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Abstract In this paper, we present a candidate for N =
(1, 1) extended higher-spin AdS3 supergravity with the most
general boundary conditions discussed by Grumiller and
Riegler recently. We show that the asymptotic symmetry
algebra consists of two copies of the osp(3|2)k affine alge-
bra in the presence of the most general boundary conditions.
Furthermore, we impose some certain restrictions on gauge
fields on the most general boundary conditions and that leads
us to the supersymmetric extension of the Brown–Henneaux
boundary conditions. We eventually see that the asymptotic
symmetry algebra reduces to two copies of the SW( 3

2 , 2)

algebra for N = (1, 1) extended higher-spin supergravity.
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1 Introduction

The most common asymptotic symmetries of AdS3 gravity
with a negative cosmological constant in 3D are known as
two copies of the Virasoro algebras and this has been written
first by Brown and Henneaux in their seminal paper [1]. So
this work is well known as both a pioneer of AdS3/CFT2 cor-
respondence [2,3] and also a realization of the Holographic
Principle [4]. One of the biggest breakthroughs in theoretical
physics in the past few decades is undoubtedly the discovery
of the AdS/CFT correspondence describing an equivalence
between the Einstein gravity and a large N gauge field theory.

The pure Einstein gravity in this context is simply a Chern–
Simons gauge theory, that is, it is rewritten as a gauge field
theory, in such a way that the structure simplifies substan-
tially. This recalls us that there are no local propagating
degrees of freedom in the theory, and hence no graviton
in three-dimensions. Therefore, this gauge theory is said
purely topological and only global effects are of physical rel-
evance. Finally, one must emphasize here that the dynamics
of the theory is controlled entirely by the boundary condi-
tions, because its dynamical content is far from insignificant
due to the existence of boundary conditions. This fact was
first discovered by Achucarro and Townsend [5], and sub-
sequently developed by Witten [6]. The things found here
is that the gravity action in three-dimensions and equations
of motions are in the same class with a Chern–Simons the-
ory for a suitable gauge group. Under a convenient choice of
boundary conditions, there is an infinite number of degrees
of freedom living on the boundary. These boundary condi-
tions are required, but these conditions are not unique in the
selections. The dynamical properties of the theory are also
highly sensitive to the selection of these boundary conditions.
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Thus, the situations of asymptotic symmetries as the residual
global gauge symmetries emerge.

In the case of AdS3 gravity above with a negative cosmo-
logical constant in 3D, the most famous of these boundary
conditions is worked in the same paper [1]. These bound-
ary conditions also contain BT Z black holes [7,8]. Besides,
the Chern–Simons higher-spin theories are purely bosonic
theories [9,10] as versions of Vasiliev higher-spin theories
[11,12] with higher-spin fields of integer spin, they are based
on the sl(N , R) algebras and higher-spin algebras hs(λ)

respectively. The Chern–Simons higher-spin theories can
also be resulted with a realization of the classical WN asymp-
totic symmetry algebras as in the related two-dimensional
CFT’s [13–18]. The validity of these results can be extended
to supergravity theory [1,19,20], as well as a higher-spin
theory [9,10]. Beyond that a supersymmetric generaliza-
tion of these bosonic theories can be achieved by consider-
ing Chern–Simons theories based on superalgebras such as
sl(N |N − 1), see e.g [19–24], or osp(N |N − 1) [25] which
can be obtained by truncating out all the odd spin generators
and one copy of the fermionic operators in sl(N |N − 1).

The critical role of boundary conditions in field theories
and in particular in gravity theories has been well understood
so far. In three dimensions, as previously mentioned, asymp-
totic AdS3 boundary conditions by Brown and Henneaux
[1] provided an important precursor to the AdS3/CFT2. For
a long time, these boundary conditions have been changed
(see, e.g. [26,38,39,41–44]) and generalized (see, e.g. [45–
52]) many times. Our motivation is to construct a candidate
solution for the most general N = (1, 1) extended higher-
spin supergravity theory in AdS3. Our theory falls under the
same metric class as the recently constructed most general
AdS3 boundary condition by Grumiller and Riegler [26].
They showed that all charges and chemical potentials that
appear in the Chern–Simons formulation can also be seen in
the metric formulation. It is also mentioned that the possibil-
ity to obtain asymptotic symmetries that are the affine version
of the gauge algebras of the Chern–Simons theory is not a sur-
prise given the relation between Chern–Simons theories and
Wess–Zumino–Witten models [27]. If one examines the cor-
respondence between 2+1 dimensional pure Chern–Simons
gauge theories and 1+1 dimensional Wess–Zumino–Witten
conformal field theories, it can be seen that this is the core of
the relationship between these theories. This method recently
has also been applied to flat-space [28] and chiral higher-spin
gravity [29] which showed a new class of boundary condi-
tions for higher-spin theories in AdS3. The simplest exten-
sion of the Grumiller and Riegler’s analysis for the most gen-
eral N = (1, 1) and N = (2, 2) extended higher spin super-
gravity theory in AdS3 is the Valcárcel’s paper [30] where
the asymptotic symmetry algebra for the loosest set of bound-
ary conditions for (extended) supergravity has been obtained.
This is an alternative to the non-chiral Drinfeld–Sokolov type

boundary conditions. In particular, we first focus on the sim-
plest example, N = (1, 1) Chern–Simons theory based on
the superalgebra osp(1|2). The related asymptotic symme-
try algebra is two copies of the osp(1|2)k affine algebra.
Then one can extend this study to the N = (1, 1) Chern–
Simons theory based on the superalgebra osp(3|2) and the
symmetry algebras are given by two copies of the osp(3|2)k
affine algebra. Furthermore, we also impose certain restric-
tions on the gauge fields on the most general boundary condi-
tions and that leads to the supersymmetric extensions of the
Brown–Henneaux boundary conditions. From these restric-
tions, we see that the asymptotic symmetry algebras reduce
to two copies of the SW( 3

2 , 2) algebra for the most gen-
eral N = (1, 1) extended higher-spin supergravity theory in
AdS3. It will be also very interesting to show another class of
boundary conditions that appeared in the literature (see, e.g.
[39,41–43]) for (super)gravity case, whose higher-spin gen-
eralization is less clear than the Grumiller–Riegler boundary
conditions. Therefore, one can think that this method pro-
vides a good laboratory for investigating the rich asymptotic
structure of extended supergravity.

The outline of the paper is as follows. In the next sec-
tion, we give briefly a fundamental formulation of N =
(1, 1) supergravity in the perspective of osp(1|2)⊕ osp(1|2)

Chern–Simons gauge theory for both affine and supercon-
formal boundaries respectively in three-dimensions. In Sect.
3, we carry out our calculations to extend the theory to
osp(3|2) ⊕ osp(3|2) higher-spin Chern–Simons supergrav-
ity in the presence of both affine and superconformal bound-
aries, in where we showed explicitly principal embedding
of osp(1|2) ⊕ osp(1|2) and also demonstrated how asymp-
totic symmetry and higher-spin Ward identities arise from the
bulk equations of motion coupled to spin s, (s = 3

2 , 2, 2, 5
2 )

currents. This section is devoted to the case of classical two
copies of the osp(3|2)k affine algebra on the affine bound-
ary and SW( 3

2 , 2) symmetry algebra on the superconfor-
mal boundary as asymptotic symmetry algebras, and also the
chemical potentials related to source fields appearing through
the temporal components of the connection are obtained. In
Sect. 4, we present two most general boundary conditions
for pure bosonic gravity and N = 1 extended supergrav-
ity. That is, The Avery–Poojary–Suryanarayana gravity for
sl(2, R)⊕ sl(2) and osp(1|2)⊕ sl(2) respectively with some
further checks. On the other hand, it is shown that the Chern–
Simons action which compatible with our boundary condi-
tions leads to a finite action and a well-defined variational
principle for the higher-spin fields. The final section contains
our summary and conclusion.
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2 Supergravity in three-dimensions, a review

In this section, we review the Chern–Simons formalism for
higher-spin supergravity. In particular, we use this formalism
to study supergravity in theosp(1|2) superalgebra basis under
the same metric class as the recently constructed most general
AdS3 boundary condition by Grumiller and Riegler [26].

