) that minimizes
the size of the off-diagonal entry of M2 eff. It is clear that
a complex matrix S could fully diagonalize M2 eff. How-
ever, in order to recast the system onto an effective THDM
(see Fig. 5), it is more convenient to introduce a real orthog-
onal S, so that a subsidiary off-diagonal piece remains as
a tribute to the imaginary parts in M2 eff. As is shown on
the upper right-hand side of Fig. 4, this term is subleading
and can be neglected in the mass determination. Next, we
focus on the point ϕAt = 3 π

20 , where S shows a mixing
angle of about π

4 . The plots in the lower row of Fig. 4 illus-
trate the ξ -dependence in the mass determination. The dot-
ted lines correspond to the tree-level masses. The solid lines
correspond to the eigenvalues of the (2 × 2) mass system
while the dashed lines are obtained from the diagonal entries
after rotation by the (gauge-independent) matrix S: the good
agreement between both approaches proves the reliability of
the second one. Then, the horizontal lines are obtained from
the effective mass matrix M2 eff and are, by construction, ξ -
independent. The curves showing a ξ -variation are obtained
by retaining full momentum dependence in the MSSM self-

energies: as before, this approach is both gauge dependent
and renormalization-scheme dependent – the latter is made
obvious by the impact of the renormalization scale μdim. If
the amplitude of the variations in ξ and μdim is interpreted as
the uncertainty on the electroweak corrections, we see that
the latter represents a non-negligible fraction of the mass shift
between tree-level and one-loop result, which is problematic.
At low ξ , the scale variation of the masses still reaches ∼ 50%
of the size of the loop-corrected mass-splitting.

In Fig. 5, we extend the calculation to a THDM+SUSY
framework as explained in appendix B, so that the self-
energies can receive loop-corrected mass values as exter-
nal momenta without violating the gauge symmetry. Due to
the degeneracy in the MSSM, the S rotation is included in
the definition of the tree-level Higgs fields of the THDM.
The parameters of the tree-level Higgs potential are defined
from the loop-corrected mass values according to Eq. (46),
together with the (arbitrary) constraints λ1 ≡ λ2, λ

r,i
6 ≡ 0

and λr7 ≡ 0. The scale μmap encodes the arbitrariness in
the associated renormalization conditions and can be seen
as a measure of the uncertainty associated with the mapping
procedure. The resulting self-energies in the THDM are ξ -
independent and differ from the MSSM ones by a shift of
two-loop order. The associated masses are obtained at the
strict one-loop order from the THDM self-energies project-
ing onto the tree-level Higgs-field directions of the THDM
(the off-diagonal term is subleading by construction): they
are displayed in dashed orange/brown and show a variation of
∼ 0.5 GeV for μmap ∈ [MW ,mSUSY]. This uncertainty, from
which electroweak-violating effects have been cleansed, is
roughly comparable to the one observed in Fig. 4 which is
triggered by ξ -dependent contributions. The iteration proce-
dure is stable (the shift is hardly noticeable after one itera-
tion). Finally we note that the mass values are consistent with
those of the truncation method (solid blue lines).

Finally, in Fig. 6, we present the Higgs decay widths into
the bb̄ final state. In the plot on the left-hand side, we compare
the decay widths obtained in a purely perturbative expan-
sion – i.e. without resumming the CP-violating mixing –
and those derived with the mixing formalism of Eq. (13).
The latter are depicted in dashed green and dotted red for
the two mixed states H2 and H3, while the former are shown
in blue and dashed orange for the CP-even and the CP-odd
Higgs respectively. The SU (2)-symmetry (albeit mH±/v is
not so large) results in very close predictions for all these
widths. In fact, one needs to consider the differences of
widths – i.e. measurements of the SU (2)L-violation, a fac-
tor 103 smaller – in order to see the deviation between the
perturbative and mixing descriptions, see the lower plot. The
impact of the mixing on the decay widths thus remains very
mild in the whole parameter space considered in this sce-
nario. The reason is that the scalar and pseudoscalar Hbb̄
operators hardly interfere. While, strictly speaking, the mix-
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Fig. 4 The mass determination is illustrated in the MSSM for the
degenerate (H, A) pair with CP-violation. tβ = 30, MH± = 0.5 TeV,
mSUSY = 1 TeV, At = 3 TeV, ϕAt ∈ [

0, π
2

]
(upper row), then

ϕAt = 3 π
20 ≈ 0.47. Upper left: The mass-splitting vs. mixing is shown:

in green, the mass-splitting between the CP-even and CP-odd heavy
scalars at the tree level; in blue, the mass-splitting between the two
diagonal entries of the effective mass matrix, as defined in Eq. (12); in
orange, the mixing term of Eq. (12) (in absolute value). Upper right:
The mass-splitting vs. mixing is shown after rotation by an appropri-
ate real orthogonal matrix: in green, the splitting between the diagonal
elements of the rotated effective mass matrix M2 eff

R = S · M2 eff · ST ;
in orange, the magnitude of the subsisting off-diagonal element – the

effective mass matrix being complex, it cannot be fully diagonalized
by a real orthogonal matrix, but the off-diagonal element can be min-
imized. Lower left: the mass determination is shown for ϕAt = 3 π

20 ,
μdim = mt : the tree-level masses are shown in dotted gray and black;
the eigenvalues of the effective mass matrix are shown in shades of blue;
the diagonal elements of the rotated effective mass matrix are shown in
dashed brown/orange; the poles retaining full momentum dependence in
the MSSM self-energies are shown in green; the corresponding diagonal
elements after rotation are shown in purple. Eigenvalues and diagonal
elements after rotation essentially coincide, resulting in pairs of curves
overlapping each other. Lower right: the mass determination is shown
for ϕAt = 3 π

20 , μdim = mSUSY (identical color code)
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Fig. 5 The mass determination is shown for the degenerate (H, A) sys-
tem of Fig. 4 with ϕAt = 3 π

20 through a mapping of the Higgs self-
energies onto a THDM+SUSY model. The dotted lines correspond
to the (MSSM) tree-level values and the horizontal blue lines to the
MSSM loop-corrected evaluation employing Eq. (12). The dashed lines
are obtained with self-energies that are calculated in a THDM where
the Higgs potential takes tree-level masses that coincide with the loop-
corrected mass value that are injected as external momenta and tree-
level fields including the S rotation. The parameters of this THDM are
determined from the conditions of Eq. (46) together with the (arbitrary)
constraints λ1 ≡ λ2, λ

r,i
6 ≡ 0, λr7 ≡ 0. The dependence on μmap orig-

inates in the freedom of scheme for the fixing of the renormalization
conditions of these Higgs-potential parameters and can be seen as a
symmetry-conserving uncertainty on the mass-determination

ing formalism is only needed in the middle region – where the
off-diagonal self-energy is comparable to the diagonal mass-
splitting – it remains legitimate in the whole range of ϕAt

because |m2
H −m2

A| ∼ |�̂HH (m2
H ) − �̂AA(m2

A)| = O(1L).
On the other hand, the strict perturbative approach is a priori
insufficient in the middle range of ϕAt , but performs quite
well numerically in this example. On the right-hand side, we
compare the predictions of Eq. (13) with those of the mix-
ing formalism associated with an iterative pole search (as
in e.g. Refs. [17,18]), for the point ϕAt = 3 π

20 with near-
maximal mixing. Again the SU (2)L-symmetry results in
very close predictions between the widths for the two states
H2 (in solid lines) and H3 (in dashed lines). Similarly to the
masses, the widths obtained with the iterative pole-search
procedure are sensitive to gauge and field-renormalization
variations, these causing an uncertainty of O(5%) for ξ � 5,
comparable to the magnitude of electroweak (non-SUSY)
1L contributions. The width obtained with Eq. (13) is by

construction independent from these computational artifacts.
We observe an agreement within a few percent with the pre-
dictions of the pole-search formalism at ξ = 1, within the
uncertainties from gauge and scale variations of this method.
In any case, in such a strong mixing configuration where the
two diagonal entries are almost degenerate at the 1L order, 2L
corrections may significantly alter the quantitative features
of the mixing.

Another mixing scenario in the NMSSM is presented in
appendix D, in a less symmetric configuration involving a
singlet and a doublet CP-even Higgs.

As a concluding remark on the gauge dependence, we have
seen that the higher-order terms introduced in the determina-
tion of observable quantities, via e.g. not expanding and trun-
cating the momenta in the radiative corrections, are liable to
spoil the quality of these calculations. We note, however, that
sizable deviations from gauge-independent definitions only
appear for large values of the gauge-fixing parameter. In par-
ticular, the choice ξ = 1 always seems to produce results that
are ‘accidentally’ close to the gauge-independent definitions,
so that the impact of the gauge dependence should remain
small at the numerical level for calculations performed in the
’t Hooft–Feynman gauge. Nevertheless, the explicit depen-
dence on the field renormalization – associated with the UV-
regularization of self-energies away from their mass shell –
obviously makes noticeable contributions to the theoretical
uncertainty.

3 Logarithms in loop-order Higgs mixing

The analysis of the gauge dependence in Higgs decays has
shown that splitting the loop corrections between mixing and
vertex contributions to the decay amplitudes is a purely arti-
ficial procedure – which was already clear from the fact
that it is scheme dependent. While this separation is not
a fundamental problem per se, it could lead to misleading
results through the inclusion of incomplete higher orders.
We aim to illustrate this below by comparing decay ampli-
tudes in the limit of heavy-doublet states, at a scale where
the electroweak-violating effects are subleading, hence the
global SU (2)L-symmetry should be approximately satisfied
(up to breaking terms scaling with v and suppressed by the
heavy Higgs mass). While very large values of mH± ∼ 10–
100 TeV are currently of limited phenomenological interest,
the purpose in investigating this regime consists in identify-
ing spurious SU (2)L-violating artifacts induced by the for-
malism – i.e. not controlled by the spontaneous breaking of
the electroweak symmetry. Once these unphysical effects are
exposed and corrected, the impact on the predictions at the
TeV-scale is found to be non-negligible, i.e. comparable to
the size of the EW corrections themselves or of 2L correc-
tions.

123



Eur. Phys. J. C (2020) 80 :1124 Page 17 of 40 1124

Fig. 6 The decay widths for the bb̄ channel in the scenario of Fig. 4
are shown. Upper left: The predictions of Eq. (13) for the decays of
the CP-admixtures H2,3 (dashed green and dotted red) are compared to
the widths obtained with a perturbative treatment of the CP-violating
mixing (blue and dashed orange). All are almost identical. Lower left:
The difference between the predicted decay widths in the perturbative
(solid blue) and mixing (dashed orange) description is depicted. Right:

The gauge- and field-renormalization dependence of the decay widths
obtained with Eq. (13) (green and dashed red) and with the mixing for-
malism associated to an iterative pole search (purple and dashed orange
for field counterterms at the scale mt ; blue and dashed brown for field
counterterms at the scale mSUSY) are shown. Due to the SU (2)L sym-
metry, the curves appear in overlapping pairs

3.1 Fermion-loop contributions to the Higgs mixing

For simplicity, we consider the MSSM with decoupled SUSY
particles and mH± much above the electroweak scale. This
is akin to a THDM framework of type II in the decoupling
limit. In particular, the mixing in the tree-level Higgs sector
can be approximated by a β-angle rotation:

(
h
H

)
≈
(
cβ sβ
sβ −cβ

)(h0
d

h0
u

)
,

(
G0

A

)
=
(−cβ sβ

sβ cβ

)(a0
d

a0
u

)
,

(
G±
H±

)
=
(−cβ sβ

sβ cβ

)(H±
d

H±
u

)
, (14)

where h0
u,d , a0

u,d and H±
u,d are the CP-even, CP-odd and

charged Higgs fields (respectively) in the gauge-eigenstate
basis. In addition,mH± ≈ mH ≈ mA 
 mh ≈ MZ . We will
exploit this approximation below for the purpose of deriving
simple analytical formulae capturing the main features of the
calculation, although our numerical results still consist in a
full calculation of one-loop order.

We further target corrections associated with quark Yukawa
couplings of the third generation Yt,b, i.e. top and bottom

loops. For a heavy SUSY sector, the sfermion loops con-
tributing at the same order can be regarded as constant with
respect to variations of the Higgs external momentum p, and
we do not document them further (though they may involve
large logarithms of the form lnm2

SUSY/M2
EW). As before, we

work in a scheme where the charged-Higgs mass, as well as
the W -, Z -, and fermion masses are renormalized on-shell,
while other parameters receive a DR-renormalization with
the ultraviolet regulator set to mt .

