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Abstract We present a three-dimensional Chern–Simons
gravity based on a deformation of the Maxwell algebra. This
symmetry allows introduction of a non-vanishing torsion to
the Maxwell Chern–Simons theory, whose action recovers
the Mielke–Baekler model for particular values of the cou-
pling constants. By considering suitable boundary condi-
tions, we show that the asymptotic symmetry is given by the
̂bms3 ⊕ vir algebra with three independent central charges.
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1 Introduction and motivations

Three-dimensional Chern–Simons (CS) gravity theories are
considered as interesting toy models since they allow us
to approach diverse aspects of the gravitational interaction
and underlying laws of quantum gravity. Furthermore, they
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c e-mail: evelyn.rodriguez@edu.uai.cl
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share many properties with higher-dimensional gravity mod-
els which, in general, are more difficult to study. Three dimen-
sional General Relativity (GR) with and without cosmolog-
ical constant can be described through a CS action based on
the AdS and Poincaré algebra, respectively [1–3]. Nowadays,
there is a growing interest in exploring bigger symmetries in
order to study more interesting and realistic physical models.

Well-known infinite-dimensional enhancements of the
AdS and Poincaré symmetries, in three spacetime dimen-
sions, are given respectively by the conformal and the bms3

algebras. A central extension of the two-dimensional confor-
mal algebra, which can be written as two copies of the Vira-
soro algebra, appears as the asymptotic symmetry of three-
dimensional GR with negative cosmological constant [4]. In
the asymptotically flat case, the three-dimensional version of
the Bondi–Metzner–Sachs (BMS) algebra [5–8], denoted as
bms3, corresponds to the asymptotic symmetry of GR [9].
bms3 can be alternatively obtained as a flat limit of the confor-
mal one, in a similar way as the Poincaré symmetry appears
as a vanishing cosmological constant limit of AdS. The study
of richer boundary dynamics could offer a better understand-
ing of the bulk/boundary duality beyond the AdS/CFT cor-
respondence [10]. Thus, the exploration of new asymptotic
symmetries of CS gravity theories based on enlarged global
symmetries could be worth studying. In particular, extensions
and generalizations of the conformal and the bms3 algebras
have been subsequently developed in diverse contexts in [11–
34].

A particular extension and deformation of the Poincaré
algebra is given by the Maxwell algebra. Such symmetry
appears to describe a particle moving in a four-dimensional
Minkowski background in presence of a constant electro-
magnetic field [35–37]. This algebra is characterized by the
non-vanishing commutator of the four-momentum generator
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Pa :

[Pa, Pb] = Mab, (1.1)

which is proportional to a new Abelian generator Mab. The
Maxwell algebra and its generalizations have been useful to
recover standard GR without cosmological constant from CS
and Born–Infeld gravity theories in a particular limit [38–
42]. In three spacetime dimensions, an invariant CS grav-
ity action under Maxwell algebra has been introduced in
[43] and different aspects of it has been studied [44–53].
As Poincaré symmetry, the Maxwell symmetry describes a
three-dimensional gravity theory whose geometry is Rieman-
nian and locally flat. However, the presence of an additional
gauge field in the Maxwell case leads to new effects com-
pared to GR. In particular, in [29], the authors have shown
that the Maxwellian gravitational gauge field modifies not
only the vacuum energy and angular momentum of the sta-
tionary configuration but also the asymptotic structure.

To accommodate a non-vanishing torsion to the Maxwell
CS gravity theory it is necessary to deform the Maxwell
algebra. Here, we show that a particular deformation of the
Maxwell symmetry, which we refer to as “deformed Maxwell
algebra”, allows us to introduce not only a torsional but also a
cosmological constant term along the Einstein–Hilbert term.
Then, motivated by the recent results on the Maxwell algebra,
we explore the effects of deforming the Maxwell symmetry
both to the bulk and boundary dynamics. At the bulk level, we
show that the invariant CS gravity action under the deformed
Maxwell algebra reproduces the Maxwell field equations
but with a non-vanishing torsion describing a Riemann–
Cartan geometry. Interestingly, the CS action can be seen
as a Maxwell version of a particular case of the Mielke–
Baekler (MB) gravity theory [54] which describes a three-
dimensional gravity model in presence of non-vanishing tor-
sion. Further studies of the MB gravity have been subse-
quently developed in [55–65]. Here we explore the effects of
having a non-vanishing torsion in Maxwell CS gravity at the
level of the boundary dynamics. In particular, by considering
suitable boundary conditions, we show that the asymptotic
symmetry can be written as the ̂bms3 ⊕ vir algebra. This
infinite-dimensional symmetry was recently obtained as a
deformation of the infinite-dimensional enhancement of the
Maxwell algebra, denoted as Max3 algebra [66]. We also
show that the vanishing cosmological constant limit � → ∞
can be applied not only at the CS gravity theory level but
also at the asymptotic algebra, leading to the Maxwell CS
gravity and its respective asymptotic symmetry previously
introduced in [29].