2.1 Connection to Chern–Simons theory

The three-dimensional Einstein–Hilbert action for N =
(1, 1) supergravity, which is defined on any manifold M,
with a negative cosmological constant is classically equiv-
alent to the Chern–Simons action, as it was first proposed
by Achucarro and Townsend in [5] and developed by Witten
in [6]. One can start by defining 1-forms (�, �̄) taking val-
ues in the gauge group’s osp(1|2) superalgebra, and also the
supertrace str is taken over the superalgebra generators. The
Chern–Simons action can be written in the form,

S = SCS [�] − SCS
[
�̄

]
(2.1)

where

SCS [�] = k

4π

∫

M
〈� ∧ d� + 2

3
� ∧ � ∧ �〉. (2.2)

Here k = �
4Gstr(L0L0)

= c
6str(L0L0)

is the level of the Chern–
Simons theory depending on the AdS radius l and Newton’s
constant G with the related central charge c of the supercon-
formal field theory. If Li , (i = ±1, 0) and Gp, (p = ± 1

2 ) are
the generators of osp(1|2) superalgebra. We have expressed
osp(1|2) superalgebra such that

[
Li ,L j

] = (i − j)Li+ j ,
[
Li ,Gp

] =
(
i

2
− p

)
Gi+p,

{
Gp,Gq

} = −2Lp+q . (2.3)

The equations of motion for the Chern–Simons gauge theory
give the flatness condition F = F̄ = 0 where

F = d� + � ∧ � = 0 (2.4)

is the same as Einstein’s equation. � and �̄ are related to the
metric gμν through the veilbein e = �

2 (� − �̄)

gμν = 1

2
str(eμeν). (2.5)

One can choose a radial gauge of the form

� = b−1a (t, φ) b + b−1db,

�̄ = bā (t, φ) b−1 + bdb−1

(2.6)

with state-independent group element as [26]

b(ρ) = eL−1eρL0 (2.7)

which manifests all the osp(1|2) charges and chemical poten-
tials and also the choice of b is irrelevant in the case of asymp-
totic symmetry, as long as δb = 0. Moreover, a (t, φ) and
ā (t, φ) in the radial gauge are the osp(1|2) superalgebra val-
ued fields, which are independent from the radial coordinate,
ρ as

a (t, ϕ) = at (t, ϕ) dt + aϕ (t, ϕ) dϕ. (2.8)

2.2 osp(1|2) ⊕ osp(1|2) Chern–Simons N = (1, 1)

supergravity for affine boundary

The affine case is given by reviewing asymptotically AdS3

boundary conditions for a osp(1|2) ⊕ osp(1|2) Chern–
Simons theory, and how to determine the asymptotic symme-
try algebra using the method described in [26]. Thus the most
general solution of Einstein’s equation that is asymptotically
AdS3, as a generalization of Fefferman–Graham method is
given by with a flat boundary metric

ds2 = dρ2 + 2
[
eρN (0)

i + N (1)
i + e−ρN (2)

i + O
(
e−2ρ

)]
dρdxi

+
[
e2ρg(0)

i j + eρg(1)
i j + g(2)

i j + O
(
e−ρ

)]
dxidx j . (2.9)

We need to choose the most general boundary conditions
for N = (1, 1) supergravity such that they maintain this
metric form. In the following, we only focus on the �-sector.
Therefore, one can propose to write the components of the
osp(1|2) superalgebra valued connection in the form,

aϕ (t, ϕ) =
+1∑

i=−1

αiLi (t, ϕ)Li +
+1/2∑

p=−1/2

βpG p (t, ϕ)Gp

(2.10)

where
(
αi , βp

)
’s are some scaling parameters to be deter-

mined later and we have five functions: three bosonic Li and
two fermionic G p. They are usually called charges and also
the time component of the connection a (t, ϕ)

at (t, ϕ) =
+1∑

i=−1

μi (t, ϕ)Li +
+1/2∑

p=−1/2

ν p (t, ϕ)Gp. (2.11)

Here, the time component has in total of five indepen-
dent functions (μi , ν p). They are usually called chemical
potentials. But, they are not allowed to vary

δaϕ =
+1∑

i=−1

αiδLiLi +
+1/2∑

p=−1/2

βpδG pGp, (2.12)

δat = 0. (2.13)
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The flat connection conditions (2.4) for fixed chemical poten-
tials impose the following additional conditions as the tem-
poral evolution of the five independent source fields (Li ,G p)

as

α±1∂tL±1 = ∂ϕμ±1 ∓ α0L0μ±1 ± α±1L±1μ0

−2β± 1
2
G± 1

2 ν± 1
2 , (2.14)

1

2
α0∂tL0 = 1

2
∂ϕμ0 + α+1L+1μ−1 − α−1L−1μ+1

−β+ 1
2
G+ 1

2 ν− 1
2 − β− 1

2
G− 1

2 ν+ 1
2 , (2.15)

β± 1
2
∂tG± 1

2 = ∂ϕν± 1
2 ± α±1L±ν∓ 1

2 ∓ 1

2
α0L0ν± 1

2

∓β∓ 1
2
μ±G∓ 1

2 ± 1

2
β± 1

2
μ0G± 1

2 . (2.16)

After the temporal evolution of the source fields, one can
start to compute the gauge transformations for asymptotic
symmetry algebra by considering all transformations

δλ� = dλ + [�, λ] (2.17)

that preserve the boundary conditions with the gauge param-
eter in the osp(1|2) superalgebra

λ = b−1

⎡

⎣
+1∑

i=−1

εi (t, ϕ)Li +
+1/2∑

p=−1/2

ζ p (t, ϕ)Gp

⎤

⎦ b.

(2.18)

Here, the gauge parameter has in total of five arbitrary func-
tions : bosonic εi and fermionic ζ p on the boundary. The
condition (2.17) impose that transformations on the gauge
are given by

α±1δλL±1 = ∂ϕε±1 ∓ α0L0ε±1 ± α±1L±1ε0

−2β± 1
2
G± 1

2 ζ± 1
2 , (2.19)

1

2
α0δλL0 = 1

2
∂ϕε0 + α+1L+1ε−1 − α−1L−1ε+1

−β+ 1
2
G+ 1

2 ζ− 1
2 − β− 1

2
G− 1

2 ζ+ 1
2 , (2.20)

β± 1
2
δλG± 1

2 = ∂ϕζ± 1
2 ± α±1L±ζ∓ 1

2 ∓ 1

2
α0L0ζ± 1

2

∓β∓ 1
2
ε±G∓ 1

2 ± 1

2
β± 1

2
ε0G± 1

2 . (2.21)

With analogical reasoning, they obey the following transfor-
mations

α±1δλμ
±1 = ∂tε

±1 ∓ α0μ
0ε±1 ± α±1μ

±1ε0

−2β± 1
2
ν± 1

2 ζ± 1
2 , (2.22)

1

2
α0δλμ

0 = 1

2
∂tε

0 + α+1μ
+1ε−1 − α−1μ

−1ε+1

−β+ 1
2
ν+ 1

2 ζ− 1
2 − β− 1

2
ν− 1

2 ζ+ 1
2 , (2.23)

β± 1
2
δλν

± 1
2 = ∂tζ

± 1
2 ± α±1μ

±ζ∓ 1
2 ∓ 1

2
α0μ

0ζ± 1
2

∓β∓ 1
2
ε±ν∓ 1

2 ± 1

2
β± 1

2
ε0ν± 1

2 . (2.24)

As a final step, one now has to determine the canonical bound-
ary charge Q[λ] that generates the transformations (2.19)-
(2.21). Therefore, the corresponding variation of the bound-
ary charge Q[λ] [31–34], to show the asymptotic symmetry
algebra, is given by

δλQ = k

2π

∫
dϕ str

(
λδ�ϕ

)
. (2.25)

The canonical boundary chargeQ[λ] can be integrated which
reads

Q[λ] =
∫

dϕ
[
L0ε0 + L+1ε−1 + L−1ε+1

+G+ 1
2 ζ− 1

2 + G− 1
2 ζ+ 1

2

]
. (2.26)

We now prefer to work in complex coordinates for the affine
boundary, z(z̄) ≡ ϕ ± i t

�
. After both the infinitesimal trans-

formations and the canonical boundary charge have been
determined, one can yield the Poisson bracket algebra by
using the methods [35] with

δλ� = {�,Q[λ]} (2.27)

for any phase space functional � :
{
Li (z1) ,L j (z2)

}

PB
= (i − j)Li+ j (z2) δ (z1 − z2)

− 1

α+1
ηi j∂ϕδ (z1 − z2) , (2.28)

{
Li (z1) ,G p (z2)

}

PB
=

(
i

2
− p

)
Gi+p (z2) δ (z1 − z2) ,

(2.29)
{
G p (z1) ,Gq (z2)

}
PB

= −2Lp+q (z2) δ (z1 − z2)

− 1

α+1
ηpq∂ϕδ (z1 − z2) (2.30)

where α+1 = − 2π
k for the convention in the literature and

ηi j is the bilinear form in the fundamental representation of
osp(1|2) superalgebra. One can also expand L(z) and G(z)
charges into Fourier modesLi (z) = 1