The leading contributions to the renormalized Higgs self-
energies can be summarized as follows:

�̂hh
(
p2) � − 3

16π2

(
Y 2
t s2

β + Y 2
b c2

β

)
p2 ln

p2

M2
EW

, (15a)

�̂HH
(
p2) � �̂AA

(
p2) � �̂H+H−

(
p2)

� − 3

16π2

(
Y 2
t c2

β + Y 2
b s2

β

) (
p2 − m2

H±
)

ln
p2

M2
EW

,

(15b)

�̂Hh
(
p2) � −�̂AG0

(
p2) � −�̂H+G−

(
p2)

� 3

16π2

(
Y 2
t − Y 2

b

)
sβ cβ p2 ln

p2

M2
EW

. (15c)
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Here, terms ∝ v2 are neglected, unless p2 is set to a value
of electroweak magnitude (like in �̂hh

(
p2
)

for the determi-
nation of Mh). The scale M2

EW ∼ M2
W ∼ M2

Z ∼ m2
t is

characteristic of the scheme.
From Eq. (15), we can extract the leading contributions

to the heavy Higgs masses and mixing. In the considered
scheme (with the charged Higgs renormalized on-shell),
these one-loop corrections to the masses are of subleading

order O
(
Y 2
t,b M

2
EW/(16 π2)

)
in the limit M2

EW � m2
H± . On

the other hand, the contributions to the wave-functions and
mixing of the heavy-doublet states can be sizable and matter
at the level of the Higgs decays:

−1

2

d�̂HH

dp2

(
p2 ∼ m2

H±
) � −1

2

d�̂AA

dp2

(
p2 ∼ m2

H±
)

� −1

2

d�̂H+H−

dp2

(
p2 ∼ m2

H±
)

� 3

32 π2

(
Y 2
t c2

β + Y 2
b s2

β

)
ln

m2
H±

M2
EW

,

(16a)

− �̂Hh
(
p2
)

p2 − m2
h

∣∣∣∣∣
p2∼m2

H±

� 1

p2 �̂AG0
(
p2)

∣∣∣∣
p2∼m2

H±

� 1

p2 �̂H+G−
(
p2)

∣∣∣∣
p2∼m2

H±

� − 3

16 π2

(
Y 2
t − Y 2

b

)
sβ cβ ln

m2
H±

M2
EW

.

(16b)

It is common practice [17,22] to include the wave-function
corrections and the mixing in the CP-even sector within a
loop-corrected mixing matrix, while the mixing with the
Goldstone bosons is kept separately at the diagrammatic
level. One could regret that the SU (2)L-symmetry is thus
explicitly broken by the formalism, but this should not
be cause for any inconsistency, in principle. The motiva-
tion behind absorbing the Higgs mixing within the defini-
tion of the external field rests with a resummation of mix-
ing effects in the case where tree-level states are almost
degenerate. The physical heavy-doublet field is then defined
as h2 = Z21 h + Z22 H = ZH [ζHh h + H ] with Z ≡
(Z21, Z22)

T being an eigenvector of the effective mass matrix
[m2

h j
δ jk − �̂h j hk (p

2)], j, k ∈ {1, 2}, for the eigenvalue

p2 = M2
H and satisfying the normalization condition ZT ·[

1 + �̂′
h(M

2
H )
]· Z = 1. At the order considered in Eq. (15),

we have

ZH ≈ 1 + 3

32 π2

(
Y 2
t c2

β + Y 2
b s2

β

)
ln

m2
H±

M2
EW

,

ζHh ≈ − 3

16 π2

(
Y 2
t − Y 2

b

)
sβ cβ ln

m2
H±

M2
EW

. (17)

Similarly, the fields of the CP-odd and charged Higgs receive
loop corrections according to A → ZA A and H± →
ZH± H± with ZA � ZH � Z±

H , while the mixing with
the Goldstone bosons is kept apart. Below, we continue to
use the notations h ∼ h1 or H ∼ h2 indifferently.

3.2 Two-loop O
(
Y 4
q

)
corrections to the Higgs masses

The choice of processing the mixing in the CP-even sector
differently than in the CP-odd or charged sectors intervenes
first at the level of the mass calculation, when corrections
of two-loop order are considered. Indeed, the off-diagonal
corrections of one-loop order contribute only from this order

on, but the two-loop effects of O
(
Y 4
q

)
belong to those that

are commonly included in the mass determination. From the
perspective of an expansion up to the two-loop order one has

M2
hi = m2

hi −
⎡
⎣�̂1L

i i

(
m2

hi

)
+ �̂2L

i i

(
m2

hi

)

− �̂1L
i i

(
m2

hi

) d�̂1L
i i

dp2

(
m2

hi

)

−
∑
j �=i

�̂1L
i j

(
m2

hi

)
�̂1L

j i

(
m2

hi

)

m2
hi

− m2
h j

⎤
⎦ . (18)

We expect the mass-splitting between heavy-doublet
states to be protected by the SU (2)L-symmetry, i.e. contribu-
tions of order m2

H±
{
ln2

(
m2

H±/M2
EW

)
, ln

(
m2

H±/M2
EW

)
, 1
}

should disappear in the mass difference, leaving only terms
of the form M2

EW

{
ln2

(
m2

H±/M2
EW

)
, ln

(
m2

H±/M2
EW

)
, 1
}
.4

As the charged Higgs mass is renormalized on-shell in our
scheme, the radiative corrections should satisfy the above
property directly at the level of the renormalized self-energies
– i.e. the counterterms should automatically remove the
SU (2)L-symmetry-violating terms.

Let us first examine the genuine diagonal two-loop piece
�̂2L
i i .5 As the two-loop electroweak calculation is incomplete

in the MSSM,6 we work in the gaugeless limit in this sec-
tion. The full two-loop self-energy �̂2L

i i can be decomposed
into several contributions, starting with genuine one-particle
irreducible (1PI) two-loop self-energy diagrams �

2L,1PI
i i ,

4 Terms scaling like mH± MEW do not appear from contributions of
Yukawa type.
5 In the following we refer to the momentum-dependent contributions
by top and bottom quarks; in the collection of two-loop contributions,
we also display the contributions by stops and sbottoms that have been
derived in [60–62].
6 The full two-loop gauge contributions are known for scalar parti-
cles [36], but the two-loop self-energies for the gauge bosons that are
needed for the counterterms in the Higgs sector to connect to observ-
ables are not yet available.
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1PI one-loop self-energy diagrams with counterterm inser-
tion �1L×CT

i i , two-loop counterterm diagrams involving a
pair of one-loop counterterms �CT×CT

i i and the genuine two-

loop counterterm contribution �
2L,CT
i i . In the gaugeless limit

and in our renormalization scheme, the counterterms to the
non-expanded heavy neutral self-energies are exactly equal
to the on-shell charged self-energy that can be decomposed
in the same way; thus, the renormalized self-energies are
given by �̂2L

i i = �
2L,1PI
i i − �

2L,1PI
H+H− + �1L×CT

i i − �1L×CT
H+H− +

�CT×CT
i i − �CT×CT

H+H− (see below for additional counterterms
once the one-loop squared terms are included). Each piece
can be expanded in the heavy-mass limit, providing the fol-

lowing leading terms of O
(
Y 4
q

)
:7

�
2L,1PI
i i,H+H−

(
M2

)
∼ 3

512 π4

[
3Y 4

t c2
β

(
4 c2

β − 1
)

+3Y 4
b s2

β

(
4 s2

β − 1
)

− Y 2
t Y 2

b

]
M2 ln2 M2

M2
EW

, (19a)

�1L×CT
i i,H+H−

(
M2

)
∼ 3

1024 π4

{
3Y 4

t c2
β

(
1 + 3 δOS,1

mt
c2
β

)

+ 3Y 4
b s2

β

(
1 + 3 δOS,1

mb
s2
β

)
+ Y 2

t Y 2
b

[
3
(

1 + 3 c2
β

)
δOS,1
mt

+3
(

1 + 3 s2
β

)
δOS,1
mb

+ 1
]}

M2 ln2 M2

M2
EW

, (19b)

�CT×CT
i i

(
M2

)
= �CT×CT

H+H−
(
M2

)

∼ − 9

512 π4

(
Y 2
t c2

β + Y 2
b s2

β

)
M2 ln2 M2

M2
EW

, (19c)

where δ
OS,1
mt = 1 = δ

OS,1
mb are related to the DR/on-shell con-

version of fermion masses. The convergence of this expan-
sion is illustrated on the left-hand side of Fig. 7 for both
�

2L,1PI
i i and �1L×CT

i i , considering only the terms of order
Y 4
t , at tβ = 3. TwoCalc [34] and TLDR [36] have been uti-

lized for analytical manipulations of the two-loop diagrams,
and numerical results for the two-loop integrals are obtained
via TSIL [35]. These terms are exactly mirrored by the cor-
responding contributions to the charged Higgs self-energy
which, in our renormalization scheme, appears in the two-
loop counterterms to the neutral self-energies. The resulting
cancellation is shown on the right-hand side of Fig. 7, resiz-
ing the diagonal contributions to the renormalized Higgs self-
energies to electroweak magnitude (as we expected).

Now, let us turn to the one-loop squared terms of Eq. (18).
The diagonal one, �̂1L

i i d�̂1L
i i /dp2, obviously satisfies the

property that we stated before: when replacing the renor-
malized one-loop self-energies by their approximate expres-

7 The coefficients in the expansion of the occurring two-loop integrals
have mostly been determined by numerical methods with the help of
TSIL [35]; some analytic expansions were performed with methods of
Refs. [63,64].

sions of Eq. (15), we find only terms of electroweak size.
The off-diagonal term (last term of Eq. (18)) behaves differ-
ently, however, and generates a leading contribution of order
m2

H± ln2
(
m2

H±/M2
EW

)
:

∑
j �=i

�̂1L
i j

(
m2

hi

)
�̂1L

j i

(
m2

hi

)

m2
hi

− m2
h j

≈
[

3

16 π2

(
Y 2
t − Y 2

b

)
sβ cβ

]2

m2
H± ln2 m2

H±

M2
EW

. (20)

This applies to the CP-even sector (hi ≡ H , h j �=i ≡ h),
but also to the CP-odd (hi ≡ A, h j �=i ≡ G0) and charged
(hi ≡ H±, h j �=i ≡ G±) ones, so that the SU (2)L-symmetry
is still not (strongly) violated. In the renormalization scheme
under consideration, with an on-shell charged Higgs, this also
means that the two-loop counterterm contribution �

2L,CT
i i

should contain the term −�̂1L
H+G− �̂1L

G+H−/m2
H± , and bal-

ance the one-loop squared term directly at the level of the
renormalized self-energy. To be explicit, the renormalization

condition �e
[
�̂H+H−

(
m2

H±
)] = 0 should be applied to the

full expression, including off-diagonal contributions, at each
order of the loop expansion. At the two-loop order, this fixes
the on-shell counterterm to

δ2Lm2
H± =

[
�2L

H+H−
(
m2

H±
)

− �̂1L
H+H−

(
m2

H±
) d�̂1L

H+H−
dp2

(
m2

H±
)

− �̂1L
H+G−

(
m2

H±
)
�̂1L

G+H−
(
m2

H±
)

m2
H± − m2

G±

]
. (21)

The renormalization scheme at the one-loop order is not
repeated here (see e.g. Ref. [40]). We note that – although

�e
[
�̂1L

H+H−
(
m2

H±
)]

is requested to vanish – the term of the

momentum expansion,

�e
[
�̂1L

H+H−
(
m2

H±
)
d�̂1L

H+H−/dp2
(
m2

H±
)]

, still contributes

a finite shift due to the imaginary parts (see e.g. Ref. [49]
for details). In addition, m2

G± = 0 in the gaugeless limit (we

remind the reader that �̂1L
H±W∓ and �̂1L

AZ also vanish in this
approximation), while in the presence of gauge contributions
the combination of the mixings with gauge and Goldstone
bosons also restores the denominator 1/m2

H± , as explained
in Refs. [17,22] for the neutral case.8

8 In the MSSM with real parameters, another popular renormaliza-
tion condition consists in requiring an on-shell CP-odd Higgs instead
of an on-shell charged Higgs; in that case, the renormalization condi-
tion implies similar contributions to the mass counterterm, containing
the off-diagonal self-energy �̂AG0 squared. If neither the charged nor
CP-odd Higgs are renormalized on-shell, the off-diagonal self-energy
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Fig. 7 Contributions of order Y 4
t (by fermion loops) to the diagonal

self-energies of heavy-doublet Higgs states are displayed. tβ = 3 and
the SUSY sector is decoupled (at a scale of 200 TeV). Plots on the left-
hand side show the convergence of the expansion in M2

EW/p2, with
p2 ∼ M2

H± . For the case of two-loop integrals, we only extracted ana-
lytically the logarithmic terms, which is why there is no solid red line in
the lower plot. Plots on the right-hand side show the cancellation with
corresponding charged-Higgs self-energies, intervening in the countert-
erm. Resulting diagonal contributions to the CP-even (blue) or CP-odd

(green) self-energies are of electroweak size. The numerical evaluation
of the two-loop self-energies has been achieved with TSIL. The wig-
gles for MH± ≥ 50 TeV in the plot in the lower right-hand quadrant
shows that TSIL becomes unstable in this regime. The corresponding
instabilities appear at much lower mass values (∼ TeV) for the contri-
butions of the bottom quark, justifying our choice of displaying only
the order Y 4

t and considering the low value of tβ = 3, where the bottom
contributions are suppressed

A problem arises when the off-diagonal contribution to
the charged-Higgs mass counterterm is overlooked, as seems
to have been the case in some earlier calculations – see
e.g. Eq. (11) in [49] – , leading to an explicit violation of

the SU (2)L-symmetry and an inconsistent order O
(
Y 4
q

)
.