The paper is organized as follows. In Sect. 2, we present
the three-dimensional CS gravity theory which is invariant
under a particular deformation of the Maxwell algebra. Fur-
thermore, considering asymptotically flat geometries with

null boundary, we discuss the BMS-like solution of the the-
ory. We provide boundary conditions allowing a well-defined
action principle. In Sect. 3, we show that the asymptotic sym-
metry algebra for the Maxwell CS gravity with torsion is
given by an infinite enhancement of a deformed Maxwell
algebra, which can be written as the direct sum ̂bms3 ⊕ vir.
Finally, in Sect. 4 we discuss the obtained results and possible
future developments.
Notation We adopt the same notation as [30,66,67] for the
algebras; for algebras we generically use “mathfrak” fonts,
like vir, bms3 and Max3. The centrally extended version
of an algebra g will be denoted by ĝ, e.g. Virasoro algebra
vir = ̂witt.

2 Maxwell Chern–Simons gravity theory with torsion

Using the CS formalism, we present the three-dimensional
gravity theory based on a particular deformation of the
Maxwell algebra. Unlike the Maxwell case, such deforma-
tion leads to a non-vanishing torsion as equation of motion.
The deformed Maxwell algebra is spanned by the genera-
tors {Ja, Pa, Ma}, which satisfy the following non-vanishing
commutation relations:

[Ja, Jb] = ε c
ab Jc,

[Ja, Pb] = ε c
ab Pc,

[Ja, Mb] = ε c
ab Mc,

[Pa, Pb] = ε c
ab

(
Mc + 1

�
Pc

)
,

(2.1)

where εabc is the three-dimensional Levi-Civita tensor and
a, b = 0, 1, 2 are the Lorentz indices which are lowered
and raised with the Minkowski metric ηab. The � parameter
appearing in the last commutator is related to the cosmolog-
ical constant �. Then, the vanishing cosmological constant
limit � → ∞ reproduces the Maxwell symmetry. Let us note
that the Hietarinta–Maxwell algebra [48,52,68] is recovered
in the limit � → ∞ when the role of the Pa and Ma genera-
tors is interchanged. One can see that Ja and Pa are not the
generators of a Poincaré subalgebra. However, as it is pointed
out in [66], (2.1) can be rewritten as the iso(2, 1) ⊕ so(2, 1)

algebra. This can be seen by a redefinition of the generators,

La ≡ Ja − �Pa − �2Ma,

Sa ≡ �Pa + �2Ma,

Ta ≡ −� Ma,

(2.2)

where La and Ta are the respective generators of the iso(2, 1)

algebra, while Sa is a so(2, 1)generator. Then, the Lie algebra
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(2.1) can be rewritten as

[La, Lb] = ε c
ab Lc,

[La, Tb] = ε c
ab Tc,

[Sa, Sb] = ε c
ab Sc.

(2.3)

It is important to point out that (2.1) is not the unique way
of deforming the Maxwell algebra. It is shown in [69] that
the Maxwell algebra can be deformed into two different alge-
bras: so(2, 2)⊕so(2, 1) and iso(2, 1)⊕so(2, 1). The former
has been largely studied in [31,44,70,71] whose asymptotic
symmetry is described by three copies of the Virasoro algebra
[31,32], while the latter has only been approached through
a deformation process [66,69]. In the present work, using
the basis {Ja, Pa, Ma}, we find asymptotic symmetry of the
CS gravity theory based on the iso(2, 1) ⊕ so(2, 1) algebra.
The motivation to use such basis is twofold. First, it allows
us to recover the Maxwell CS gravity theory in a particular
limit. Second, as we shall see, it reproduces the Maxwell field
equations with a non-vanishing torsion.