2π

∑
n L

i
nz

−n−1, and

G p(z) = 1
2π

∑
r G

p
r z−r− 1

2 , and also replacing i{·, ·}PB →
[·, ·]. A mode algebra can then be defined as:
[
Lim,L j

n

]
= (i − j)Li+ j

m+n + knηi jδm+n,0, (2.31)

[
Lim,Gp

r

]
=

(
i

2
− p

)
Gi+p
m+r , (2.32)

{
Gp
r ,Gqs

} = −2Lp+q
r+s + ksκ pqδr+s,0. (2.33)
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Besides, this mode algebra in this space is equivalent to oper-
ator product algebra,

Li (z1)L j (z2) ∼
k
2ηi j

z2
12

+ (i − j)

z12
Li+ j (z2) , (2.34)

Li (z1)G p (z2) ∼
( i

2 − p
)

z12
Gi+p (z2) , (2.35)

G p (z1)Gq (z2) ∼
k
2ηpq

z2
12

+ 2

z12
Lp+q (z2) (2.36)

where z12 = z1 − z2, or in the more compact form,

JA (z1) J
B (z2) ∼

k
2ηAB

z2
12

+ fABCJ
C (z2)

z12
. (2.37)

Here, ηAB is the supertrace matrix and fABC ’s are the structure
constants of the related algebra with (A, B = 0,±1,± 1

2 ),

i.e, ηi p = 0 and f
i j
i+ j = (i − j). After repeating the same

algebra for �̄-sector, one can say that the asymptotic sym-
metry algebra for the most general boundary conditions of
N = (1, 1) supergravity is two copies of the affine osp(1|2)k
algebra as in Ref. [30].

2.3 osp(1|2) ⊕ osp(1|2) Chern–Simons N = (1, 1)

supergravity for superconformal boundary

Under the following restrictions as the Drinfeld–Sokolov
highest weight gauge condition,

L0 = G+ 1
2 = 0,L−1 = L,G− 1

2 = G, α+1L+1 = 1 (2.38)

on the boundary conditions with the osp(1|2) superalgebra
valued connection (2.10), one can get the superconformal
boundary conditions as the supersymmetric extension of the
Brown–Henneaux boundary conditions proposed in [1] for
AdS3 supergravity. Therefore we have the supersymmetric
connection as,

aϕ = L1 + α−1LL−1 + β− 1
2
GG− 1

2
, (2.39)

at = μL1 +
0∑

i=−1

μiLi + νG 1
2

+ ν− 1
2 G− 1

2
(2.40)

where μ ≡ μ+1 andν ≡ ν+ 1
2 can be interpreted as an inde-

pendent chemical potentials. This means that we assume
the chemical potential to be fixed at infinity, i.e. δμ = 0. The

functions μ0, μ−1 and ν− 1
2 are fixed by the flatness condition

(2.4) as

μ0 = −μ′, (2.41)

μ−1 = 1

2
μ′′ + α−1Lμ + β− 1

2
Gν, (2.42)

ν− 1
2 = −ν′ + β− 1

2
Gν. (2.43)

For the fixed chemical potentials μ and ν, the time evolution
of canonical boundary charges L and G can be written as

∂tL = − μ′′′

2α−1

+2Lμ′ + L′μ +
β− 1

2

α−1

(
3Gν′ + G′ν

)
, (2.44)

∂tG = − ν′′

α−1
− α−1

β− 1
2

Lν + 3

2
μ′G + μG′ (2.45)

where α−1 and β− 1
2

are some scaling parameters to be deter-
mined later. Now, we are in a position to work the super-
conformal asymptotic symmetry algebra under the Drinfeld–
Sokolov reduction. This reduction implies that the only inde-

pendent parameters ε ≡ ε+1, and ζ ≡ ζ+ 1
2 . One can start

to compute the gauge transformations for asymptotic sym-
metry algebra by considering all transformations (2.17) that
preserve the boundary conditions. with the gauge parameter
in the osp(1|2) superalgebra (2.18) as

λ = b−1
[
εL1 − ε′L0 +

(
1

2
ε′′ + α−1Lε + β− 1

2
Gζ

)
L−1

+ζG+ 1
2

+
(
β− 1

2
Gε − ζ ′)G− 1

2

]
b. (2.46)

The flat connection condition (2.17) with α−1 = 6
c and

β− 1
2

= − 3
c becomes:

δλL = c

12
ε′′′ + 2Lε′ + L′ε − 1

2

(
3Gζ ′ + G′ζ

)
, (2.47)

δλG = c

3
ζ ′′ + 2Lζ + 3

2
ε′G + εG′. (2.48)

The variation of canonical boundary charge Q[λ] (2.25) can
be integrated which reads

Q[λ] =
∫

dϕ [Lε + Gζ ] . (2.49)

This leads to operator product expansions in the complex
coordinates by using (2.27)

L (z1)L (z2) ∼
c
2

z4
12

+ 2L
z2

12

+ L′

z12
, (2.50)

L (z1)G (z2) ∼
3
2G
z2

12

+ G′

z12
, G (z1)G (z2) ∼

2c
3

z3
12

+ 2L
z12

.

(2.51)

After repeating the same algebra for �̄-sector, one can say
that the asymptotic symmetry algebra for a set of boundary
conditions of N = (1, 1) supergravity is two copies of the
super-Virasoro algebra with central charce c = 6k.
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3 N = (1, 1) osp(3|2) ⊕ osp(3|2) higher-spin
Chern–Simons supergravity

3.1 For affine boundary

In this section, we will construct an extension of the
N = (1, 1) higher-spin supergravity theory. To this end,
osp(3|2) algebra is defined by using an higher-spin exten-
sion of osp(1|2) algebra which can be presented as a sub-
superalgebra as the ordinary case of osp(N |M) gauge alge-
bra. If Li (i = ±1, 0), Gp (p = ± 1

2 ), Ai (i = ±1, 0), and
Sp (p = ± 1

2 ,± 3
2 )are the generators of osp(3|2) superalge-

bra, we have expressed osp(3|2) superalgebra such that

[
Li ,L j

] = (i − j)Li+ j ,
[
Li ,Gp

] =
(
i

2
− p

)
Gi+p, (3.1)

{
Gp,Gq

} = σ1Ap+q + σ2Lp+q ,

{
Gp,Sq

} =
(

3p

2
− q

2

)
(
σ3Ap+q + σ4Lp+q

)
, (3.2)

[
Li ,A j

] =
(
i

2
− j

)
Ai+ j ,

[
Li ,Sp

] =
(

3i

2
− p

)
Si+p, (3.3)

[
Ai ,A j

] = (i − j)
(
σ5Li+ j + σ6Ai+ j

)
,

[
Ai ,Gp

] = σ7Si+p + σ8

(
i

2
− p

)
Gi+p, (3.4)

[
Ai ,Sp

] = σ9

(
3i

2
− p

)
Si+p + σ10

(
3i2 − 2i p + p2 − 9

4

)
Gi+p,

(3.5)
{
Sp,Sq

} =
(

3p2 − 4pq + 3q2 − 9

2

)
(
σ11Ap+q + σ12Lp+q

)
. (3.6)

The super Jacobi identities give us the nontrivial relations
for some constants σ ′

i s, (i = 1, 2, . . . , 12) appearing on the
RHS of Eqs. (3.1)–(3.6) as,

σ1 = 0, σ2 = −σ3σ7, σ4 = −σ3σ8,

σ5 = 1

2
(σ8 − 2σ9) (σ8 + σ9) , σ6 = 1

2
(5σ9 − σ8) ,

σ10 = − (σ8 − σ9)
2

4σ7
, σ11 = −σ3 (σ8 − σ9)

4σ7
,

σ12 = −σ3σ9 (σ9 − σ8)

4σ7
. (3.7)

For the corresponding algebra, the resulting relations are as
σ3 = 2, σ7 = −1, σ8 = 0, σ9 = 1. We are now ready
to formulate most general boundary conditions for asymp-
totically AdS3 spacetimes:

aϕ = αiLiLi + γiAiAi + βpG pGp + τpS pSp, (3.8)

at = μiLi + χ iAi + f pGp + ν pSp (3.9)

where
(
αi , γi , βp, τp

)
’s are some scaling parameters to be

determined later and we have twelve functions: six bosonic(
Li ,Ai

)
and six fermionic (G p,S p) as the charges and also

here, the time component has in total of twelve independent
functions (μi , χ i , f p, ν p) as the chemical potentials.