While this issue is made obvious for heavy-doublet states
by the analysis of logarithms, it actually points at a concep-
tual shortcoming in the mass calculation for all Higgs states.
Even in a calculation of one-loop order, the partial inclusion
of the CP-even off-diagonal contribution, but not of the cor-
responding Higgs–Goldstone mixing in the charged and/or
CP-odd sector, in fact worsens the quality of the mass pre-
diction for the heavy states with respect to a simple trun-

Footnote 8 continued
squared terms continue to explicitly appear in the radiative corrections
to each individual propagator, still subtracting one another at the level
of the mass-splitting.

cation at strict one-loop order, since it introduces unwar-
ranted SU (2)L-violating effects. This is what causes the shift
between the green and orange lines in the middle plot of
Fig. 1 for mH± = 1 TeV, as we already commented, an effect
competing with the O(αtαs) corrections to MH and which
is usually ‘hidden’ in the pole-search procedure. Neverthe-
less, the charged Higgs counterterm has a limited impact on
the mass prediction for the SM-like Higgs in general, due
to the decoupling of this latter state from the heavy doublet.
Therefore, only in scenarios where mH± ∼ v and a large
h–H mixing develops could this issue have any numerical
consequences for Mh , but we note that there is no longer any
logarithmic enhancement in such scenarios either. In addi-
tion, the partial result obtained in the gaugeless limit is not
really suited to explore such configurations.

In Fig. 8, we first consider the squared mass-splitting
between the heavy-doublet states of the scenario of Fig. 7.
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Fig. 8 Contributions to the squared mass-splitting for the heavy-
doublet states in the scenario of Fig. 7. Upper left: One-loop and O(Y 4

q )

two-loop contributions to the squared mass-splitting between the CP-
even and charged Higgs in FeynHiggs-2.16.0 (orange), in our
calculation (solid blue), and omitting the off-diagonal contribution to
Eq. (21) (dotted blue). Upper right: One-loop and O(Y 4

q ) two-loop con-
tribution to the squared mass-splitting between the neutral (CP-even:
solid blue; CP-odd: dotted blue) and charged Higgs; the leading one-
loop contribution from gauge corrections is shown in green; Middle
left: Contributions to the CP-even self-energy beyond the leading one-

loop term from gauge corrections; subleading one-loop contributions in
green; two-loop O(Y 4

q ) contributions in the effective potential approxi-
mation (black), and in the gaugeless limit (blue); Middle right: Contri-
butions of order O(Y 4

q ) to the CP-even self-energy; SUSY and bottom
(black), and top (blue) diagonal two-loop pieces; diagonal one-loop
squared piece (green); off-diagonal one-loop squared piece (orange);
Bottom left and right: As middle left and right but applied to the CP-
odd state. The two-loop contribution to the diagonal self-energy in the
gaugeless limit is only displayed up to 50 TeV in order to avoid numer-
ical instabilities
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The plot on the left-hand side of the first row shows this
squared mass-splitting for the heavy CP-even and charged
Higgs. The result of FeynHiggs-2.16.0 [40,49,51,65–
69] with the settingFHSetFlags[4,4,0,1,0,0,0,3]
is displayed in orange and shows a comparatively large and
growing squared mass-splitting. Our result is the solid blue
curve, corresponding to considerably smaller values. We
are able to roughly reproduce the result of FeynHiggs
when omitting the off-diagonal self-energy-squared term
in the mass counterterm of Eq. (21) (dotted blue line; also
the CP-even mixing is then included in the pole search).
This mismatch is thus explained by the large SU (2)L-

violating terms of order O
(
Y 4
q

)
scaling like m2

H±
{

ln2

(
m2

H±/M2
EW

)
, ln

(
m2

H±/M2
EW

)
, 1
}

that have been erro-
neously introduced in the calculation. It is remarkable that
these ‘wrong’ two-loop effects then dominate the one-loop
corrections, which, in our prediction, explain most of the
squared mass-splitting. The plot on the right-hand side exam-
ines our result more closely. The bulk of the variation both
in M2

H −M2
H± and M2

A−M2
H± originates in one-loop effects

of gauge type, dominated by a term scaling linearly with the
mass of the heavy doublet, ∼ α MZ mH± (plotted in green).
The following plots further analyze the remainder in the CP-
even (second row) and the CP-odd cases (third row). On the
left, we compare the magnitude of the remaining one-loop
contributions (i.e. beyond the gauge term scaling linearly;

in green), the two-loop corrections of order O
(
Y 4
q

)
in the

effective-potential approximation (black curves) and in the
gaugeless limit (blue curves). It thus appears that the gen-

uine effects of O
(
Y 4
q

)
are considerably smaller than what

the off-diagonal contribution in the CP-even sector hinted.
In addition, we note that the two-loop terms obtained in
the effective potential approximation are ∼ 30% away from
those obtained in theapriorimore complete gaugeless limit.9

Finally, the plots on the right-hand side of Fig. 8, second and
third row, show the individual contributions to the two-loop

self-energies of orderO
(
Y 4
q

)
as listed in Eq. (18): each piece

remains of electroweak order as could be anticipated.
As a closing remark, we note that, while the order Y 4

q
is known, it may not be the most relevant type of two-
loop contribution for heavy-doublet states. Indeed, already
at the one-loop order we mentioned that the radiative cor-
rections to the squared masses are dominated by a lin-
ear term ∼ α MZ mH± due to electroweak gauge effects.
It is thus likely that two-loop corrections to the masses
of the heavy doublets are dominated by contributions of

9 We stress that these two-loop contributions contain large logarithms
of the type ln(m2

q̃/M
2
EW) in our scenario with a heavy SUSY spectrum;

the threshold corrections for the heavy SUSY sector are explained for
a SM-EFT matching in Refs. [70–76], and for a THDM-EFT matching
in Refs. [77–82], but this feature goes beyond the scope of this article.

the same type, i.e. by momentum-dependent electroweak
effects. This does evidently not spoil the relevance of
our previous remarks as to a consistent treatment of the
one-loop squared term, since the ‘erroneous’ terms of
order Y 4

q m2
H±

{
ln2

(
m2

H±/M2
EW

)
, ln

(
m2

H±/M2
EW

)
, 1
}

first
need to be put under control before the linear contribution
becomes apparent.

3.3 Application to the decays into quarks

Now, we focus on the decays H, A → t t̄ , H+ → tR b̄L,
processes that are mediated through Yt at the tree level. The
vertex corrections at the same order as considered in Eq. (15)
read

Avert
[
H, A → t t̄

]

Atree
[
H, A → t t̄

] � Avert
[
H+ → tR b̄L

]

Atree
[
H+ → tR b̄L

]

� − 1

16 π2 Y 2
b c2

β ln
m2

H±

M2
EW

. (22)

Following the LSZ reduction, we then add the contributions
from self-energy diagrams on the Higgs leg, provided by
Eq. (16), and obtain at the one-loop order:

A1L[H → t t̄
] = Atree[H → t t̄

]+ Avert[H → t t̄
]

− �̂Hh
(
M2

H

)

M2
H − m2

h

Atree[h → t t̄
]

− 1

2

d�̂HH

dp2

(
M2

H

)Atree[H → t t̄
]
, (23a)

A1L[A → t t̄
] = Atree[A → t t̄

]+ Avert[A → t t̄
]

− �̂AG0
(
M2

A

)

M2
A

Atree[G0 → t t̄
]

− 1

2

d�̂AA

dp2

(
M2

A

)Atree[A → t t̄
]
, (23b)

A1L[H+ → tR b̄L
] = Atree[H+ → tR b̄L

]

+ Avert[H+ → tR b̄L
]

− �̂H+G−
(
m2

H±
)

m2
H±

Atree[G+ → tR b̄L
]

− 1

2

d�̂H+H−

dp2

(
m2

H±
)Atree[H+ → tR b̄L

]
, (23c)

⇒ A1L
[
H → t t̄

]

Atree
[
H → t t̄

]

� A1L
[
A → t t̄

]

Atree
[
A → t t̄

] � A1L
[
H+ → tR b̄L

]

Atree
[
H+ → tR b̄L

]

� 1 + 1

32 π2

[
3 Y 2

t

(
1 + s2

β

)
− Y 2

b

(
2 + s2

β

)]
ln

m2
H±

M2
EW

.

(23d)

The propagator in 1/p2 for the Goldstone bosons is justi-
fied by the combination with the weak gauge-boson effects
(see e.g. section 4.3 in Ref. [17]). We observe that (at the
considered order) the radiative corrections preserve the
SU (2)L-symmetry for the heavy-doublet states: their decay
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widths are identical at the tree level (up to corrections of
O
(
M2

EW/m2
H±
)
) and continue to be so at the one-loop order.

This is indeed what we expect for M2
EW � m2

H± : mas-
sive states are hardly sensitive to the electroweak symmetry-
breaking effects.

Obviously, we would formally obtain the same expan-
sion as that of Eq. (23) at this order when employing the
mixing formalism instead of the LSZ reduction. Therefore,
any deviation from comparable values in the decay widths
in the CP-even, CP-odd or charged sector would have to
originate in higher-order terms. Nevertheless, on the left-
hand side of Fig. 9, we observe a sizable mismatch between
the decay widths of the CP-even state (blue curves), on
the one hand, and the CP-odd (green) and charged Higgs
(orange), on the other hand, when employing the mixing for-
malism. This discrepancy increases at large masses, where
we would expect the SU (2)L-violating effects to become
smaller. The results of FeynHiggs (dotted curves) show a
similar behaviour but differ from ours (solid lines) because of
several higher order pieces (|Avert|2 in FeynHiggs, resum-
mation of Sudakov double logarithms on our side, etc.). At
this level, we are forced to consider the difference between
the blue and green curves of Fig. 9 as setting the magnitude of
the higher-order uncertainty in the calculation, an uncertainty
close to 100% at sufficiently high mass! Of course, the high-
mass regime is currently not so interesting phenomenologi-
cally, but our purpose in considering it is to test the robustness
of the combination of vertex and mixing pieces in a clearly
SU (2)L-conserving regime. In fact, the origin of this issue
entirely rests with the different procedures that are employed
in the CP-even, CP-odd and charged sectors in order to
include the loop corrections on the external Higgs leg. As
expected, these variants formally deviate by two-loop effects

of order O
(
Y 2
q αs

)
, which however prove to be numerically

significant. Indeed, the Higgs mixing in the CP-even sector
has been defined at the same level as the Higgs mass, i.e.
the Yukawa couplings are given at the electroweak scale, as
prescribed by the renormalization scheme. On the contrary,
in the CP-odd and the charged sectors, the Higgs mixing
is incorporated at the same time as the vertex corrections,
i.e. explicitly for the decay. At this level, the QCD analysis
(see e.g. Refs. [83,84]) makes it clear that QCD logarithms
can be resummed in the calculation of the inclusive width
(i.e. including gluon radiation) through the incorporation of
the QCD running in the Yukawa couplings up to the scale of
the decaying Higgs state: QCD logarithms are solely of ultra-
violet type at the level of the inclusive width. This justifies the
use of running Yukawa couplings defined at the high scale in
the decay width, and in particular in the CP-odd and charged
mixing contributions. As announced above, the latter thus
differ from the mixing contribution implemented in the CP-

even sector by terms of order O
(
Y 2
q αs

)
(and higher orders).

Consequently, the resulting SU (2)L-breaking effect is purely
artificial and of higher order. However, the QCD analysis
indicates that the recipe employed in the CP-odd or charged
Higgs decays is more reliable in this specific case than the
mixing procedure in the CP-even sector.

On the right-hand side of Fig. 9, the same decay widths
are shown, but with a consistent combination of mixing and
vertex contributions for all the states. Then the decay widths
for the CP-even and CP-odd states are roughly identical. A
small shift persists between neutral and charged states. The
latter has a physical meaning: it already appears in the coeffi-
cients of the Sudakov double-logarithms [23], which indeed
differ at the level of the exclusive widths (i.e. discarding
W - and Z -radiation, though inclusive with respect to QCD
and QED radiation), as a tribute to the SU (2)L ×U (1)Y →
U (1)em breaking. Coming back to the phenomenologically
relevant regime at MH± ∼ 1 TeV, we find that the decay
width of the heavyCP-even Higgs has been shifted by ∼ 30%
of the magnitude of the electroweak corrections after purging
the formalism from artificial SU (2)L-violating effects.

3.4 Application to the Higgs decays into weak gauge
bosons

The coupling of the heavy-doublet states to weak gauge
bosons vanishes in the decoupling limit. It is indeed diffi-
cult to build an electroweakly invariant operator coupling
exactly one doublet scalar to two triplet or singlet vectors:
this requires a breaking of the SU (2)L-symmetry, which, as
we argued before, should appear as a subleading effect for
states with a mass substantially larger than the electroweak
scale. Consequently, the decay widths for H, A → WW, Z Z
and H± → W±Z exactly or approximately (in the CP-even
case) vanish at tree-level. On the other hand the vertex cor-
rections involve fermion loops that lead to unsuppressed log-
arithms:

Avert[H → VV ]

� 3

16 π2

(
Y 2
t − Y 2

b

)
sβ cβ ln

m2
H±

M2
EW

Atree[h → VV ] , (24a)

Avert[A → VV ] � 0 , (24b)

Avert[H+ → W+Z
]

� − 3

16 π2

(
Y 2
t − Y 2

b

)
sβ cβ ln

m2
H±

M2
EW

Atree[G+ → W+Z
]
.