A three-dimensional gravity can be formulated as a CS
theory described by the action

SCS[A] = k

4π

∫
M

〈
AdA + 2

3
A3

〉
, (2.4)

with a given Lie algebra on a manifold M, where A is the
gauge connection, 〈 , 〉 denotes the invariant trace and k =
1/(4G) is the CS level. For the sake of simplicity we have
omitted writing the wedge product. The gauge connection
one-form A for the deformed Maxwell algebra reads

A = ea Pa + ωa Ja + f aMa, (2.5)

where ea , ωa and f a are the dreibein, the (dualized) spin
connection and an auxiliary one-form field, respectively. The
associated field strength F = dA + 1

2 [A, A] can be written
as

F = Ka Pa + Ra Ja + WaMa, (2.6)

where

Ra = dωa + 1

2
εabcω

bωc, (2.7a)

Ka = T a + 1

2�
εabce

bec, (2.7b)

Wa = D(ω) f a + 1

2
εabce

bec. (2.7c)

Here, T a = D(ω)ea is torsion two-form, Ra is curvature
two-form, and D(ω)�a = d�a + εabcω

b�c is the exterior
covariant derivative. Naturally, the flat limit � → ∞ repro-
duces the Maxwell field strength [29]. On the other hand, the

non-degenerate bilinear form of the algebra (2.1) reads

〈Ja Jb〉 = α0ηab, 〈Pa Pb〉 =
(α1

�
+ α2

)
ηab,

〈Ja Pb〉 = α1ηab, 〈PaMb〉 = 0,

〈JaMb〉 = α2ηab, 〈MaMb〉 = 0,

(2.8)

where α0, α1 and α2 are arbitrary constants satisfying α2 �= 0
and α1 �= −�α2. Both conditions are required to ensure the
non-degeneracy of the invariant tensor (2.8). One can see that
the flat limit � → ∞ leads to the non-vanishing components
of the invariant tensor for the Maxwell algebra [29].

Considering the one-form gauge potential (2.5) and the
non-vanishing components of the invariant tensor (2.8), one
can rewrite the CS action (2.4) as

SCS = k

4π

∫
M

{
α0

(
ωadωa + 1

3
εabcωaωbωc

)

+ α1

(
2Rae

a + 1

3�2 εabceaebec + 1

�
T aea

)

+ α2

(
T aea + 2Ra fa + 1

3�
εabceaebec

) }
(2.9)

up to a surface term. One can see that the CS action is propor-
tional to three independent sectors each one with its respec-
tive coupling constant αi . In particular, the first term is the
so-called exotic Lagrangian [2]. The second term contains
the usual Einstein Lagrangian with cosmological constant
term plus a torsional term related to the so-called Nieh–Yan
invariant density.

It is interesting to notice that the CS gravity action (2.9)
can be seen as a Maxwell extension of a particular case of
the MB model, which describes a three-dimensional gravity
model in presence of non-vanishing torsion. The MB action
is given by

IMB = aI1 + �I2 + β3 I3 + β4 I4 (2.10)

where a,�, β3 and β4 are constants and

I1 = 2
∫

ea R
a,

I2 = −1

3

∫
εabce

aebec,

I3 =
∫

ωadωa + 1

3
εabcωaωbωc,

I4 =
∫

eaT
a . (2.11)

Particularly, in the absence of the auxiliary field f a in (2.9),
the constants appearing in the MB gravity can be identified
with those of the deformed Maxwell algebra CS theory as

a = k

4π
α1, � = − k

4π�

(α1

�
+ α2

)
, β3 = k

4π
α0

β4 = k

4π

(α1

�
+ α2

)
. (2.12)
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Thus, the CS gravity action (2.9) can be interpreted as the
Maxwellian version of a particular case of the MB gravity
action when the MB’s constants satisfy (2.12).