The flat connection conditions (2.4) for fixed chemical poten-
tials impose the following additional conditions as the tem-
poral evolution of the twelve independent source fields,
(Li ,Ai ,G p,S p) as

α±1∂tL±1 = ∂ϕμ±1 ± α±1μ
0L±1

∓α0μ
±1L0 + 2β± 1

2
G± 1

2 ν± 1
2

∓A±1γ±1χ
0 ± A0γ0χ

±1

+3τ∓ 1
2
f± 3

2 S∓ 1
2 − 2τ± 1

2
f± 1

2 S± 1
2

+3τ± 3
2
f∓ 1

2 S± 3
2 , (3.10)

1

2
α0∂tL0 = 1

2
∂ϕμ0 + α+1μ

−1L1 − α−1μ
+1L−1

+β+ 1
2
G+ 1

2 ν− 1
2 + β− 1

2
G− 1

2 ν+ 1
2

−A+1γ+1χ
−1 + A−1γ−1χ

+1

+9

2
τ− 3

2
f+ 3

2 S− 3
2 − 1

2
τ− 1

2
f+ 1

2 S− 1
2

−1

2
τ+ 1

2
f− 1

2 S+ 1
2 + 9

2
τ+ 3

2
f− 3

2 S+ 3
2 , (3.11)

g± 1
2
∂tG± 1

2 = ∂ϕν± 1
2 ∓ 1

2
α0ν

± 1
2 L0 ± α±1ν

∓ 1
2 L±1

∓β∓ 1
2
G∓ 1

2 μ±1 ± 1

2
β± 1

2
G± 1

2 μ0

+3

2
A∓1γ∓1f

± 3
2 − 1

2
A0γ0f

± 1
2

+1

2
A±1γ±1f

∓ 1
2

−3

2
τ± 3

2
S± 3

2 χ∓1 + 1

2
τ± 1

2
S± 1

2 χ0

−1

2
τ∓ 1

2
S∓ 1

2 χ±1, (3.12)

1

2
γ0∂tA0 = 1

2
∂ϕχ0 + A+1γ+1μ

−1 − A−1γ−1μ
+1

+5

2
A+1γ+1χ

−1

−5

2
A−1γ−1χ

+1 − β− 1
2
f+ 1

2 G− 1
2

+β+ 1
2
f− 1

2 G+ 1
2 − 9

2
τ− 3

2
f+ 3

2 S− 3
2

+1

2
τ− 1

2
f+ 1

2 S− 1
2

+1

2
τ+ 1

2
f− 1

2 S+ 1
2 − 9

2
τ+ 3

2
f− 3

2 S+ 3
2

−τ+ 1
2
ν− 1

2 S+ 1
2 + τ− 1

2
ν+ 1

2 S− 1
2 + α+1χ

−1L+1

−α−1χ
+1L−1, (3.13)

γ±1∂tA±1 = ∂ϕχ+1 ± A±1γ±1μ
0 ∓ A0γ0μ

±1

±5

2
A±1γ±1χ

0 ∓ 5

2
A0γ0χ

±1 ∓ 3β∓ 1
2
f± 3

2 G− 1
2

±β± 1
2
f± 1

2 G± 1
2 − 3τ∓ 1

2
f± 3

2 S∓ 1
2 + 2τ± 1

2
f± 1

2 S± 1
2

−3τ± 3
2
f∓ 1

2 S± 3
2 − 3τ± 3

2
ν∓ 1

2 S± 3
2

+ τ± 1
2
ν± 1

2 S± 1
2 ± α±1χ

0L±1 ∓ α0χ
±1L0, (3.14)
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τ± 1
2
∂tS± 1

2 = ∂ϕ f
± 1

2 − A±1γ±1ν
∓ 1

2

−A0γ0ν
± 1

2 ∓ 3A∓1γ∓1f
± 3

2

∓1

2
A0γ0f

± 1
2 ± 2A±1γ±1f

∓ 1
2

∓3α∓1f
± 3

2 L∓1 − 1

2
α0f

± 1
2 L0 ± 2α±1f

∓ 1
2 L±1

+β± 1
2
G± 1

2 χ0 + β∓ 1
2
G∓ 1

2 χ±1

±3τ± 3
2
μ∓1S± 3

2 ± 1

2
τ± 1

2
μ0S± 1

2 ∓ 2τ∓ 1
2
μ±1S∓ 1

2

±τ± 3
2
S± 3

2 χ∓1 ± 1

2
τ± 1

2
S± 1

2 χ0

∓2τ∓ 1
2
S∓ 1

2 χ±1, (3.15)

τ± 3
2
∂tS± 3

2 = ∂ϕ f
± 3

2 − A±1γ±1ν
± 1

2

∓3

2
A0γ0f

± 3
2 ± A±1γ±1f

± 1
2

∓3

2
α0f

± 3
2 L0 + α±1f

± 1
2 L±1

+β± 1
2
G± 1

2 χ±1 ± 3

2
τ± 3

2
μ0S± 3

2 − τ± 1
2
μ±1S± 1

2

±3

2
τ± 3

2
S± 3

2 χ0 ∓ τ± 1
2
S± 1

2 χ±1. (3.16)

After the temporal evolution of the source fields, one can start
to compute the gauge transformations for asymptotic sym-
metry algebra by considering all transformations (2.17) that
preserve the boundary conditions, with the gauge parameter
λ in the osp(3|2) superalgebra as,

λ = b−1
[
εiLi + κ iAi + ζ pGp + �pSp

]
b. (3.17)

Here, the gauge parameter has in total of twelve arbitrary
functions :six bosonic (εi , κ i ) and six fermionic (ζ p, �p) on
the boundary. The condition (2.17) impose that transforma-
tions on the gauge are given by

α±1δλL±1 = ∂ϕε±1 ± α±1ε
0L±1

∓α0ε
±1L0 + 2β± 1

2
G± 1

2 �± 1
2

∓A±1γ±1κ
0 ± A0γ0κ

±1

+3τ∓ 1
2
ζ± 3

2 S∓ 1
2 − 2τ± 1

2
ζ± 1

2 S± 1
2

+3τ± 3
2
ζ∓ 1

2 S± 3
2 , (3.18)

1

2
α0δλL0 = 1

2
∂ϕε0 + α+1ε

−1L1 − α−1ε
+1L−1

+β+ 1
2
G+ 1

2 �− 1
2 + β− 1

2
G− 1

2 �+ 1
2

−A+1γ+1κ
−1 + A−1γ−1κ

+1

+9

2
τ− 3

2
ζ+ 3

2 S− 3
2 − 1

2
τ− 1

2
ζ+ 1

2 S− 1
2

−1

2
τ+ 1

2
ζ− 1

2 S+ 1
2 + 9

2
τ+ 3

2
ζ− 3

2 S+ 3
2 , (3.19)

g± 1
2
δλG± 1

2 = ∂ϕ�± 1
2 ∓ 1

2
α0�

± 1
2 L0 ± α±1�

∓ 1
2 L±1

∓β∓ 1
2
G∓ 1

2 ε±1 ± 1

2
β± 1

2
G± 1

2 ε0

+3

2
A∓1γ∓1ζ

± 3
2 − 1

2
A0γ0ζ

± 1
2

+1

2
A±1γ±1ζ

∓ 1
2

−3

2
τ± 3

2
S± 3

2 κ∓1 + 1

2
τ± 1

2
S± 1

2 κ0

−1

2
τ∓ 1

2
S∓ 1

2 κ±1, (3.20)

1

2
γ0δλA0 = 1

2
∂ϕκ0 + A+1γ+1ε

−1 − A−1γ−1ε
+1

+5

2
A+1γ+1κ

−1

−5

2
A−1γ−1κ

+1 − β− 1
2
ζ+ 1

2 G− 1
2

+β+ 1
2
ζ− 1

2 G+ 1
2 − 9

2
τ− 3

2
ζ+ 3

2 S− 3
2

+1

2
τ− 1

2
ζ+ 1

2 S− 1
2

+1

2
τ+ 1

2
ζ− 1

2 S+ 1
2 − 9

2
τ+ 3

2
ζ− 3

2 S+ 3
2

−τ+ 1
2
�− 1

2 S+ 1
2 + τ− 1

2
�+ 1

2 S− 1
2

+α+1κ
−1L+1 − α−1κ

+1L−1, (3.21)

γ±1δλA±1 = ∂ϕκ+1 ± A±1γ±1ε
0 ∓ A0γ0ε

±1

±5

2
A±1γ±1κ

0 ∓ 5

2
A0γ0κ

±1 ∓ 3β∓ 1
2
ζ± 3

2 G− 1
2

±β± 1
2
ζ± 1

2 G± 1
2 − 3τ∓ 1

2
ζ± 3

2 S∓ 1
2 + 2τ± 1

2
ζ± 1

2 S± 1
2

−3τ± 3
2
ζ∓ 1

2 S± 3
2 − 3τ± 3

2
�∓ 1

2 S± 3
2

+τ± 1
2
�± 1

2 S± 1
2 ± α±1κ

0L±1 ∓ α0κ
±1L0, (3.22)