(24c)

The absence of a logarithmic contribution in the pseudoscalar
case points at an apparent deviation from the SU (2)L-
correspondence between the heavy-doublet states. In addi-
tion, the existence of logarithmic terms for the CP-even
and charged states contradicts our previous comment that,
in the SU (2)L-conserving limit, no operator mediating these

123



1124 Page 24 of 40 Eur. Phys. J. C (2020) 80 :1124

Fig. 9 Decay widths of heavy-doublet states into top quarks are shown
for tβ = 10 and mSUSY � 100 TeV. Left: The mixing contributions
to the CP-even channel are computed with Yukawa couplings at low
energy (to mimic the corresponding calculation in the mixing formal-
ism); other terms employ Yukawa couplings that include QCD-running
up to the scale of the decaying Higgs. Corresponding results from
FeynHiggs are shown as dashed curves for the neutral states – to

our knowledge, the corresponding order is not available for the charged
Higgs. Differences with our results (solid lines) originate in several
higher-order pieces (as we checked): mixing matrix vs. LSZ, inclusion
of a vertex2 term in FeynHiggs, resummation of Sudakov double
logarithms in our case. Right: Mixing and vertex contributions all con-
sistently employ Yukawa couplings including the QCD-running

decays can be written. However, the result is as yet incom-
plete at the considered one-loop order and should also include
the mixing contribution. Following Eq. (15), we have

Amix[H → VV ]

� − 3

16 π2

(
Y 2
t − Y 2

b

)
sβ cβ ln

m2
H±

M2
EW

Atree[h → VV ] ,

(25a)

Amix[A → VV ] � 0 , (25b)

Amix[H+ → W+Z
]

� 3

16 π2

(
Y 2
t − Y 2

b

)
sβ cβ ln

m2
H±

M2
EW

Atree[G+ → W+Z
]
.

(25c)

As expected, the contributions to the vertex in Eq. (24) and
to the mixing in Eq. (25) exactly cancel each other. On the
other hand, if mixing and vertex are not processed at the same
level, e.g. due to the use of different parameters at the loop
order, then the cancellation is imperfect and large spurious
effects, though formally of higher order, develop. Such mis-
leading effects are exacerbated for heavy states as the fine

cancellation between mixing and vertex encompasses orders
of magnitude. Unluckily, beyond the higher orders that are
inherent to the mixing formalism, explicit effects of higher
order, e.g. O

(
Y 2
t,b αs

)
, that are considered in the mass cal-

culation are also routinely included within the mixing in the
CP-even sector. Such terms are going to cause an imbalance
in the cancellation between vertex and mixing as long as
the vertex corrections are not known to the same order. We
illustrate this fact below.

In the upper row of Fig. 10, we present the decay width
of the heavy CP-even Higgs into W+W− for tβ = 10, con-

sidering only corrections of O
(
Y 2
q

)
. Again, we scan up to

mH± ∼ 100 TeV to set the calculation beyond doubt in an
SU (2)L-conserving regime. The plot on the left-hand side
shows the magnitude of the individual contributions to the
decay width in the strict LSZ expansion. The tree-level pre-
diction (dotted black) is smaller by orders of magnitude than
the mixing (orange) and vertex (dashed green) contributions
of one-loop order, which however largely compensate one-
another. As the sum of one-loop contributions (dot-dashed
red) is negative and larger in absolute value than the tree
level, the decay width at truncated one-loop order would be
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Fig. 10 Decay widths of heavy-doublet states into electroweak gauge
bosons are displayed for tβ = 10 and varying charged-Higgs mass
(the SUSY sector is decoupled). Upper left: Individual contributions

of order O
(
Y 2
q

)
to the decay of the heavy CP-even state; Born-level

(dotted black), mixing-Born interference (orange), vertex-born inter-
ference (absolute value, dashed green), (mixing+vertex)-Born interfer-
ence (absolute value, dot-dashed red), 1L2 term (dotted blue). Upper

right: Varying definitions of the decay width with O
(
Y 2
q

)
radiative

corrections; born-level (dotted black), full one-loop (including 1L2,
red), including the two-loop mixing effect of order O(Y 2

t,b αs
)

(dashed
orange). The green curve corresponds to the purely radiative decay
width of the CP-odd state. Lower left: Full one loop corrections to the
decay width H → W+W−; Born-level (dotted black), full one-loop
(solid green) obtained from a straightforward application of the LSZ
reduction, including also the 1L2 term (solid red); the loop-corrected
mixing matrix is employed for the dashed orange curve instead. Lower
right: Similar to lower left but applied to the channel H → Z Z
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negative at large Higgs masses. In this context, it is legit-
imate to include the one-loop squared piece (dotted blue;
here, the square of the full gauge- and field-renormalization
invariant amplitude of 1L order is meant), which is expected
to supersede the remaining contributions of two-loop order.
In the plot on the right-hand side, we display the tree-level
decay width (dotted black), and the width of one-loop order
including the 1L2 term (solid red). In dashed orange, the
two-loop O

(
Y 2
t,b αs

)
corrections to the mixing have been

included: the associated prediction is in excess by a factor
10 with respect to the one-loop result (red): however, this
enhancement is most likely not a genuine effect, but an arti-
fact caused by the non-cancellation of mixing and vertex
contributions of order O

(
Y 2
t,b αs

)
– since the corresponding

order has not been included in the vertex corrections. The
purely radiative �[A → W+W−] (in green) is shown as a
reference. This comparison indicates that the inclusion of a
partial order O

(
Y 2
t,b αs

)
in the mixing in fact worsens the

quality of the prediction for the decay width by introducing
large symmetry-violating effects (though formally of higher
order). It thus appears as misleading to process vertex and
mixing contributions in a decoupled way and introduce par-
tial higher orders, which are liable to violate the symmetries.

However, the mixing formalism introduces further higher-
order terms due to the factorization and resummation of mix-
ing effects in a loop-corrected mixing matrix. These contri-
butions are liable to blur further the fine cancellation resulting
from the symmetry requirements. In the lower row of Fig. 10,

we no longer restrict to the order O
(
Y 2
q

)
, but include the full

electroweak and SUSY corrections – the SUSY spectrum
is still at a scale of ∼ 100 TeV. We consider both the decay
widths for H → W+W− (left) and H → Z Z (right). The
one-loop corrections (green curves) can reach the magni-
tude of the Born-level amplitudes, and the one-loop squared
term may dominate the widths (red curves). However, these
decay widths obtained from the straightforward application
of the LSZ reduction all remain comparatively suppressed,
as a tribute to the electroweak symmetry. On the other hand,
if vertex and mixing contributions are not linearly added, but
rather combined via a loop-corrected mixing matrix, then the
imperfect cancellation of these contributions to the decay
amplitudes generate pieces of higher-order that break the
electroweak symmetry strongly and come to dominate the
width at high masses (dashed orange curves). The dramatic
enhancement of these spurious effects is due to the kine-
matic prefactor M3

H/M2
V , that the decay amplitude needs to

balance by a careful scaling A ∝ M2
V /M2

H , which is spoiled
by the separate processing/factorization of mixing contribu-
tions. Again, this argues against an indiscriminate use of the
mixing formalism in physical transitions. Finally, we stress
that, even though the consistent combination of mixing and
vertex contributions leads to decay widths that are compatible

with symmetries, the latter still come with a sizable uncer-
tainty for such rare processes: for, instance, exchanging pole
quark masses by QCD-running masses at the scale of the
decaying Higgs – a legitimate shift at the order controlled in
the calculation – in the scenario of Fig. 10 typically leads to
a reduction of the widths by a factor of O(10). This points at
the necessity to include two-loop contributions for a reliable
assessment of these symmetry-violating channels.

The analysis of the one-loop radiative corrections in the
decoupling limit, in a limit where the SU (2)L-symmetry
should hold, thus indicates that misleading large effects
purely associated with partial higher-order contributions may
develop as a consequence of considering vertex and mixing
diagrams on a different footing. In particular, the deliberate
inclusion of higher-order effects in the mixing without the
corresponding terms in the vertex appears as an unfruitful
effort (as already suggested by the analysis of the gauge
dependence). This issue is self-evident in the decoupling
limit, where one may actually directly consider the model
with unbroken SU (2)L symmetry.10 However, it remains rel-
evant for mH± ∼ 1 TeV, as purging the calculation from
the symmetry-violating artifacts of the formalism has a non-
negligible impact on the radiative corrections at the level of
observable quantities.

4 Conclusions

In this paper, we have analyzed how terms of higher order
introduced in the calculation of the radiative corrections to
observables in extended SUSY Higgs sectors could lead to
spurious effects in view of the symmetries. As noticeable
numerical variations accompany these artifacts, it appears
necessary to consider them seriously in the uncertainty esti-
mates. On the other hand, the associated behaviour is unphys-
ical and needlessly burdens the error budget; therefore, we
regard it as meaningful to attempt and avoid such symmetry-
violating pieces of higher order.

We first discussed gauge dependence in Higgs-mass deter-
minations and decays and explained how setting the argu-
ments of the loop functions away from the tree-level mass
values generates pieces that depend both on the gauge-fixing
parameter and the field renormalization. We then presented
two possible strategies avoiding such undesirable effects: the
first one consists in systematically expanding and truncating
the amplitudes at the relevant order controlled in the cal-
culation; the alternative one extends the SUSY model by a
more flexible structure where the Higgs potential can adjust

10 However, the infrared behaviour of e.g. exclusive decay widths in the
unbroken electroweak description shows that the electroweak scale still
matters in deriving the properties of heavy Higgs states at the radiative
level.
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to the values of the loop-corrected masses. While the former
method is more conventional and straightforward to imple-
ment, the latter one can be interesting in order to assess uncer-
tainties in a gauge-conserving context, although redundan-
cies in the definition of the Higgs potential limit its efficiency.
We also discussed how to define a mixing matrix in a gauge-
invariant way in the case of near-degenerate states, a recipe
that fails in the non-degenerate case, where gauge invari-
ance is most efficiently enforced by a strict application of the
LSZ reduction. In particular, we saw that gauge invariance
required a careful combination of vertex and mixing contri-
butions to the decay amplitudes, so that a separation of both,
e.g. through the definition of a mixing matrix at radiative
order, can be source of inconsistent behaviours.

Then, we focussed on the decoupling limit of the MSSM,
where the SU (2)L-symmetry still controls the dominant
properties of the heavy-doublet states. We illustrated this
analytically, with expressions for the radiative corrections
of Yukawa type, as well as numerically, with a full calcula-
tion of one-loop order. These arguments allowed us to spot
several issues, first in the calculation of the two-loop cor-
rections to the Higgs masses of O(Y 4

q ), then in the imple-
mentation of Higgs decays when mixing and vertex correc-
tions are included at different orders or via a mixing matrix
defined at the radiative level. The corresponding inconsis-
tencies become large, admittedly because of the choice of
a heavy-doublet spectrum, but still point at shortcomings
in the general implementation of these observables in all
regimes. Observables measuring SU (2)L-breaking effects,
such as mass-splittings among SU (2)L-partners or heavy-
Higgs decays into electroweak gauge bosons or lighter Higgs
states, are particularly sensitive to the introduction of spuri-
ous SU (2)L-symmetry-violating terms of higher order, so
that a proper control on the symmetries appears as impera-
tive for a meaningful study of such channels.

As we took the restoration of symmetries as our guid-
ing principle, it proved more convenient to work with
electroweakly-charged states. However, what we learnt with
doublet states can be extended straightforwardly to more
exotic Higgs spectra, and even to other fields that are not
necessarily renormalized on-shell (such as sfermions or elec-
troweakinos; see e.g. Refs. [85,86]). Furthermore, several
additional issues that are not constrained by symmetries
can appear in connection with a careless use of mixing for-
malisms at the radiative order. Double-counting of mixing
corrections can thus emerge from e.g. hybridizing the mixing
formalism with that of effective couplings for integrated-out
SUSY sectors (for the latter formalism, see e.g. Ref. [87] and
references therein): indeed, SUSY corrections on the external
Higgs line are then potentially double-counted.

As a concluding word, we believe that, while it is of course
still possible to employ a mixing formalism in calculations
of radiative corrections to the Higgs sector, corresponding

results should be critically analyzed in order to verify whether
the effects that they produce are genuine or just the outcome
of symmetry-violating artifacts.
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A. Renormalization of the Higgs potential

A.1. Parametrization

The Higgs potential of the THDM can be expressed in the
following way,

VTHDM = m2
Hd

|Hd |2 + m2
Hu

|Hu |2

+
[
m2

12 e
ı ϕ12 Hu · Hd + h.c.

]

+ 1
2 λ1 |Hd |4 + 1

2 λ2 |Hu |4
+ λ3 |Hu |2 |Hd |2 + λ4 |Hu · Hd |2

+
[

1
2 λ5 e

ı ϕ5 (Hu · Hd)
2 + λ6 e

ı ϕ6 |Hd |2 Hu · Hd

+ λ7 e
ı ϕ7 |Hu |2 Hu · Hd + h.c.