It is important to point out that one can accommodate a
generalized cosmological constant in the Maxwell gravity
theory using another deformation of the Maxwell algebra,
known as AdS–Lorentz algebra [72]. However, in the AdS–
Lorentz case, besides the Einstein–Hilbert term there is an
additional gauge field fa , while there is no torsion term α1

[31,44,70,71]. In the present case, the deformed Maxwell
symmetry allows us to introduce both a cosmological con-
stant and a torsion term. In the flat limit � → ∞ the CS action
reproduces the Maxwell CS gravity action which contains
pure GR as sub-case. Dynamics of the fa gauge field is com-
pletely determined by the last term with coupling constant
α2. In particular, the equations of motion appear by consid-
ering the variation of the action (2.9) under the respective
gauge fields:

δea : 0 = α1

(
Ra + 1

�
Ka

)
+ α2K

a,

δωa : 0 = α0R
a + α1K

a + α2W
a,

δ f a : 0 = α2R
a . (2.13)

Then, when α2 �= 0 we find the curvature two-forms (2.6)
should vanish,

Ra = 0, Ka = 0, Wa = 0. (2.14)

Indeed, from last equation in (2.13), we find Ra = 0. Never-
theless, it is important to emphasize that α1 = −�α2, which
solves the first equation of (2.13) and would imply a relation
between Ka and Wa , cannot be considered as a solution of
the theory. As was previously mentioned, the non-degeneracy
of the invariant tensor implies α2 �= 0 and α1 �= −�α2. In
particular, in the three-dimensional CS formalism, the non-
degeneracy of the bilinear form ensures that the CS action
involves a kinematical term for each gauge field and the equa-
tions of motion imply that all curvature two-forms vanish as
in (2.14). Note that the CS gravity theory (2.9) describes the
Maxwell CS gravity theory in presence of a non-vanishing
torsion T a �= 0. In particular, the first two equations Ra = 0
and T a = − 1

2�
εabce

bec correspond to the three-dimensional
teleparallel theory in which the cosmological constant can
be seen as a source for the torsion. On the other hand, the
vanishing of Wa implies that the exterior covariant derivative
of the auxiliary field fa is constant. In particular, in the flat
limit � → ∞ the field equation for fa remains untouched
and is analogue to the constancy of the electromagnetic field
in flat spacetime.

One can see that each term of the action (2.9) is invariant
under the gauge transformation laws of the algebra (2.1).
Indeed, considering

� = εa Pa + ρa Ja + χaMa, (2.15)

we have that the gauge transformations δA = d� + [A,�]
of the theory are given by

δ�e
a = D(ω)εa − εabcρbec + 1

�
εabcebεc,

δ�ωa = D(ω)ρa,

δ� f a = D(ω)χa + εabcebεc − εabcρb fc.

(2.16)

In this work, we analyze the consequences of this particu-
lar deformation of the Maxwell symmetry at the level of the
asymptotic structure. In the Maxwell case, as was shown in
[29], the presence of the additional gauge field f a leads to
new effects compared to GR and the asymptotic symmetries
is found to be a deformed bms3, denoted as Max3 in [66].
Here, we explore the implications of deforming the Maxwell
algebra as in (2.1).

Let us recall that given an action there are two ways to ren-
der it having a well-posed variation principle. One of them is
to add boundary terms to the action and the other is imposing
suitable boundary conditions on fields. Let us consider the
variation of the action (2.4),

δSCS[A] = k

2π

∫
M

〈δAF〉 + k

4π

∫
∂M

〈δA A〉, (2.17)

where ∂M is the boundary ofM. The field equations require
vanishing of the field strength and the on-shell boundary con-
tribution to the action is the surface term

δSCS[A]∣∣bdy = − k

4π

∫
∂M

〈AδA〉. (2.18)

In our case this term reads as

δSCS
∣∣
bdy = k

4π

∫
∂M

[
δωa (α0ωa + α1ea + α2 fa)

+δea
(
α1ωa +

(α1

l
+ α2

)
ea

)
+ α2δ f

aωa

]
. (2.19)

We will see later that for spacetimes with null boundary,
where the boundary is located at r = const → ∞, the action
principle is satisfied without addition of boundary terms.

2.1 BMS-like solution

In this section we analyze the field equations (2.14). We con-
sider spacetimes with null boundary, which can be described
in the three-dimensional BMS gauge. We parametrize space-
time by the local coordinates xμ = (u, r, φ), where −∞ <

u < ∞ is the retarded time coordinate, φ ∼ φ + 2π is the
angular coordinate and the boundary is located at r = const.
Then, the metric can be written as [18]

ds2 = Mdu2 − 2dudr + Ndφdu + r2dφ2, (2.20)

where M and N are two arbitrary functions of u, φ. As
was previously discussed, the deformed Maxwell symme-
try (2.1) can be written in a certain basis as the direct sum
iso(2, 1) ⊕ so(2, 1). Following the same trick considered in
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[31], we can find solutions of the present theory by first work-
ing in the direct sum basis and then, go to the basis we are
interested in. In the direct sum basis, the fields (ω̃a, ẽa) asso-
ciated to the iso(2, 1) generators obey the very well-known
GR boundary conditions, and the field f̃ a associated to the
so(2, 1) generator can be set as a flat connection.