τ± 1
2
δλS± 1

2 = ∂ϕζ± 1
2 − A±1γ±1�

∓ 1
2

−A0γ0�
± 1

2 ∓ 3A∓1γ∓1ζ
± 3

2

∓1

2
A0γ0ζ

± 1
2 ± 2A±1γ±1ζ

∓ 1
2

∓3α∓1ζ
± 3

2 L∓1 − 1

2
α0ζ

± 1
2 L0 ± 2α±1ζ

∓ 1
2 L±1

+β± 1
2
G± 1

2 κ0 + β∓ 1
2
G∓ 1

2 κ±1

±3τ± 3
2
ε∓1S± 3

2 ± 1

2
τ± 1

2
ε0S± 1

2 ∓ 2τ∓ 1
2
ε±1S∓ 1

2

±τ± 3
2
S± 3

2 κ∓1 ± 1

2
τ± 1

2
S± 1

2 κ0

∓2τ∓ 1
2
S∓ 1

2 κ±1, (3.23)

τ± 3
2
δλS± 3

2 = ∂ϕζ± 3
2 − A±1γ±1�

± 1
2 ∓ 3

2
A0γ0ζ

± 3
2

±A±1γ±1ζ
± 1

2 ∓ 3

2
α0ζ

± 3
2 L0 + α±1ζ

± 1
2 L±1

+β± 1
2
G± 1

2 κ±1 ± 3

2
τ± 3

2
ε0S± 3

2

−τ± 1
2
ε±1S± 1

2 ± 3

2
τ± 3

2
S± 3

2 κ0

∓τ± 1
2
S± 1

2 κ±1. (3.24)
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With analogical reasoning, they obey the following transfor-
mations

α±1δλμ
±1 = ∂tε

±1 ± α±1ε
0μ±1

∓α0ε
±1μ0 + 2β± 1

2
f± 1

2 �± 1
2

∓χ±1γ±1κ
0 ± χ0γ0κ

±1

+3τ∓ 1
2
ζ± 3

2 ν∓ 1
2 − 2τ± 1

2
ζ± 1

2 ν± 1
2

+3τ± 3
2
ζ∓ 1

2 ν± 3
2 , (3.25)

1

2
α0δλμ

0 = 1

2
∂tε

0 + α+1ε
−1μ1 − α−1ε

+1μ−1

+β+ 1
2
f+ 1

2 �− 1
2 + β− 1

2
f− 1

2 �+ 1
2

−χ+1γ+1κ
−1 + χ−1γ−1κ

+1 + 9

2
τ− 3

2
ζ+ 3

2 ν− 3
2

−1

2
τ− 1

2
ζ+ 1

2 ν− 1
2

−1

2
τ+ 1

2
ζ− 1

2 ν+ 1
2 + 9

2
τ+ 3

2
ζ− 3

2 ν+ 3
2 , (3.26)

g± 1
2
δλf

± 1
2 = ∂t�

± 1
2 ∓ 1

2
α0�

± 1
2 μ0

±α±1�
∓ 1

2 μ±1 ∓ β∓ 1
2
f∓ 1

2 ε±1 ± 1

2
β± 1

2
f± 1

2 ε0

+3

2
χ∓1γ∓1ζ

± 3
2 − 1

2
χ0γ0ζ

± 1
2

+1

2
χ±1γ±1ζ

∓ 1
2

−3

2
τ± 3

2
ν± 3

2 κ∓1 + 1

2
τ± 1

2
ν± 1

2 κ0

−1

2
τ∓ 1

2
ν∓ 1

2 κ±1, (3.27)

1

2
γ0δλχ

0 = 1

2
∂tκ

0 + χ+1γ+1ε
−1 − χ−1γ−1ε

+1

+5

2
χ+1γ+1κ

−1

−5

2
χ−1γ−1κ

+1 − β− 1
2
ζ+ 1

2 f− 1
2

+β+ 1
2
ζ− 1

2 f+ 1
2 − 9

2
τ− 3

2
ζ+ 3

2 ν− 3
2

+1

2
τ− 1

2
ζ+ 1

2 ν− 1
2 + 1

2
τ+ 1

2
ζ− 1

2 ν+ 1
2

−9

2
τ+ 3

2
ζ− 3

2 ν+ 3
2

−τ+ 1
2
�− 1

2 ν+ 1
2 + τ− 1

2
�+ 1

2 ν− 1
2

+α+1κ
−1μ+1 − α−1κ

+1μ−1, (3.28)

γ±1δλχ
±1 = ∂tκ

+1 ± χ±1γ±1ε
0 ∓ χ0γ0ε

±1

±5

2
χ±1γ±1κ

0 ∓ 5

2
χ0γ0κ

±1 ∓ 3β∓ 1
2
ζ± 3

2 f− 1
2

±β± 1
2
ζ± 1

2 f± 1
2 − 3τ∓ 1

2
ζ± 3

2 ν∓ 1
2 + 2τ± 1

2
ζ± 1

2 ν± 1
2

−3τ± 3
2
ζ∓ 1

2 ν± 3
2 − 3τ± 3

2
�∓ 1

2 ν± 3
2

+τ± 1
2
�± 1

2 ν± 1
2 ± α±1κ

0μ±1 ∓ α0κ
±1μ0, (3.29)

τ± 1
2
δλν

± 1
2 = ∂tζ

± 1
2 − χ±1γ±1�

∓ 1
2 − χ0γ0�

± 1
2

∓3χ∓1γ∓1ζ
± 3

2 ∓ 1

2
χ0γ0ζ

± 1
2 ± 2χ±1γ±1ζ

∓ 1
2

∓3α∓1ζ
± 3

2 μ∓1 − 1

2
α0ζ

± 1
2 μ0 ± 2α±1ζ

∓ 1
2 μ±1

+β± 1
2
f± 1

2 κ0 + β∓ 1
2
f∓ 1

2 κ±1

±3τ± 3
2
ε∓1ν± 3

2 ± 1

2
τ± 1

2
ε0ν± 1

2 ∓ 2τ∓ 1
2
ε±1ν∓ 1

2

±τ± 3
2
ν± 3

2 κ∓1 ± 1

2
τ± 1

2
ν± 1

2 κ0

∓2τ∓ 1
2
ν∓ 1

2 κ±1, (3.30)

τ± 3
2
δλν

± 3
2 = ∂tζ

± 3
2 − χ±1γ±1�

± 1
2 ∓ 3

2
χ0γ0ζ

± 3
2

±χ±1γ±1ζ
± 1

2 ∓ 3

2
α0ζ

± 3
2 μ0 + α±1ζ

± 1
2 μ±1

+β± 1
2
f± 1

2 κ±1 ± 3

2
τ± 3

2
ε0ν± 3

2 − τ± 1
2
ε±1ν± 1

2

±3

2
τ± 3

2
ν± 3

2 κ0 ∓ τ± 1
2
ν± 1

2 κ±1. (3.31)

As in the osp(1|2) ⊕ osp(1|2) case one can now determine
the canonical boundary chargesQ[λ] that generates the trans-
formations (3.18)–(3.24). Therefore, the corresponding vari-
ation of the boundary charge Q[λ] [31–34], to show the
asymptotic symmetry algebra, is given by (2.25). The canon-
ical boundary charge Q[λ] can be integrated which reads

Q[λ] =
∫

dϕ
[
Liε−i + Aiκ−i + G pζ−p + S p�−p

]
.

(3.32)

Having determined both the infinitesimal transformations
and the canonical boundary charges as the generators of the
asymptotic symmetry algebra, one can also get the Poisson
bracket algebra by using the methods [35] with (2.27) again
for any phase space functional �, the operator product alge-
bra can then be defined as,

Li (z1)L j (z2) ∼
k
2 ηi j

z2
12

+ (i − j)

z12
Li+ j , (3.33)

Li (z1)G p (z2) ∼
( i

2 − p
)

z12
Gi+p, (3.34)

G p (z1)Gq (z2) ∼
k
2 ηpq

z2
12

+ 1

z12

(
σ1Ap+q + σ2Lp+q) , (3.35)

G p (z1)Sq (z2) ∼
(

3p
2 − q

2

)

z12

(
σ3Ap+q + σ4Lp+q) , (3.36)

Li (z1)A j (z2) ∼
( i

2 − j
)

z12
Ai+ j ,

Li (z1)S j (z2) ∼
( 3i

2 − j
)

z12
S i+ j , (3.37)
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Ai (z1)A j (z2) ∼
k
2 ηi j

z2
12

+ (i − j)

z12

(
σ5Li+ j + σ6Ai+ j

)
,

(3.38)

Ai (z1)G p (z2) ∼ 1

z12

(
σ7Si+p + σ8

(
i

2
− p

)
Gi+p

)
,

(3.39)

Ai (z1)S p (z2) ∼ 1

z12

(
σ9

(
3i

2
− p

)
Si+p + σ10

(
3i2 − 2i p

+p2 − 9

4

)
Gi+p

)
, (3.40)

S p (z1)Sq (z2) ∼
k
2 ηpq

z2
12

+ 1

z12

((
3p2 − 4pq + 3q2

−9

2

)
(
σ11Ap+q + σ12Lp+q

)
)

(3.41)

where z12 = z1 − z2, or in the more compact form,

JA (z1) J
B (z2) ∼

k
2ηAB

z2
12

+ fABCJ
C (z2)

z12
. (3.42)

Here, ηAB is the supertrace matrix and fABC ’s are the
structure constants of the related algebra with (A, B =
0,±1,± 1

2 , 0,±1,± 1
2 ,± 3

2 ), i.e, ηi p = 0 and f
i j
i+ j =

(i − j). After repeating the same algebra for �̄-sector, one
can say that the asymptotic symmetry algebra for the most
general boundary conditions of N = (1, 1) supergravity is
two copies of the affine osp(3|2)k algebra.