]
, (26)

with the real, dimensionless couplings λi and the phases ϕi .
The Higgs potential of the MSSM emerges from Eq. (26) for
specific choices of λi :

λMSSM
1 = M2

Z

2 v2 = λMSSM
2 = −

(
λMSSM

3 + λMSSM
4

)
,

λMSSM
4 = −M2

W

v2 , λMSSM
5,6,7 = 0 . (27)

To simplify the contact of the THDM with the MSSM, we
reparametrize λi = λMSSM

i + �i . We also define �rk ≡
�k cos ϕk and �ik ≡ �k sin ϕk for k ∈ {5, 6, 7}.
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We write the Higgs doublets in terms of v.e.v.-s, CP-even,
CP-odd and charged components:

Hd = eı ϕd

(
v cβ + 1√

2

(
h0
d + ı a0

d

)

H−
d

)
,

Hu = eı ϕu

(
H+
u

v sβ + 1√
2

(
h0
u + ı a0

u

)
)

. (28)

The phases ϕd,u can be absorbed in a re-definition of those
appearing in the parameters of Eq. (26) and can thus be dis-
carded.

The tadpole equations can be exploited to express three
parameters in terms of the electroweak vacuum expectation
values. Commonly, the dimensionful parameters are substi-
tuted as

m2
Hd

= Td√
2 v cβ

+ m2
12 cos ϕ12 tβ − M2

Z

2
c2β

− v2
[(

�1 − 3 �r6 tβ
)
c2
β + (

�3 + �4 + �r5 − �r7 tβ
)
s2
β

]
,

(29a)

m2
Hu

= Tu√
2 v sβ

+ m2
12 cos ϕ12 t

−1
β + M2

Z

2
c2β

− v2
[(

�2 − 3 �r7 t
−1
β

)
s2
β +

(
�3 + �4 + �r5 − �r6 t

−1
β

)
c2
β

]
,

(29b)

m2
12 sin ϕ12 = Ta√

2 v
+ �i5 v2 sβ cβ − �i6 v2 c2

β − �i7 v2 s2
β

(29c)

with the tadpole parameters Td,u,a , associated to the fields h0
d ,

h0
u and a0 = sβ a0

d + cβ a0
u , vanishing at the tree level but

kept for the derivation of the counterterms.
The tree-level mass matrix for the charged-Higgs sector

reads as follows in the (H+
d , H+

u ) basis:

M2
C = M2

H±

(
s2
β sβ cβ

sβ cβ c2
β

)
+ 1√

2 v

(
Td/cβ −ı Ta
ı Ta Tu/sβ

)
,

(30a)

M2
H± ≡ m2

12 cos ϕ12

sβ cβ

+
[
M2

W − (�4 + �r5) v2
]

+ �r6 v2 t−1
β + �r7 v2 tβ . (30b)

Equation (30b) can be exploited to substitute M2
H± in

replacement of the parameter m2
12 cos ϕ12. The diagonal-

ization of this matrix by a rotation of angle βc yields the
eigenstates and eigenvalues

(
G±
H±

)
≡
(
cβc −sβc
sβc cβc

)(
H±
d

H±
u

)
, (31a)

m2
H± = M2

H± c2
β−βc

+ 1√
2 v

[
Tu

c2
βc

sβ
+ Td

s2
βc

cβ

]
, (31b)

m2
G± = 1√

2 v

[
Tu

s2
βc

sβ
+ Td

c2
βc

cβ

]
. (31c)

After application of the minimization conditions Td,u,a = 0,
one finds m2

H± = M2
H± , m2

G± = 0 and βc = β at the tree
level.

The mass matrix for the neutral Higgs sector can be
decomposed into blocks. For the CP-even sector in the
basis (h0

d , h
0
u) one has

M2
E

∣∣∣
11

= m2
12 cos ϕ12 tβ +

(
M2

Z + 2 �1 v2
)
c2
β

− 3 �r6 v2 sβ cβ + �r7 v2
s3
β

cβ

+ Td√
2 v cβ

, (32a)

M2
E

∣∣∣
12

= −m2
12 cos ϕ12

+
[
2
(
�3 + �4 + �r5

)
v2 − M2

Z

]
sβ cβ

− 3
(
�r6 c

2
β + �r7 s

2
β

)
v2 , (32b)

M2
E

∣∣∣
22

= m2
12 cos ϕ12 t

−1
β +

(
M2

Z + 2 �2 v2
)
s2
β

+ �r6 v2
c3
β

sβ
− 3 �r7 v2 sβ cβ + Tu√

2 v sβ
. (32c)

For the CP-odd sector in the basis (a0
d , a

0
u) the block matrix

reads

M2
O = M2

A

(
s2
β sβ cβ

sβ cβ c2
β

)
+ 1√

2 v

(
Td/cβ 0

0 Tu/sβ

)
,

(33a)

M2
A ≡ m2

12 cos ϕ12

sβ cβ

− 2 �r5 v2 + �r6 v2 t−1
β + �r7 v2 tβ .

(33b)

For the off-diagonal block matrix one finds

M2
EO = −�i5 v2

(
s2
β sβ cβ

sβ cβ c2
β

)
+ 2 v2

(
�i6 sβcβ �i6 c

2
β

�i7 s
2
β �i7 sβcβ

)

+ 1√
2 v

(
0 Ta
Ta 0

)
. (34)

After application of the minimization conditions, the
Goldstone boson is obtained as the linear combination G0 =
cβ a0

d − sβ a0
u . The other (three) tree-level mass-eigenstates

may be written h0
i = (Un)id h0

d+(Un)iu h0
u+(Un)ia (sβ a0

d+
cβ a0

u), where Un is a unitary matrix. In the absence of
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CP-violation, the pseudoscalar sector can be diagonalized
separately with a rotation of angle β0, which is found to
coincide with β after application of the minimization condi-
tions. The pseudoscalar state A0 ≡ sβ0 a

0
d + cβ0 a

0
u takes on

the mass

m2
A0 = M2

A c2
β−β0

+ 1√
2 v

[
Tu

c2
β0

sβ
+ Td

s2
β0

cβ

]
. (35)

The Higgs couplings appearing in loop amplitudes can be
summarized as follows:

• the neutral symmetric triple-Higgs couplings

�hi h j hk =
4∑

a,b,c=1

(Un)ia (Un) jb (Un)kc γabc
√

2 v , (36a)

γφd xy =

⎛
⎜⎜⎝

3
(
cβ λ1 − sβ λr6

)
, sβ

(
λ3 + λ4 + λr5

)− 3 cβ λr6 , −sβ λi6 , sβ λi5 − 3 cβ λi6
· cβ

(
λ3 + λ4 + λr5

)− 3 sβ λr7 , sβ λi5 − cβ λi6 , cβ λi5 − sβ λi7· · cβ λ1 − sβ λr6 , cβ λr6 − sβ λr5· · · cβ

(
λ3 + λ4 − λr5

)− sβ λr7

⎞
⎟⎟⎠

xy
x, y ∈ {φd , φu, χd , χu}

, (36b)

γφu xy =
⎛
⎝

3
(
sβ λ2 − cβ λr7

)
, cβ λi5 − 3 sβ λi7 , − cβ λi7· sβ

(
λ3 + λ4 − λr5

)− cβ λr6 , sβ λr7 − cβ λr5· · sβ λ2 − cβ λr7

⎞
⎠

xy
x, y ∈ {φu, χd , χu}

, (36c)

γχd xy =
(−3 sβ λi6 , −sβ λi5 − cβ λi6

· −cβ λi5 − sβ λi7

)
xy
x, y ∈ {χd , χu}

, (36d)

γχuχuχu = −cβ λi7 . (36e)

• the neutral symmetric quadruple-Higgs couplings

�hi h j hkhl =
4∑

a,b,c,d=1

(Un)ia (Un) jb (Un)kc (Un)ld γabcd , (37a)

γφdφd xy =

⎛
⎜⎜⎝

3 λ1 , −3 λr6, 0 , −3 λi6
· λ3 + λ4 + λr5 , −λi6 , λi5· · λ1 , λr6· · · λ3 + λ4 − λr5

⎞
⎟⎟⎠

xy
x, y ∈ {φd , φu, χd , χu}

, γφdχd xy =
(

0 , −λi6
· −λi5

)
xy
x, y ∈ {χd , χu}

, (37b)

γφdφu xy =
⎛
⎝

−3 λr7, λi5 , −λi7· −λr6 , −λr5· · −λr7

⎞
⎠

xy
x, y ∈ {φu, χd , χu}

, γφdχuχuχu = −3 λi7 , (37c)

γφuφu xy =
⎛
⎝

3 λ2, −3 λi7 , 0
· λ3 + λ4 − λr5 , λr7· · λ2

⎞
⎠

xy
x, y ∈ {φu, χd , χu}

, γφuχd xy =
(−3 λi6 , i λi5· −λi7

)
xy
x, y ∈ {χd , χu}

, (37d)

γφuχuχuχu = 0 , (37e)

γχdχd xy =
(

3 λ1 , 3 λr6· λ3 + λ4 + λr5

)
xy
x, y ∈ {χd , χu}

, γχuχuχuχu = 3 λ2 . (37f)
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• the Hermitian couplings of one neutral and two charged
fields

�hi h
−
j h

+
k

=
4∑

a=1

2∑
b,c=1

(Un)ia (U±) jb (U±)kc γ ±
abc

√
2 v (38a)

γ ±
φd xy

=
(
cβ λ1 − sβ λr6 , − 1

2 sβ (λ4 + λ5) + cβ λ6

· cβ λ3 − sβ λr7

)

xy
,

γ ±
χd xy =

(−sβ λi6 , 1
2 sβ (λ4 − λ5)

· −sβ λi7

)

xy

, (38b)

γ ±
φu xy

=
(
sβ λ3 − cβ λr6 , − 1

2 cβ (λ4 + λ5) + sβ λ7

· sβ λ2 − cβ λr7

)

xy
,

γ ±
χu xy =

(−cβ λi6 , 1
2 cβ (λ4 − λ5)

· −cβ λi7

)

xy

(38c)

with (x, y) ∈ {φ−
d , φ−

u } ⊗ {φ+
d , φ+

u }.
• the couplings of two neutral and two charged fields (sym-

metric in the neutral and Hermitian in the charged fields)

�hi h j h
−
k h

+
l

=
4∑

a,b=1

2∑
c,d=1

(Un)ia (Un) jb (U±)kc (U±)ld γ ±
abcd ,

(39a)

γ ±
φdφd xy

= γ ±
χdχd xy =

(
λ1 , λ6

· λ3

)

xy
,

γ ±
φdφu xy

= −γ ±
χdχu xy =

(−λr6 , − 1
2 (λ4 + λ5)

· −λr7

)

xy
, (39b)

γ ±
φuφu xy

= γ ±
χuχu xy =

(
λ3 , λ7

· λ2

)

xy
,

γ ±
φdχu xy

= γ ±
φuχd xy

=
(

λi6 , i 1
2 (λ4 − λ5)

· λi7

)

xy

, (39c)

γ ±
φdχd xy

= γ ±
φuχu xy

= 0 , with (x, y) ∈ {φ−
d , φ−

u } ⊗ {φ+
d , φ+

u } .

(39d)

• the charged quadruple-Higgs couplings (symmetric in
same-charged and Hermitian in opposite-charged fields)

�h−
i h

+
j h

−
k h

+
l

=
2∑

a,b,c,d=1

(U±)ia (U±) jb (U±)kc (U±)ld γ ±±
abcd ,

(40a)

γ ±±
φ−
d φ+

d xy
=
(

2 λ1 , 2 λ6

· λ3 + λ4

)

xy
,

γ ±±
φ−
u φ+

u xy
=
(

λ3 + λ4 , 2 λ7

· 2 λ2

)

xy
, (40b)

γ ±±
φ−
d φ+

u φ−
d φ+

u
=
(

γ ±±
φ−
u φ+

d φ−
u φ+

d

)∗

= 2 λ5 , with (x, y) ∈ {φ−
d , φ−

u } ⊗ {φ+
d , φ+

u } .

(40c)

A.2. Renormalization conditions

Below, we state the renormalization conditions that we
impose on the free parameters at the one-loop order:

• Tadpoles: The one-point functions are requested to vanish
at all orders. Thus, expanding the parameters Td,u,a =
T (0)
d,u,a + δTd,u,a and using the tree-level minimization

conditions T (0)
d,u,a = 0, one identifies δTd,u,a = −Td,u,a

where Td,u,a denotes the one-loop tadpole diagrams.
• Charged Higgs mass: It is renormalized on-shell,

δm2
H± ≡ δ(m2

12 cos ϕ12)

sβ cβ

+ δM2
W

−
[
m2

12 cos ϕ12
c2β

s2
β

+ �r6 v2 t−2
β − �r7 v2

]
δtβ

+ 1√
2 v

[
c2
β

sβ
δTu + s2

β

cβ

δTd

]

− δ(�4 v2) − δ(�r5 v2) + δ(�r6 v2) t−1
β + δ(�r7 v2) tβ

(41a)

= �H+H−
(
m2

H±
)
, (41b)

thus, also δ(m2
12 cos ϕ12) is fixed.