Furthermore, in the aforementioned direct sum basis, the
functionsM andN are given for the known results in asymp-
totically flat gravity in three dimensions

M = M(φ), N = J (φ) + uM′(φ). (2.21)

The spacetime line element can be written in terms of the
dreibein as ds2 = ηabẽa ẽb, where

ηab =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ (2.22)

is the Minkowski metric in null coordinate system. Then, the
dreibein and the torsionless spin connection one-forms are
written as

ẽ0 = −dr + 1

2
Mdu + 1

2
Ndφ, ẽ1 = du, ẽ2 = rdφ,

ω̃0 = 1

2
Mdφ, ω̃1 = dφ, ω̃2 = 0.

(2.23)

The field f̃ a can then be chosen as a Lorentz flat connection,

f̃ 0 = 1

2
Ldφ, f̃ 1 = dφ, f̃ 2 = 0, (2.24)

where L = L(φ). In this way, we have found the solutions
in the BMS gauge for the fields (ẽa, ω̃a, f̃ a).

As mentioned before, we are interested in the basis where
the Poincaré–Lorentz symmetry appears as a deformation of
the Maxwell algebra. From (2.2), it is possible to show that
the fields (ea, ωa, f a) are related to those in the direct sum
basis (ẽa, ω̃a, f̃ a) as follows:

ea = �
(
f̃ a − ω̃a

)
, ωa = ω̃a,

f a = �2
(
f̃ a − ω̃a

)
− �ẽa . (2.25)

Consequently, the field equations (2.14) are solved by the
following components of the gauge fields

e0 = 1

2
Pdφ, ω0 = 1

2
Mdφ, f 0 = �dr + 1

2
Fdφ − �

2
Mdu,

e1 = 0, ω1 = dφ, f 1 = −�du,

e2 = 0, ω2 = 0, f 2 = −�rdφ, (2.26)

where, for later convenience, we have defined the functions
P = �(L − M) and F = �(P − N ).

As discussed we need to ensure vanishing of the bound-
ary term in the variation of the action when suitable boundary

conditions on the fields are imposed. The radial dependence
of the connection A can be gauged away by the gauge trans-
formation A = h−1dh + h−1ah, where the asymptotic field
a = au(u, φ)du + aφ(u, φ)dφ does not depend on r and
h = e�rM0 . Then, at the boundary r = const. → ∞, the
on-shell action (2.18) takes the form

δSCS
∣∣
bdy = − k

4π

∫
∂M

〈aδa〉

= k

4π

∫
∂M

dudφ
[
δeau

(
α1ωaφ +

(α1

�
+ α2

)
eaφ

)

− δeaφ

(
α1ωau +

(α1

�
+ α2

)
eau

)

+ δωa
u

(
α0ωaφ + α1eaφ + α2 faφ

)
− δωa

φ (α0ωau + α1eau + α2 fau)

+α2δ f
a
u ωaφ − α2δ f

a
φ ωau

]
. (2.27)

Furthermore, from (2.26) we find the following boundary
conditions for the gauge fields

eau = 0, ωa
u = 0, ωa

φ = −� f au , (2.28)

upon the first two, the variation of the action reduces to

δSCS
∣∣
bdy = kα2

4π

∫
∂M

dudφ
(
δωa

φ fau − δ f au ωaφ

)
. (2.29)

Finally, applying the last condition ωa
φ = −� f au , we arrive at

δSCS
∣∣
bdy = 0, (2.30)

for any value of α2. Thus, in space-time with boundary con-
ditions (2.28), the action principle is well-posed.

3 Asymptotic symmetries

The aim of this section is to find the asymptotic symmetry
algebra for the Maxwell CS gravity with torsion which was
previously constructed. To start with, we provide the suit-
able fall-off conditions for the gauge fields at infinity and the
gauge transformations which preserve our boundary condi-
tions. Then, the charge algebra is found using the Regge–
Teitelboim method [73].