3.2 For superconformal boundary

Under the following restrictions as the Drinfeld–Sokolov
highest weight gauge condition,

L0 = A0 = A+1 = G+ 1
2 = S+ 1

2 = S+ 3
2 = 0,

L−1 = L,A−1 = A,G− 1
2 = G,S− 3

2 = S, α+1L+1 = 1

(3.43)

on the boundary conditions with the osp(3|2) superalgebra
valued connection (2.10), one can get the superconformal
boundary conditions as the supersymmetric extension of the
Brown–Henneaux boundary conditions proposed in [1,20]
for AdS3 supergravity. Therefore we have the supersymmet-
ric connection as,

aϕ = L1 + α−1LL−1 + γ−1AL−1

+β− 1
2
GG− 1

2
+ τ− 3

2
SS− 3

2
, (3.44)

at = μL1 + χA1 + fG+ 1
2

+νS+ 3
2

+
0∑

i=−1

μiLi +
0∑

i=−1

χ iAi

+f− 1
2 G− 1

2
+

1
2∑

p=− 3
2

ν pSp (3.45)

where μ ≡ μ+1, χ ≡ χ+1, ν ≡ ν+ 1
2 , and f ≡ f+ 3

2 can be
interpreted as the independent chemical potentials. One
can choose for the corresponding asymptotic symmetry alge-
bra, the resulting relations as σ3 = 2i√

5
, σ7 = i

√
5, σ8 =

0, σ9 = 1,appearing on the RHS of Eqs. (3.1)–(3.6) in
the super Jacobi identities of the osp(3|2) superalgebra. The
functions, except the chemical potentials are fixed by the
flatness condition (2.4). For the fixed chemical potentials, the
time evolution of canonical boundary charges can be written
as,

∂tL = μ′′′

2α−1
+ μL′ + 2Lμ′ + γ−1χA′

α−1

+2Aγ−1χ
′

α−1
−

3β− 1
2
Gf ′

α−1

−
β− 1

2
fG′

α−1
−

9δ− 3
2
νS ′

10α−1
−

3δ− 3
2
Sν′

2α−1
, (3.46)

∂tG = 3iγ−1νA′

2
√

5β− 1
2

+ 2iAγ−1ν
′

√
5β− 1

2

− f ′′

β− 1
2

− α−1fL
β− 1

2

+ μG′ + 3Gμ′

2
+

3iδ− 3
2
Sχ

2
√

5β− 1
2

, (3.47)

∂tA = μA′ − 5

2
iχA′ −

9Aβ− 1
2
Gν

√
5

+ 2Aμ′ − 5iAχ ′ + χ ′′′

2γ−1

+
3iδ− 3

2
fS

√
5γ−1

−
3iβ− 1

2
νG′′

2
√

5γ−1

−
4iβ− 1

2
G′ν′

√
5γ−1

−
3iβ− 1

2
Gν′′

√
5γ−1

−
9iα−1β− 1

2
GνL

2
√

5γ−1
+

9iδ− 3
2
νS ′

10γ−1

+
3iδ− 3

2
Sν′

2γ−1
+ α−1χL′

γ−1
+ 2α−1Lχ ′

γ−1
, (3.48)

∂tS = iγ−1νA′′

2δ− 3
2

+ 5iγ−1A′ν′

3δ− 3
2

− i
√

5γ−1fA′

3δ− 3
2

+5iAγ−1ν
′′

3δ− 3
2

− 4i
√

5Aγ−1f ′

3δ− 3
2

−
3
√

5Aβ− 1
2
γ−1Gχ

δ− 3
2

+3iα−1Aγ−1νL
δ− 3

2

− ν(4)

6δ− 3
2

−
i
√

5β− 1
2
χG′′

6δ− 3
2

−
7β2

− 1
2
GνG′

2δ− 3
2

−
2i

√
5β− 1

2
G′χ ′

3δ− 3
2

−
i
√

5β− 1
2
Gχ ′′

δ− 3
2

−
3i

√
5α−1β− 1

2
GχL

2δ− 3
2

+ μS ′ − iχS ′ + 5Sμ′

2
− 5

2
iSχ ′

−α−1νL′′

2δ− 3
2

− 3α2−1νL2

2δ− 3
2

−5α−1ν
′L′

3δ− 3
2

− 5α−1Lν′′

3δ− 3
2

(3.49)
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where α−1, γ−1, β− 1
2

and τ− 3
2

are some scaling parameters
to be determined later. Now, we are in a position to work
the superconformal asymptotic symmetry algebra under the
Drinfeld–Sokolov reduction. This reduction implies that the

only independent parameters ε ≡ ε+1, κ ≡ κ+1, ζ ≡ ζ+ 1
2

and � ≡ �+ 3
2 . One can start to compute the gauge trans-

formations for asymptotic symmetry algebra by considering
all transformations (2.17) that preserve the boundary condi-
tions with the gauge parameter λ in the osp(3|2) superalgebra
(3.1)–(3.6) as

λ = b−1
[
εL+1 − ε′L0 +

(
Aγ−1κ − β− 1

2
ζG − 9

10
δ− 3

2
ρS

+α−1Lε + ε′′

2

)
L−1

+ ζG+ 1
2

+
(

3iγ−1�A
2
√

5
− ζ ′ + β− 1

2
Gε

)
G− 1

2

+ κA+1 +
(

−κ ′ +
3iβ− 1

2
�G

√
5

)

A0

+
(

−5

2
iAγ−1κ + Aγ−1ε −

3iβ− 1
2
ρG′

2
√

5

−1

2
i
√

5β− 1
2
G�′ + κ ′′

2
+ 9

10
iδ− 3

2
ρS + α−1κL

)
A−1

+ �S 3
2

− �′S 1
2

+
(

−3

2
iAγ−1ρ

+1

2
i
√

5β− 1
2
Gκ + �′′

2
+ 3

2
α−1�L

)
S− 1

2

+
(

1

2
iγ−1�A′ − 1

3
i
√

5Aγ−1ζ

+7

6
iAγ−1�

′ + β2
− 1

2
− G2� − 1

6
i
√

5β− 1
2
κG′

− 1

2
i
√

5β− 1
2
Gκ ′ − �(3)

6
− iδ− 3

2
κS

+δ− 3
2
Sε − 1

2
α−1�L′ − 7

6
α−1L�′

)
S− 3

2

]
b. (3.50a)

The condition (2.17) impose that transformations on the
gauge with α−1 = γ−1 = 6

c , β− 1
2

= − 3
c and τ− 3

2
= − 10

c
are given by

δλL = cε′′′

12
+ εL′ + 2Lε′

+κA′ + 2Aκ ′ + ζG′

2
+ 3Gζ ′

2
+ 3ρS ′

2
+ 5Sρ′

2
, (3.51)

δλG = −3iρA′
√

5
− 4iAρ′

√
5

+cζ ′′

3
+ εG′ + 3Gε′

2
+ i

√
5κS + 2ζL, (3.52)

δλA = −5

2
iκA′ + εA′ − 5iAκ ′ + 2Aε′

+27AGρ√
5c

+ 27iGρL
2
√

5c
+ cκ ′′′

12

+3iρG′′

4
√

5
+ 2iG′ρ′

√
5

+ 3iGρ′′

2
√

5
− 3

2
iρS ′ − i

√
5ζS

−5

2
iSρ′ + κL′ + 2Lκ ′, (3.53)

δλS = − 3

10
iρA′′ + iζA′

√
5

− iA′ρ′ + 4iAζ ′
√

5
− iAρ′′ − 27AGκ√

5c

−54iAρL
5c

+ 63GρG′

20c
− 27iGκL

2
√

5c
+ cρ(4)