• Weak gauge-boson masses: The W - and Z -boson masses
are also renormalized on-shell, so that the associated
counterterms cancel out with the transverseW and Z self-
energies evaluated at p2 = M2

V , i.e. δM2
VV = �T

VV (M2
V )

for V = W, Z .
• The angle β: tβ is renormalized in the DR-scheme,

δtβ = tβ
2

[
d�hdhd

dp2

(
p2
)

− d�huhu

dp2

(
p2
)]

UV
. (42)

The associated contributions are purely of Yukawa type,
see Ref. [88] for details.

• The THDM shifts δ(�i v
2), for i = 1, . . . , 7, are as yet

undetermined. In the MSSM, they are set equal to 0, since
they are not needed to achieve renormalizability (and
could spoil the SUSY relations for non-shifted momenta).

A.3. Counterterms in the neutral Higgs sector

The renormalized self-energies (ignoring field renormaliza-
tion for now) for the neutral Higgs bosons can be expressed
in the following way (in the gauge eigenbasis):
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�̂E

(
p2
)

= �E

(
p2
)

− δM2
E , �̂AE

(
p2
)

= �AE

(
p2
)

− δM2
AE , �̂AA

(
p2
)

= �AA

(
p2
)

− δm2
A (43a)

δm2
A = CA + δm2

H± − δM2
W , CA ≡ δ

(
�4 v2

)
− δ

(
�r5 v2

)
. (43b)

δM2
E ≡ CE +

(
δm2

H± − δM2
W

)( s2
β −sβ cβ

−sβ cβ c2
β

)
+ δM2

Z

(
c2
β −sβ cβ

−sβ cβ s2
β

)

+ δTd√
2 v cβ

(
1 − s4

β s3
β cβ

s3
β cβ −s2

β c2
β

)
+ δTu√

2 v sβ

(
−s2

β c2
β sβ c3

β

sβ c3
β 1 − c4

β

)

− δtβ c2
β

{(−s2β

[
m2

H± + (
λ4 + �r5 − 2 λ1

)
v2
]
c2β

[
m2

H± − (
2 λ3 + λ4 + �r5

)
v2
]

c2β

[
m2

H± − (
2 λ3 + λ4 + �r5

)
v2
]

s2β

[
m2

H± + (
λ4 + �r5 − 2 λ2

)
v2
]
)

+
(

4 �r6 v2 c2β −2(�r6 − �r7)v
2 s2β

−2(�r6 − �r7)v
2 s2β 4 �r7 v2 c2β

)}
, (43c)

CE ≡
(

2 δ(�1 v2) c2
β + δ((�4 + �r5) v2) s2

β

[
2 δ(�3 v2) + δ((�4 + �r5) v2)

]
sβ cβ[

2 δ(�3 v2) + δ((�4 + �r5) v2)
]
sβ cβ 2 δ(�2 v2) s2

β + δ((�4 + �r5) v2) c2
β

)

− 2

(
2 δ(�r6 v2) sβ cβ δ(�r6 v2) c2

β + δ(�r7 v2) s2
β

δ(�r6 v2) c2
β + δ(�r7 v2) s2

β 2 δ(�r7 v2) sβ cβ

)
, (43d)

δM2
AE ≡ CAE + δTa√

2 v

(
cβ

sβ

)
− δtβ v2 c2

β

(
�i5 cβ + 2 �i6 sβ

−�i5 sβ − 2 �i7 cβ

)
, CAE ≡

(
2 δ(�i6 v2)cβ − δ(�i5 v2)sβ
2 δ(�i7 v2)sβ − δ(�i5 v2)cβ

)
. (43e)

The renormalized diagonal self-energies of the neutral
sector in the mass basis are obtained after rotation by Un :

�̂hi hi (m
2
hi ) ≡

⎡
⎣Un ·

⎛
⎝ �̂E

(
m2

hi

)
�̂AE

(
m2

hi

)

�̂T
AE

(
m2

hi

)
�̂AA

(
m2

hi

)
⎞
⎠ · UT

n

⎤
⎦
i i

.

(44)

From the explicit calculation of the self-energies and tad-
poles, it is possible to extract the ξ -dependence of these
expressions:[
�̂hi hi (m

2
hi )
]
ξ

= (Un)i p (Un)iq

{
Hξ

16π2

[
A0(ξM

2
W ) + 1

2
A0(ξM

2
Z )

]
− [C]ξ

}

pq
, (45a)

Hξ ≡
⎛
⎝

2 �1 c2
β + (�4 + �r5) s

2
β (2 �3 + �4 + �r5) sβ cβ −�i5 sβ

(2 �3 + �4 + �r5) sβ cβ 2 �2 s2
β + (�4 + �r5) c

2
β −�i5 cβ

−�i5 sβ −�i5 cβ �4 − �r5

⎞
⎠

− 2

⎛
⎝

2 �r6 sβ cβ �r6 c
2
β + �r7 s

2
β −�i6 cβ

�r6 c
2
β + �r7 s

2
β 2 �r7 sβ cβ −�i7 sβ

−�i6 cβ −�i7 sβ 0

⎞
⎠ , C ≡

(
CE CAE

CT
AE CA

)
.

(45b)

The conditions that �̂hi hi (m
2
hi

) and �̂hi h j

( 1
2 (m2

hi
+ m2

h j
)
)

are UV-finite determine the UV-divergences of the δ(�i v
2)

counterterms as well.

B. Mapping of the MSSM onto a THDM+SUSY

B.1. Definition of the potential

We want to map the MSSM onto a THDM with SUSY
field content, so that the loop-corrected Higgs masses of the
MSSM are tree-level masses in the THDM. Here, the pur-
pose is to define Higgs self-energies that are ξ -independent
and only differ by a shift of higher (two-loop) order from
those in the MSSM. The parameters m2

H± , tβ andUn are kept
identical between the two models. Only the neutral Higgs
masses in the THDM differ by a shift of one-loop order from
their counterparts in the MSSM. All the quantities defined
in appendix A take formally similar forms in the MSSM and
in the THDM. However, they differ in that the Higgs sec-
tors are different in both models (unless �1,··· ,7 ≡ 0). Below,
we will indicate this distinction by a bar ¯ placed above the
parameters of the THDM, e.g. the Higgs masses m̄2

hi
, or by

an explicit superscript.
The first difficulty is that the THDM is under-constrained:

the system of neutral Higgs masses of the MSSM fixes six
degrees of freedom while there are seven λi -s and three
phases – the tadpoles and charged Higgs mass are already
used to identify the quadratic THDM parameters. We can
thus extract six constraints on the λi -s:
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λ1 + λ5 cos ϕ5 t
2
β − 2 λ6 cos ϕ6 tβ

=
m̄2

h0
i

2 v2

[
(Un)

2
id

c2
β

− (Un)
2
ia t

2
β

]
, (46a)

λ2 + λ5 cos ϕ5 t
−2
β − 2 λ7 cos ϕ7 t

−1
β

=
m̄2

h0
i

2 v2

[
(Un)

2
iu

s2
β

− (Un)
2
ia t

−2
β

]
, (46b)

λ3 + λ4 − λ6 cos ϕ6 t
−1
β − λ7 cos ϕ7 tβ

=
m̄2

h0
i

2 v2

[
(Un)id (Un)iu

sβ cβ

+ (Un)
2
ia

]
, (46c)

λ4 − λ5 cos ϕ5

= 1

v2

[
m̄2

h0
i
(Un)

2
ia − m2

H±
]
, (46d)

λ5 sin ϕ5 − (λ6 sin ϕ6 + λ7 sin ϕ7) s2β

= −
m̄2

h0
i

v2 (Un)ia
[
(Un)id sβ + (Un)iu cβ

]
, (46e)

λ6 sin ϕ6 c
2
β − λ7 sin ϕ7 s

2
β

=
m̄2

h0
i

2 v2 (Un)ia
[
(Un)id cβ − (Un)iu sβ

]
. (46f)

A possible simplification consists in imposing λ5,6,7
!= 0

(as in the MSSM). Such a choice is only as good as the
radiative corrections of type λ5,6,7 are small in the MSSM.
For instance, large values of the μ parameter can gener-
ate sizable contributions to e.g. λ5, translating in a mass-
splitting between the neutral CP-even and CP-odd heavy-
doublet states that cannot be efficiently mapped onto a
THDM unless λ5 �= 0. The exact choice of the Higgs
potential in the THDM affects the Higgs-to-Higgs correc-
tions and could have a sizable impact if e.g. one of the λi -s
becomes non-perturbative. Thus the exact definition of the
tree-level parameters remains an open issue in general, but
the constraints of Eq. (46) are fundamental in ensuring that
the masses m̄h0

i
(identified with the loop-corrected masses in

the MSSM) are tree-level masses in the THDM.

B.2. Definition of the THDM counterterms

Now our problem rests with the determination of the coun-
terterms δ̄(�i v

2) in the THDM, or at least of those linear
combinations that enter the Higgs mass matrix. The exten-
sion should be smooth in the sense that each δ̄(�i v

2) remains
an object of two-loop order from the perspective of the count-
ing in the MSSM. The renormalization scheme should also
ensure gauge invariance at the level of the renormalized
Higgs self-energies evaluated at the corresponding tree-level
Higgs mass in the THDM, so that the definition of the Higgs
masses is gauge invariant.

It is obvious that all the counterterms δC that are already
fixed (masses, tadpoles and tβ ) differ by terms of two-loop
order between the two models: in the MSSM, the renormal-
ization constants are defined in terms of one-loop one- or
two-point functions QMSSM

i that are evaluated with parame-
ters λMSSM

i andm2
hi

. In the THDM, theQTHDM
i are computed

from λi and m̄2
hi

that differ from the MSSM parameters by
terms of one-loop order. Formally:

δ̄C − δC =
∑
j

QTHDM
j − QMSSM

j , (47a)

QTHDM
j =

(
QTHDM

j

∣∣∣∣ λi→λMSSM
i

m̄2
i →m2

i

)

+
∑

x∈{λk , m̄2
hl

}

(
∂QTHDM

j

∂x

∣∣∣∣ λi→λMSSM
i

m̄2
i →m2

i

) (
x − xMSSM)

+
∑

x,x ′∈{λk , m̄2
hl

}
O
(

∂2QTHDM
j

∂x dx ′
(
x − xMSSM) (x ′ − x ′ MSSM

)
)

+ · · ·

= QMSSM
j +

∑

x∈{λk , m̄2
hl

}

(
∂QTHDM

j

∂x

∣∣∣∣ λi→λMSSM
i

m̄2
i →m2

i

) (
x − xMSSM)+ · · · ,

(47b)

⇒ δ̄C − δC = O
(

∂QTHDM
j

∂x

(
x − xMSSM

))
= O(2L) .

(47c)

Similarly, the Higgs self-energies �THDM
hi h j

(m̄2
hi

) and �MSSM
hi h j

(m2
hi

) differ by a shift of two-loop order.
If we wish to preserve the ξ -independence of the Higgs

self-energies evaluated in the THDM at on-shell values of the
external momentum, then Eq. (45) explicitly constrain the ξ -
dependence of the δ̄(�i v

2)-s. Similarly, the UV-divergences
can be worked out explicitly from the condition that the renor-
malized self-energies (without field renormalization) eval-
uated at on-shell external momentum are UV-finite in both
the MSSM and the THDM. The differences between the self-
energies in the two models originate from different sources:
shifted external momentum; shifted Higgs couplings; shifted
Higgs masses in internal lines. It is convenient to split these
contributions between bosonic diagrams where the modified
Higgs sector directly intervenes, and fermionic contributions
where only the shifted external momentum matters:

• UV-divergences from bosonic contributions (�UV ≡(
2 − D

2

)−1
with dimension D):
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[
�̂THDM

hi hi

(
m̄2

hi

)
− �̂MSSM

hi hi

(
m2

hi

)]bos.

UV−div

= (Un)i p (Un)iq

{
− �UV

16π2 Hbos.
UV−div − [C]bos.

UV−div

}

pq
,

(48a)

Hbos.
UV−div = Hξ

[
ξM2

Z

2
+ ξM2

W

]

− M2
W H�W − M2

Z H�Z − v2 [H�� + 2H��6 + 2H��7

]
.

(48b)

The matrices Hξ and C were defined in Eq. (45) while the
(symmetric) others are determined by the following entries
in the basis (h0

d , h
0
u, a

0):

(H�W )dd = (�1 + �2 + 4 �3 + 3�4 + 5 �r5) s
2
β

+ (6 �1 − 4 �3) c
2
β − 2 (4 �r6 − �r7) s2β , (49a)

(H�W )uu = (�1 + �2 + 4 �3 + 3 �4 + 5 �r5) c
2
β

+ (6 �2 − 4 �3) s
2
β + 2 (�r6 − 4 �r7) s2β , (49b)

(H�W )ud = −(3 �1 + 3 �2 − 2 �3 − 7 �4 − 5 �r5) sβ cβ

+ 2 �r6 (1 − 5 c2
β) + 2 �r7 (1 − 5 s2

β) , (49c)

(H�W )aa = �1 + �2 + 4 �3 + 3 �4 − 5 �r5 , (49d)

(H�W )da = −5 �i5 sβ + 2 (4 �i6 − �i7) cβ , (49e)

(H�W )ua = −5 �i5 cβ − 2 (�i6 − 4 �i7) sβ , (49f)

(H�Z )dd = (−9 �1 + 4 �3 + 2 �4) c
2
β

+ 5
2 (�4 + �r5) s

2
β − 3 �r7 s2β , (50a)

(H�Z )uu = (−9 �2 + 4 �3 + 2 �4) s
2
β

+ 5
2 (�4 + �r5) c

2
β − 3 �r6 s2β , (50b)

(H�Z )ud = (
3 �1 + 3 �2 + �3 + 1

2 �4

+ 5
2 �r5

)
sβ cβ − 3 �r6 s

2
β − 3 �r7 c

2
β , (50c)

(H�Z )aa = 5
2 (�4 − �r5) , (50d)

(H�Z )da = − 5
2 �i5 sβ + 3 �i7 cβ , (50e)

(H�Z )ua = − 5
2 �i5 cβ + 3 �i6 sβ , (50f)

(H��)dd = −2 �4 (2 �3 + �4)

− 4 (3 �2
1 + �2

3) c
2
β − �4 (�1 + �2) s

2
β

− �r5 (�1 + �2 + 4 �3 + 6 �4) s
2
β

− 2 |�5|2 (1 + s2
β) , (51a)

(H��)uu = −2 �4 (2 �3 + �4)

− 4 (3 �2
2 + �2

3) s
2
β − �4 (�1 + �2) c

2
β

− �r5 (�1 + �2 + 4 �3 + 6 �4) c
2
β

− 2 |�5|2 (1 + c2
β) , (51b)

(H��)ud = −[3 (�1 + �2) (2 �3 + �4) + 4 (�2
3 + �3 �4 + �2

4)
]
sβ cβ

− �r5 (�1 + �2 + 4 �3 + 6 �4) sβ cβ − 3 |�5|2 s2β , (51c)
(H��)aa = −�4 (�1 + �2 + 4 �3 + 2 �4)

+ �r5 (�1 + �2 + 4 �3 + 6 �4) − 4 |�5|2 , (51d)

(H��)da = �i5 (�1 + �2 + 4 �3 + 6 �4) sβ , (51e)

(H��)ua = �i5 (�1 + �2 + 4 �3 + 6 �4) cβ , (51f)

(H��6)dd = �r6 (6 �1 + 3 �3 + 4 �4 + 5 �r5) s2β − �r 2
6 (5 + 7 c2

β)

− 2 �r6 �r7 s
2
β + 5 �i5 �i6 s2β − 12 �i 2

6 c2
β , (52a)

(H��6)uu = �r6 (3 �3 + 2 �4 + �r5) s2β − 5 �r 2
6 c2

β + �i5 �i6 s2β ,

(52b)

(H��6)ud = �r6
[
6 �1 c

2
β

+ 3�3 + 2 �4 (1 + c2
β) − (7 �r6 + 5 �r7) sβ cβ

]

+ (�r5 �r6 + �i5 �i6) (1 + 4 c2
β) − �i6 (�i6 + 2 �i7) s2β ,

(52c)

(H��6)aa = −�i6 (5 �i6 + �i7) , (52d)

(H��6)da = 5 (�r5 �i6 − �i5 �r6) cβ + �r6 (5 �i6 + �i7) sβ

− �i6 (6 �1 + 3 �3 + 4 �4) cβ , (52e)

(H��6)ua = (�r5 �i6 − �i5 �r6) sβ + �r6 (5 �i6 + �7
i ) cβ

− �i6 (3 �3 + 2 �4) sβ , (52f)

(H��7)dd = �r7 (3 �3 + 2 �4 + �r5) s2β

− 5 �r 2
7 s2

β + �i5 �i7 s2β , (53a)

(H��7)uu = �r7 (6 �2 + 3 �3 + 4 �4 + 5 �r5) s2β − �r 2
7 (5 + 7 s2

β)

− 2 �r6 �r7 c
2
β+

5 �i5 �i7 s2β − 12 �i 2
7 s2

β , (53b)

(H��7)ud = �r7
[
6 �2 s

2
β

+ 3 �3 + 2 �4 (1 + s2
β) − (5 �r6 + 7 �r7) sβ cβ

]

+ (�r5 �r7 + �i5 �i7) (1 + 4 s2
β)−

�i7 (2 �i6 + �i7) s2β , (53c)

(H��7)aa = −�i7 (�i6 + 5 �i7) , (53d)

(H��7)da = (�r5 �i7 − �i5 �r7) cβ

+ �r7 (�i6 + 5 �i7) sβ − �i7 (3 �3 + 2 �4) cβ , (53e)

(H��7)ua = 5 (�r5 �i7 − �i5 �r7) sβ + �r7 (�i6 + 5 �7
i ) cβ

− �i7 (6 �2 + 3 �3 + 4 �4) sβ . (53f)

• UV-divergences from fermionic contributions (only terms
of the third generation are displayed):
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[
�̂THDM

hi hi

(
m̄2

hi

)− �̂MSSM
hi hi

(
m2

hi

)]ferm.

UV−div

= −(Un)i p (Un)iq

{
[C]ferm.

UV−div + �UV

16π2

×
[

3m2
t

s2
β

Ht
UV−div + 3m2

b + m2
τ

c2
β

Hb
UV−div + (

M2
Z + 2 M2

W

)
Ht+b

UV−div

+ s2β

4

(
3m2

t

s2
β

− 3m2
b + m2

τ

c2
β

)
Hβ

UV−div

]}

pq

, (54)

where the symmetric matrices are defined in terms of the �i -s
as

(Ht
UV−div)dd = 0 , (Ht

UV−div)aa = (�4 − �r5) c
2
β , (55a)

(Ht
UV−div)uu = 2 �2 s

2
β + (�4 + �r5) c

2
β − 2 �r7 s2β ,

(Ht
UV−div)da = [− 1

2 �i5 sβ + �i6 cβ

]
c2
β ,

(55b)

(Ht
UV−div)ud = 1

2 (2 �3 + �4 + �r5) sβ cβ − �r6 c
2
β − �r7 s

2
β ,

(Ht
UV−div)ua = [− 1

2 �i5 cβ + �i7 sβ
]
(1 + c2

β) ,

(55c)

(Hb
UV−div)dd = 2 �1 c

2
β + (�4 + �r5) s

2
β − 2 �r6 s2β ,

(Hb
UV−div)aa = (�4 − �r5) s

2
β , (56a)

(Hb
UV−div)uu = 0 , (Hb

UV−div)da

= [− 1
2 �i5 sβ + �i6 cβ

]
(1 + s2

β) , (56b)

(Hb
UV−div)ud = 1

2 (2 �3 + �4 + �r5) sβ cβ − �r6 c
2
β − �r7 s

2
β ,

(Hb
UV−div)ua

= [− 1
2 �i5 cβ + �i7 sβ

]
s2
β , (56c)

Ht+b
UV−div ≡ Ht

UV−div + Hb
UV−div , (57)

(Hβ
UV−div)dd = s2β (�4 + �r5 − 2 �1) − 4 c2β �r6 ,

(Hβ
UV−div)aa = 0 , (58a)

(Hβ
UV−div)uu = s2β (2 �2 − �4 − �r5) − 4 c2β �r7 ,

(Hβ
UV−div)da = −�i5 cβ − 2 �i6 sβ , (58b)

(Hβ
UV−div)ud = c2β (2 �3 + �4 + �r5) + 2 s2β (�r6 − �r7) ,

(Hβ
UV−div)ua = �i5 sβ + 2 �i7 cβ . (58c)

The linear combinations of the δ̄�i counterterms appear-
ing in the Higgs self-energies thus have a determined ξ -
dependence and a known UV divergence (after requiring that
the renormalized self-energies are UV finite when setting the
external momentum to the tree-level mass). However, their

finite part is not fixed yet, since we have not identified an
actual renormalization condition. The latter seems quite arbi-
trary. Yet, there are two ‘natural’ directions.

1. The first one consists in requiring that �̂THDM
hi hi

(m̄2
hi

) =
�̂MSSM

hi hi
(m2

hi
), so that the counterterms δ̄� j compensate

all the logarithms that are introduced by the shifts λMSSM
k→ λk and m2

hl
→ m̄2

hl
.

2. The second choice would add new logarithms of the same
type as those found in δM2

W,Z . This appears as a natural

generalization of the δM2
W,Z counterterms of the MSSM

that are losing legitimacy in the THDM framework.

In the end, the arbitrariness in the choice of scheme mirrors
the uncertainty of the mapping that replaces the uncertainty
associated with gauge invariance in the strict MSSM. We can
encode this uncertainty by defining a ‘minimal’ subtraction
where only the UV divergence and the ξ -dependent terms
are included in the δ̄�i -s. Then, the renormalization scale
included together with �UV serves as a measure of the arbi-
trariness introduced with the mapping procedure.

C. Matching the MSSMwith an on-shell THDM + SUSY

In the previous section, we have discussed how it was possi-
ble to extend the Higgs self-energies of the MSSM by a shift
of two-loop order embedded within a THDM with SUSY
matter content. The corresponding procedure was meant to
restore gauge invariance in the determination of the loop-
corrected Higgs masses. Now, we assume that these masses
have been determined – either in the MSSM via the truncation
method or in a THDM context via the method of Appendix B
– and are gauge-invariant quantities, and we wish to consider
particle scattering and decays involving the Higgs bosons of
the MSSM in a fully on-shell context. This is not possible in
the MSSM stricto sensu since the quartic scalar couplings are
associated to gauge couplings. Yet, since this structure of the
couplings is not preserved by the radiative corrections, we
can instead choose to work in an effective field theory (EFT)
with identical field content and symmetries, but with Higgs
fields that are renormalized on-shell. This EFT is obviously
a THDM+SUSY with λi -parameters satisfying the condi-
tions of Eq. (46). However, contrarily to the case discussed
in the previous section, the δ̄�i -s of this EFT are no longer
shifts of two-loop order, since they absorb the full radia-
tive corrections to the Higgs masses (on-shell condition). In
addition, this EFT is not suitable for the determination of the
Higgs masses in the MSSM since, in the on-shell THDM +
SUSY, these masses are free input. Yet, the matching condi-
tions between the MSSM and the on-shell THDM + SUSY
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are akin to the usual scheme-matching conditions between
two renormalization schemes applied to the same model.

C.1. On-shell renormalization conditions

Let us first examine the renormalization conditions in
the THDM+SUSY. We employ the same renormalization
scheme as in the MSSM for most parameters (fermion,
gauge-boson, SUSY masses, gauge couplings, etc.) with the
exception of the Higgs sector. There, the renormalized self-
energies (now including field renormalization) read

�̂THDM
hi h j

(
p2
)

= �THDM
hi h j

(
p2
)

− δ̄m2
hi h j

+ δ̄Zhi h j

2

(
p2 − m̄2

hi

)
+ δ̄Zh j hi

2

(
p2 − m̄2

h j

)
.

(59)

The mass counterterms δ̄m2
hi h j

can be read from Eq. (43). The
on-shell conditions on the Higgs masses and fields provide
the following constraints:

�̂THDM
hi hi (m̄2

hi )
!= 0 , δ̄Zhi hi = −

d�THDM
hi hi

(
m̄2

hi

)

dp2 , (60a)

δ̄Zhi h j = − 2

m̄2
h j

− m̄2
hi

[
�THDM

h j hi

(
m̄2

h j

)
− δ̄m2

h j hi

]
, i �= j .

(60b)

At this level, only the off-diagonal mass counterterms are
not fixed by a renormalization condition. For reasons that
will become clear at the level of the matching conditions, we
continue to impose

�̂THDM
hi h j

(
1

2

(
m̄2

hi + m̄2
h j

))
= �̂MSSM

hi h j

(
1

2

(
m2

hi + m2
h j

))

+ O(2L) , i �= j , (61)

i.e. the off-diagonal counterterm coincides with that of
the MSSM up to a shift of two-loop order.