60

+27ρL2

5c
− iκG′′

4
√

5
− iG′κ ′

√
5

− 3iGκ ′′

2
√

5
− iκS ′ + εS ′

−5

2
iSκ ′ + 5Sε′

2
+ 3ρL′′

10
+ ρ′L′ + Lρ′′. (3.54)

The variation of canonical boundary charge Q[λ] (2.25) can
be integrated which reads

Q[λ] =
∫

dϕ
[
Lε + Aκ + Gζ + S�

]
. (3.55)

This leads to operator product expansions in the complex
coordinates by using (2.27)

L (z1)L (z2) ∼
c
2

z4
12

+ 2L
z2

12

+ L′

z12
, (3.56a)

L (z1)G (z2) ∼
3
2G
z2

12

+ G′

z12
, G (z1)G (z2) ∼

2c
3

z3
12

+ 2L
z12

,

(3.56b)

L (z1)A (z2) ∼ 2A
z2

12

+ A′

z12
, L (z1)S (z2) ∼

5
2S
z2

12

+ S ′

z12
,

(3.56c)

G (z1)A (z2) ∼ − i
√

5A
z12

, G (z1)S (z2) ∼
4i√

5
A

z2
12

−
i√
5
A′

z12
,

(3.56d)

A (z1)A (z2) ∼
c
2

z4
12

+ 2L − 5iA
z2

12

+ L − 5i
2 A

z12
, (3.56e)

A (z1)S (z2) ∼ −
3i√

5
G

z3
12

−
iG′√

5
+ 5iS

2

z2
12

− 1

z12

(
27AG√

5c

+27iGL
2
√

5c
+ iS ′ + iG′′

4
√

5

)
, (3.56f)

S (z1)S (z2) ∼
2c
5

z5
12

+ 2(L − iA)

z3
12

+ L′ − iA′

z2
12

+ 1

z12

(
27L2

5c

−54iAL
5c

+ 63GG′

20c
− 3iA′′

10
+ 3L′′

10

)
. (3.56g)

After repeating the same algebra for �̄-sector, one can say
that the asymptotic symmetry algebra for a set of boundary
conditions of N = (1, 1) supergravity is two copies of the
SW( 3

2 , 2) algebra with central charce c = 6k. Finally, one
can also take into account normal ordering (quantum) effects
of this algebra as in Ref’s. [36,37].
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4 Other extended (super)gravity checks in the most
general boundary conditions

In this section, it will be very interesting to show another
class of boundary conditions that appeared in the litera-
ture (see, e.g. [39,41–43]) for gravity case, whose higher-
spin generalization is less clear than the Grumiller–Riegler
boundary conditions. Because of the possibility to obtain
asymptotic symmetries that are the affine version of the
gauge algebras of the Chern–Simons theory is not a sur-
prise given the relation between Chern–Simons theories and
Wess–Zumino–Witten models [27]. Therefore, we present
two most general boundary conditions for pure bosonic
gravity and N = 1 extended supergravity. That is, The
Avery–Poojary–Suryanarayana gravity for sl(2, R) ⊕ sl(2)

and osp(1|2)⊕sl(2) respectively. In order to check, we com-
pare the most general boundary conditions used so far with
the Avery–Poojary–Suryanarayana boundary conditions for
sl(2, R) ⊕ sl(2) pure gravity in Sect. 4.1 and N = 1 super-
gravity for osp(1|2) ⊕ sl(2) in Sect. 4.2 respectively after
we have worked with the Brown–Henneaux boundary con-
ditions for N = 1 supergravity for osp(1|2) ⊕ sl(2) in Sect.
3.2. We also mention the checks that our boundary conditions
passed and discuss conservation of the charges and consis-
tency of the variational principleN = (1, 1) supergravity for
osp(1|2) in Sect. 4.4 and osp(3|2) in Sect. 4.5 respectively.

4.1 Avery–Poojary–Suryanarayana for sl(2, R) ⊕ sl(2)

The Avery–Poojary–Suryanarayana boundary conditions pro-
posed in [43] are a generalization of the Brown–Henneaux
boundary conditions and that can be obtained by choos-
ing for �-sector the Brown–Henneaux boundary conditions
while leaving all charges to vary for the �̄-sector. Con-
sequently, these lead to an interesting set of asymptotic
symmetries in the form of sl(2, R) ⊕ sl(2)k . To this end,
we recapitulate Avery–Poojary–Suryanarayana gravity for
sl(2, R) ⊕ sl(2) from the most general Grumiller–Riegler
gravity for sl(2, R)⊕sl(2, R) as in [26]. Therefore, the most
general connections for Grumiller–Riegler boundary condi-
tions is given by

� − sector : aϕ = αiLiLi , at = μiLi , (4.1)

�̄ − sector : āϕ = −αi L̄iLi , at = μ̄iLi . (4.2)

Besides, in the Avery–Poojary–Suryanarayana gravity the
boundary conditions is given by

� − sector : aϕ = L1 − κL−1,

at = L1 − κL−1, (4.3)

�̄ − sector : āϕ = L−1 − κ̄L1 + f iLi ,

āt = −L−1 + κ̄L1 + f iLi . (4.4)

In this gravity language, this amounts to the following restric-
tions on the charge and the chemical potential:

� − sector : L0 = 0, L−1 = L = − κ

α−1
,

L1 = 1

α1
,

μ0 = 0, μ1 = μ = 1, μ−1 = κ, (4.5)

�̄ − sector : L̄0 = − f 0

α0
, L̄−1 = − 1

α−1

(
1 + f−1) ,

L̄1 = 1

α1

(
κ̄ − f 1) ,

μ̄0 = f 0, μ̄1 = μ = κ̄ + f 1,

μ̄−1 = f−1 − 1, and L̄a = T a . (4.6)

Next we want to find two sets of gauge transformations that
preserve the boundary conditions. First, we define the gauge
parameter λ for �-sector as:

aϕ = L1 − α−1LL−1, λ = εiLi , (4.7)

where α−1 = 6
c . If Li , (i = ±1, 0) are the generators of

sl(2, R) algebra such that
[
Li ,L j

] = (i − j)Li+ j that is,
this is the Brown–Henneaux boundary condition that produce
the following asymptotic symmetry algebra :

L (z1)L (z2) ∼
c
2

z4
12

+ 2L
z2

12

+ ∂L
z12

(4.8)

with central charge c = 6k. Second, we define the gauge
parameter λ̄ for �̄-sector as:

āϕ = L−1 − α−1LL1 + βiT iTi0, λ̄ = ηiLi + σ iTi0.

(4.9)

where α−1 = 6
c , β−1 = β1 = − 2

k , and β0 = 4
k . If Tan, (a =

±1, 0) are the generators of sl(2) current algebra. We have
expressed sl(2, R) ⊕ sl(2) algebra such that

[Ln,Lm] = (n − m)Ln+m,
[
Ln,T

a
m

] = −mTan+m,
[
Tan,T

b
m

]
= (a − b)Ta+b

n+m .

(4.10)

that is, this is an affine boundary condition that produce the
following sl(2, R) ⊕ sl(2)k asymptotic symmetry algebra :

L (z1)L (z2) ∼
c
2

z4
12

+ 2L
z2

12

+ L′

z12
, (4.11)

L (z1) T a (z2) ∼ T a

z2
12

+ T a′

z12
,

T a (z1) T b (z2) ∼
k
2ηab

z2
12

+ (a − b)

z12
T a+b (z2) . (4.12)
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with central charge c = 6k and performing a Sugawara shift
[26],

L → L−1 + 1

k

(
T 0T 0 − T +T −)

. (4.13)

4.2 Avery–Poojary–Suryanarayana N = 1 supergravity for
osp(1|2) ⊕ sl(2)

Inspired by previous calculations, in this section, we cal-
culate Avery–Poojary–Suryanarayana N = 1 gravity for
osp(1|2) ⊕ sl(2) from the most general Grumiller–Riegler
N = (1, 1) supergravity for osp(1|2)⊕osp(1|2). Therefore,
the most general connections for Grumiller–Riegler bound-
ary conditions is given by

� − sector: aϕ = αiLiLi + βpG pGp, (4.14)

at = μiLi + ν pGp, (4.15)

�̄ − sector: āϕ = −
(
αi L̄iLi + βpḠ pGp

)
, (4.16)

āt = μ̄iLi + ν̄ pGp. (4.17)

Besides, in the Avery–Poojary–Suryanarayana gravity the
boundary conditions is given by

� − sector: aϕ = L1 − κL−1 − ωG− 1
2
, (4.18)

at = L1 − κL−1 − ωG− 1
2
, (4.19)

�̄ − sector: āϕ = L−1 − κ̄L1 − ω̄G 1
2

+ f iLi + gpGp,

(4.20)

āt = −L−1 + κ̄L1 + ω̄G 1
2

+ f iLi + gpGp.

(4.21)

In this gravity language, this amounts to the following restric-
tions on the charges and the chemical potentials:

� − sector : L0 = 0, L−1 = L = − κ

α−1
, L1 = 1

α1
,

G− 1
2 = − ω

β− 1
2

, G 1
2 = 0,

μ0 = 0, μ1 = μ = 1, μ−1 = κ,

ν− 1
2 = −ω, ν

1
2 = 0, (4.22)

�̄ − sector : L̄0 = − f 0

α0
,

L̄−1 = − 1

α−1

(
1 + f−1

)
,

L̄1 = 1

α1

(
κ̄ − f 1

)
,

Ḡ− 1
2 = g− 1

2

β− 1
2

, Ḡ 1
2 = ω̄ − g

1
2

β 1
2

,

μ̄0 = f 0, μ̄1 = μ = κ̄ + f 1, (4.23)

μ̄−1 = f−1 − 1, ν̄− 1
2 = g− 1

2 ,

ν̄
1
2 = ω̄ + g

1
2 , and L̄a = T a . (4.24)

Next, we want to find two sets of gauge transformations that
preserve the boundary conditions. First, we define the gauge
parameter λ for �-sector as:

aϕ = L1 − α−1LL−1 − β− 1
2
GG− 1

2
, λ = εiLi + ζ pGp.

(4.25)

This is the Brown–Henneaux boundary condition for the �−
sector that produces one copy of the asymptotic symmetry
algebra as in Sect. 2.3. Second, we define the gauge parameter
λ̄ for �̄-sector as:

āϕ = L−1 − α−1LL1 − β− 1
2
GG 1

2
+ γiT iTi0,

λ̄ = εiLi + ζ pGp + σ iTi0. (4.26)

where α−1 = 6
c , β− 1

2
= − 3

c , γ−1 = γ1 = − 2
k , and γ0 = 4

k .

IfTan, (a = ±1, 0) are the generators of sl(2) current algebra.
We have expressed osp(1|2) ⊕ sl(2) superalgebra such that

[Ln,Lm] = (n − m)Ln+m,
[
Ln,Gp

] =
(n

2
− p

)
Gn+p,

{
Gp,Gq

} = −2Lp+q ,
[
Ln,T

a
m

] = −mTan+m,
[
Tan,T

b
m

]
= (a − b)Ta+b

n+m . (4.27)

that is, this is an affine boundary condition that produces the
following osp(1|2) ⊕ sl(2)k asymptotic symmetry algebra :

L (z1)L (z2) ∼
c
2

z4
12

+ 2L
z2

12

+ L′

z12
,

L (z1)G (z2) ∼
3
2G
z2

12

+ G′

z12
,

G (z1)G (z2) ∼
2c
3

z3
12

+ 2L
z12

,

L (z1) T a (z2) ∼ T a

z2
12

+ T a′

z12
,

T a (z1) T b (z2) ∼
k
2ηab

z2
12

+ (a − b)

z12
T a+b. (4.28)

with central charge c = 6k, and the same Sugawara shift
(4.13).

4.3 The on-shell action and the variational principle

It is well known that on manifold M with boundary ∂M
the Chern–Simons action (2.2) in general is neither differen-
tiable nor gauge invariant. Therefore, it is important to show
that the boundary conditions admit a well-defined variational
principle. To see this, take a closer look at the variation of
the Chern–Simons action,

δSCS[�] = k

2π

∫

M
〈δ� ∧ F〉 + k

4π

∫

∂M
〈δ� ∧ �〉,
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(4.29)

where, due that on-shell F = 0, the on-shell bulk part is
zero and we are left with only a boundary term :

δSCS[�] = k

4π

∫

∂M
dtdϕ 〈�ϕ ∧ δ�t − �t ∧ δ�ϕ〉. (4.30)

Therefore, it would be good to have an appropriate way of
extending the possible consistent boundary conditions. A
consistent way is to add a boundary term SB [�] to the Chern–
Simons action. So, the total action will then be of the form :

Stot = SCS + k

4π

∫

∂M
dtdϕ 〈�t ∧ �ϕ〉. (4.31)

4.4 osp(1|2)-case

Then, considering a solution of the form (4.14), for our
boundary conditions is very easy to see that the radial depen-
dent group element plays no role in this analysis, in fact
plugging (4.14) into (4.31) we have :

δStot[�] = − k

2π

∫

∂M
dtdϕ 〈aϕ δat 〉 (4.32)

= k

2π

∫

∂M
dtdϕ 〈Liδμ−i + G pδν−p〉

= 0 (4.33)

because of δat = 0. A similar calculation should be made
for the barred sector. This solution ensures for that α1 =
− 2π

k , α0 = 4π
k , α−1 = − 2π

k , β 1
2

= π
k and β− 1

2
= −π

k in
(2.10).

4.5 osp(3|2)-case

After the calculation of osp(1|2)-case, it could be an interest-
ing straightforward exercise to establish a well-defined vari-
ational principle also for N = (1, 1) extended higher-spin
supergravity with two copies of the osp(3|2)k affine algebra
as follows. To this end, considering a solution of the form
(3.8), plugging these into (4.31) we have :

δStot[�] = k

2π

∫

∂M
dtdϕ 〈L̃iδμ−i

+ Ãiδχ−i + G pδf−p + S pδν−p〉
= 0 (4.34)

because of δat = 0, under the re-definitions of L̃i = 3Li +
5Ai and Ãi = 5Li + 3Ai , A similar calculation should be
made for the barred sector. This solution finally ensures for
that α1 = − 2π

k , α0 = 4π
k , α−1 = − 2π

k , β 1
2

= π
3k , β− 1

2
=

− π
3k , γ1 = − 2γ

k , α0 = 4π
k , γ−1 = − 2π

k , τ 3
2

= π
9k , τ 1

2
=

π
3k , τ− 1

2
= − π

3k and τ− 3
2

= π
9k in(3.8).

5 Summary and comments

In this work, a relation between AdS3 and osp(1|2) ⊕
osp(1|2) Chern–Simons theory was first reviewed. The
Chern–Simons formulation of AdS3 allows for a straight-
forward generalization to a higher-spin theory as in the
bosonic cases. The higher-spin gauge fields have no prop-
agating degrees of freedom, but we noted that there can
be a large class of interesting non-trivial solutions. Specifi-
cally, AdS3 in the presence of a tower of higher-spin fields
up to spin 5

2 is obtained by enlarging osp(1|2) ⊕ osp(1|2)

to osp(3|2) ⊕ osp(3|2) for the most general N = (1, 1)

extended higher-spin supergravity theory in AdS3. Finally,
classical two copies of the osp(3|2)k affine algebra on the
affine boundary and two copies ofSW( 3

2 , 2) symmetry alge-
bra on the superconformal boundary as asymptotic symmetry
algebras, and also the chemical potentials related to source
fields appearing through the temporal components of the con-
nection are obtained. Finally, higher-spin generalization of
other class of boundary conditions, in particular for the Avery
-Poojary - Suryanarayana gravity, that appeared in the litera-
ture for gravity case is also shown and checked. On the other
hand, it is shown that the Chern–Simons action which com-
patible with our boundary conditions leads to a finite action
and a well-defined variational principle for the higher-spin
fields. Therefore, one can think that this method provides a
good laboratory for investigating the rich asymptotic struc-
ture of extended supergravity.

It could be rewarding to cast our results in the metric for-
mulation, since this may help in lifting our boundary condi-
tions to higher dimensions where Chern–Simons formulation
exists. Such generalizations are interesting in itself and have
the potential for novel applications in holography. Finally,
in our discussion of the most general boundary conditions
of(super)gravity, we have barely scratched the boundary.
Therefore, there could be numerous open questions that call
for further investigations. For instance, which other boundary
conditions can be obtained from a similar starting point? Or
how to explain the puzzling result that the related geometries
appear to have an entropy?

In conclusion, we consider it gratifying that the asymp-
totically AdS story of the most general boundary conditions
initiated recently by Grumiller and Riegler to inspire new and
surprising developments even in the simple cases of three-
dimensional gravity.

Our results presented in this paper can be extended in var-
ious ways. One possible extension is by enlarging sl(2|1) ⊕
sl(2|1) to sl(3|2) ⊕ sl(3|2) supergravity for the most gen-
eral N = (2, 2) extended higher-spin supergravity theory in
AdS3. In this context, one can finally emphasise here that the
rather comprehensive analysis of the sl(3|2) ⊕ sl(3|2) the-
ory for the Brown–Henneaux boundary conditions has been
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already given in Ref. [19]. The details of this possible exten-
sion will be examined in our forthcoming paper.
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