In the case where the SUSY states involve a large mixing,
the tree-level states Hk of the on-shell model should include
the rotation lifting the degeneracy in the SUSY model: Hk =
Ski hi . The procedure remains unchanged otherwise, except
that the SUSY self-energy and counterterms of Eq. (61) must
also be rotated:

�̂THDM
Hk Hl

(
1

2

(
m̄2

Hk
+ m̄2

Hl

))

= Ski Sl j �̂
MSSM
hi h j

(
1

2

(
m2

hi + m2
h j

))
+ O(2L) . (62)

C.2. Matching conditions

Now we turn to the matching conditions. On the side of the
MSSM, the parameters of the Higgs sector are M2

W , M2
Z ,

m2
H± , tβ and GF (encoding the electroweak v.e.v. v). For the

THDM, we have m2
H± , λ1,··· ,7, ϕ5,6,7, t̄β , GF . The mixing

angles (in the CP-even sector and/or CP-violating) are an
output of the potential and thus a priori different between
the two models. The matching conditions at the tree level are
trivial and provide λ

THDM, (0)
i = λMSSM

i , with λMSSM
i given

in Eq. (27).
At the one-loop order, the requirement that the physical

Higgs masses coincide in both models provide the six match-
ing conditions of Eq. (46). Furthermore, we may consider the
transition H± → tL b̄R as a condition determining t̄β :

ATHDM[H± → tL b̄R
]

= −ı
mb

v
t̄β + ATHDM

1L

[
H± → tL b̄R

]
(63)

and similarly for the MSSM with t̄β → tβ . Then, we observe
thatATHDM

1L andAMSSM
1L are identical up to a shift of two-loop

order: indeed, the only difference between the two amplitudes
comes from the modified Higgs potential, but in a quantity
of one-loop order, we can employ λ

THDM, (0)
i without spoil-

ing the expansion. Therefore, we can choose t̄β = tβ as a
matching condition of one-loop order. The same analysis in
e.g. h0

i → b b̄ shows that we may also identify the mix-
ing angles provided the off-diagonal mass-counterterms are
defined as in Eq. (61) – otherwise, the tree-level contribu-
tions would disagree by an effect of one-loop order, forcing
a different choice of mixing angles.

At this point, we still have four unconstrained degrees
of freedom in the THDM Higgs sector. Fixing them would
require considering Higgs-to-Higgs transitions, e.g. h0

2 →
h0

1 h
0
1 or H+ h0

i → H+ γ . However, the same argument
as for the mixing angles shows that this choice is arbitrary.
Indeed, since λTHDM

i −λMSSM
i is formally of one-loop order,

the distribution of corresponding finite effects between tree
level and counterterms only amounts to a formal shift of
higher order. For instance, if one chooses λTHDM

5,6,7 ≡ 0, it

is always possible to define δ̄λ5,6,7 so that the Higgs-to-
Higgs transitions chosen as matching conditions are satisfied.
Therefore, we are left with the same arbitrariness as in the
previous section with respect to the choice of potential in the
EFT. On the other hand, the renormalization conditions are
well-defined in this scheme-conversion approach, so that the
Higgs transitions that are studied in this framework are no
longer explicitly subject to the renormalization-scale depen-
dence (this dependence or the gauge one is still implicitly
present within the Higgs masses that are used as input for the
matching).
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As a final remark, we stress that the transition amplitudes
evaluated in this on-shell THDM + SUSY framework are
automatically gauge-invariant and still a variation of two-
loop order with respect to the corresponding MSSM transi-
tion amplitudes.

D. Singlet–doublet mass-mixing in the NMSSM

We consider a mixing scenario in theCP-conserving NMSSM
using the following input: λ = 0.7, κ = 0.1, tβ = 2,
MH± = 1 TeV, μeff = 410 GeV, |Aκ | ∈ [1, 361]GeV,
mF̃1,2

= 2 TeV, mF̃3
= 1.5 TeV, A f = 0 TeV, μdim = mt .

Then the two lightest CP-even Higgs states, including the
SM-like and the singlet components, take comparable masses
and receive a relevant mixing at the radiative order.

Our renormalization scheme in the doublet sector is still
determined by ‘physical’ conditions, connecting the Higgs
sector to the masses of the electroweak gauge bosons. On the
other hand, the singlet and singlet–doublet-mixing parame-
ters are renormalized DR. In these circumstances, it is not
completely trivial whether gauge invariance in the Higgs
masses can be discussed without relating the DR parameters
to physical quantities. As it turns out, this subtlety does not
matter for parameters associated with a singlet state since
the latter does not couple to the electroweak gauge sector.
Technically, looking at Eq. (3), DR-renormalization condi-
tions could only spoil the cancellation of C̃A at the level of
the renormalized self-energies. However, this cancellation is
fully ensured by the counterterms in the doublet sector, so
that, while our scheme is not ‘physical’ in the strict sense, it
still displays the same properties in view of the gauge depen-
dence.

The variation of |Aκ | modulates the diagonal mass input
for the singlet component, hence the mass-splitting with the
SM-like component. The radiative mixing also varies with
the spectrum. In Fig. 11, we first study the magnitude of the
mixing effect between the two light CP-even states (upper
left-hand corner). To this end, we consider the effective mass-
matrix of Eq. (12). Its diagonal entries are gauge invariant as
explained in Sect. 2.2. The off-diagonal self-energy contains
a gauge dependence of three-loop order, which we will not
attempt to neutralize here (its effect is numerically negligi-
ble). Then we plot |mixing/diagonal splitting|2: we observe
that this quantity is ‘large’ for 100 GeV � |Aκ | � 260 GeV,
hence that the mixing generated at radiative order is impor-
tant in this range. It can be safely neglected in the mass
determination outside – even though the mass-splitting is
of electroweak order in the full scenario. In the upper right-
hand corner of Fig. 11, we show the magnitude of the sin-
glet composition of the Higgs fields at the tree level (dashed
curves) and after diagonalization of M2 eff (using a real
orthogonal matrix S; solid curves): we see that the maximal

singlet–doublet mixing is displaced from |Aκ | ∼ 150 GeV
to ∼ 250 GeV by the radiative effects.

In the lower left-hand quadrant of Fig. 11, we plot various
(almost) ξ -independent definitions of the Higgs masses. The
dotted lines correspond to the tree-level values: the mass of
the mostly-singlet state decreases with increasing |Aκ | and
crosses the mass of the SM-like state at |Aκ | ∼ 150 GeV,
leading to substantial mixing. The (square root of the) diag-
onal entries of the effective mass matrix – exactly gauge
independent – are shown with dashed curves: radiative cor-
rections displace the mass values. Remarkable points are
|Aκ | ∼ 150 GeV, where the tree-level mixing is ‘un-mixed’
(leading to an inversion of the hierarchy between M2 eff

11 and
M2 eff

22 ), and |Aκ | ∼ 250 GeV, where the actual crossing of
singlet and doublet masses takes place at the one-loop order.
As argued before, this definition of the masses at one-loop
order is sufficient for |Aκ | � 100 GeV and |Aκ | � 260 GeV,
but not in the intermediate regime where the mixing at
radiative order competes with the diagonal mass-splitting.
The masses in the mixing formalism are shown with solid
curves and ‘meet’ at |Aκ | ∼ 250 GeV. As explained above,
a small gauge dependence remains present due to the off-
diagonal self-energy. The impact of the latter on the mass-
determination is of order ∼ 2–10 MeV when varying the
gauge-fixing parameter between 0.1 and 100, hence com-
pletely negligible in view of higher-order corrections. The
‘spikes’ of the orange curve in the upper plot can now be
understood: they correspond to the points of maximal tree-
level mixing – where a large radiative mixing is needed to
counteract the ‘fake’ tree-level mixing – and maximal mixing
at the radiative order (with a very narrow mass-splitting).

The plot on the lower right-hand corner of Fig. 11 dis-
plays the dependence of the mass determination on the gauge-
fixing parameter ξ for the point |Aκ | � 243 GeV with near-
maximal mixing. The horizontal brown and dark-green solid
lines lines are obtained with Eq. (12) and show negligible
variation. The orange and green curves employ an iterative
diagonalization procedure with variable external momentum
– set to one eigenvalue of the mass matrix at each iteration in
an attempt to solve Eq. (6): this procedure is dependent on ξ

and the difference at low ξ with respect to the eigenvalues
of Eq. (12) cannot be viewed as a genuine improvement in
accuracy. The dependence on the field renormalization, con-
cerning only the iterative diagonalization procedure, is also
shown through a scale variation (dotted vs. dashed curves).

Finally, we study the Higgs decay channel into the bb̄ final
state. On the left-hand side of Fig. 12, we show the decay
widths for the full range of Aκ . The dotted orange and green
curves correspond to the naive perturbative expansion trun-
cated at 1L order and ignoring the resummation of mixing
effects. For the heavier state (dotted orange), this width is
negative for |Aκ | � 180 GeV, highlighting the fact that the
decay is dominated by radiative effects, so that a 1L2 term is

123



Eur. Phys. J. C (2020) 80 :1124 Page 37 of 40 1124

Fig. 11 The singlet–doublet mixing in the NMSSM is depicted for
λ = 0.7, κ = 0.1, tβ = 2, MH± = 1 TeV, μeff = 410 GeV and varying
|Aκ |. Upper left: The magnitude of the mixing-effect at radiative order
with respect to the tree-level (dashed green) and loop-corrected mass-
splitting (solid orange) is shown. Upper right: The magnitude (squared)
of the singlet component in the Higgs fields before (dashed) and after
(solid) radiative mixing is displayed. Lower left: The mass values
obtained from the effective mass-matrix, neglecting the radiative mix-

ing (dashed) or including it (solid) are shown. The corresponding results
are insensitive to the gauge-fixing parameter. The tree-level masses are
represented as dotted lines. Lower right: The gauge-parameter depen-
dence in the mass values at |Aκ | � 243 GeV are depicted, obtained
from the effective mass matrix (brown and dark-green solid horizontal
lines), and from an iterative pole-search procedure (orange and green
dotted or dashed curves with field-renormalization scale atmt ormSUSY
respectively)

needed. For both states, the mixing contribution dominates
in the vicinity of |Aκ | ∼ 160 GeV, showing the necessity
of resumming mixing effects in this regime. The ‘bump’ in
the dotted green curve is related to the simultaneous vari-
ation of the diagonal mass (see the dashed green curve in
the lower left-hand plot of Fig. 11). The dashed curves corre-
spond to the same ‘naive’ expansion but including a (gauge-

and field-counterterm independent) 1L2 term: while a posi-
tive width is restored for h2, the description is still unreliable
for |Aκ | ∈ [100, 260]GeV since the mixing dominates in this
parameter range. On the other hand, for |Aκ | � 100 GeV and
|Aκ | � 260 GeV (with negligible mixing), this description
is a priori legitimate. Nevertheless, as 1L contributions still
dominate the width of h2 in the regime |Aκ | � 100 GeV, the
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Fig. 12 The decay widths for the bb̄ channel in the scenario of Fig. 11
are displayed. Left: The predictions of Eq. (13) for the decays of the
singlet–doublet admixtures H1,2 (solid brown and dark-green) are com-
pared to the perturbative expansion at 1L (without resumming the mix-
ing, dotted green and orange) and the same perturbative expansion
including a 1L2 term (dashed green and orange). Right: The gauge-

and field-renormalization dependence of the decay widths at |Aκ | �
243 GeV, obtained with Eq. (13) (solid dark-green and brown) and with
the mixing formalism associated to an iterative pole search (green and
orange, dotted or dashed depending on the field renormalization) are
shown

corresponding calculation cannot be seen as really predic-
tive (the width is compatible with 0), and a priori needs the
inclusion of full 2L effects for reliability. The solid brown
and dark-green lines are derived with the mixing formalism
of Eq. (13). In this description, the ‘bump’ disappears in the
intermediate regime (similarly to what happens to the masses:
see solid lines in the lower left-hand plot of Fig. 11) while,
in the limits |Aκ | → 0 and |Aκ | ∼ 350 GeV, the widths
converge towards the predictions of the ‘naive’ expansion
– quite clearly in the case of the doublet-dominated state
(width values ∼ 2.5 MeV) but more slowly in the case of the
singlet-dominated state (sub-MeV widths). The cancellation
at |Aκ | ∼ 220 GeV for the width of the heavy state corre-
sponds to a destructive interference between tree-level and
1L decay amplitudes. Given that m2

h2
− m2

h1
= O(1L) in

the whole considered range of Aκ , the mixing formalism is
also valid (though not formally needed) for |Aκ | � 100 GeV
and |Aκ | � 260 GeV. We observe that it seems to capture
the physics of the singlet-dominated state in these regimes
and offers an alternative to the explicit inclusion of a 1L2

term (dashed lines). Yet it is not completely clear whether
the associated predictions are quantitatively meaningful for
any of these descriptions as both rely on the inclusion of par-

tial 2L effects: ‘genuine’ 2L corrections may in fact compete
with the 1L2 contributions and affect the global properties of
the singlet state.

On the right-hand side of Fig. 12, we compare the decay
widths obtained with Eq. (13) and the pole-search formal-
ism – i.e. the definition of a mixing matrix Z associ-
ated with the iterative resolution of Eq. (6), as described in
e.g. Refs. [17,22] and summarized at the very end of Sect. 3.1
– for the point |Aκ | � 243 GeV with near-maximal mixing.
Again, we observe a significant dependence of this latter for-
malism on the gauge-fixing parameter and the field renor-
malization. In particular, it is clear that the prediction for the
singlet-dominated state (H2) is non-quantitative, with vari-
ations of O(100%) with the scale employed for the field
renormalization. For the doublet-dominated state (H1), the
widths at low ξ are more predictive, though including varia-
tions of O(10%). While not fully ξ -independent, the proce-
dure employing Eq. (13) is by construction much more sta-
ble under these variations. Associated results are compatible
with those of the pole search. Yet again, in such a scenario
with strong mixing, 2L corrections may affect the diagonal
mass-splitting, hence the strength of the mixing, so that it is
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unlikely that the properties derived at the 1L order for the
singlet-dominated state are actually predictive.
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