3.1 Boundary conditions

Inspired by the results obtained in the previous section, we
consider the gauge connection evaluated in the BMS gauge
as follows

A =1

2
M (u, φ) dφ J0 + dφ J1 + 1

2
P (u, φ) dφP0

+
[
�dr + 1

2
F (u, φ) dφ − �

2
M (u, φ) du

]
M0

− �duM1 − r�dφM2.

(3.1)
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The radial dependence can be gauged away by an appropriate
gauge transformation on the connection

A = h−1dh + h−1ah, (3.2)

where the group element is given by h = e�rM0 . Then, if we
use the identity h−1dh = �drM0, and the Baker–Campbell–
Hausdorff formula, we find

h−1ah = a − �rdφM2. (3.3)

Therefore, once we have dropped out the radial dependence
from the gauge field A, we are left with the asymptotic field
a = audu + aφdφ, whose components are given by

au = −�

2
MM0 − �M1,

aφ = 1

2
MJ0 + J1 + 1

2
PP0 + 1

2
FM0,

(3.4)

which depend only on time and the angular coordinate. The
equations of motion, which are required to hold in the asymp-
totic region, imply that

M = M (φ) , P = P (φ) , F = Z (φ) − u�M′ (φ) .

(3.5)

3.2 Residual gauge transformations

Asymptotic symmetries correspond to residual gauge trans-
formations δ�A = d� + [A,�] which preserve boundary
conditions (3.1). We consider the following gauge parame-
ters

� = h−1λh, λ = λa(J ) (u, φ) Ja

+λa(P) (u, φ) Pa + λa(M) (u, φ) Ma . (3.6)

Then, gauge transformations of the connection A with gauge
parameter �, lead to r -independent gauge transformations
of the connection a with gauge parameter λ, i.e.

δ�a ≡ δλa = dλ + [a, λ]. (3.7)

The gauge transformations that preserve the boundary con-
ditions (3.1) with (3.5) for λa(J ) and λa(P) are given by

λ0
(J ) = M

2
ε − ε′′, λ0

(P) = 1

2

[
P

(χ

�
+ ε

)
+ Mχ

]
− χ ′′,

λ1
(J ) = ε, λ1

(P) = χ,

λ2
(J ) = −ε′, λ2

(P) = −χ ′, (3.8)

while for λa(M) we get

λ0
(M) = M

2
γ + P

2
χ + F

2
ε − �M

2
uε′ + u�ε′′′ − γ ′′,

λ1
(M) = γ − u�ε′,

λ2
(M) = −γ ′ + u�ε′′, (3.9)

where ε, χ and γ are three arbitrary, periodic functions of the
angular coordinate φ. Under the given gauge transformation,
the dynamical fields transform as

δλM = M′ε + 2Mε′ − 2ε′′′,

δλP = P ′ (χ

�
+ ε

)
+ 2P

(
ε′ + χ ′

�

)

+M′χ + 2Mχ ′ − 2χ ′′′,
δλZ = Z ′ε + 2Zε′ + M′γ

+2Mγ ′ + P ′χ + 2Pχ ′ − 2γ ′′′. (3.10)

3.3 Canonical surface charges and asymptotic symmetry
algebra

Asymptotic symmetries of the Maxwell gravity theory with
non-vanishing torsion can be found in the canonical approach
[73]. In particular, in the case of a three-dimensional Chern–
Simons theory, the variation of the canonical generators is
given by [74,75]

δQ[λ] =
∫

dφ〈λδaφ〉. (3.11)

Therefore one can show that surface charge variation associ-
ated with (3.8) and (3.9) is

δQ(ε, χ, γ ) =
∫ 2π

0
dφ (εδJ + χδP + γ δM) (3.12)

with

J = k

4π
(α2Z + α0M + α1P) , (3.13a)

P = k

4π

[(α1

�
+ α2

)
P + α1M

]
, (3.13b)

M = k

4π
α2M. (3.13c)

One can take ε, χ and γ to be state-independent and then
the charge variation (3.12) is integrable on the phase space.
There are three independent surface charges,

J (ε) = Q(ε, 0, 0), P(χ) = Q(0, χ, 0),

M(γ ) = Q(0, 0, γ ), (3.14)

associated with three independent symmetry generators ε, χ
and γ . It is shown that the algebra among surface charges is
given by [73,76,77]

{Q(�1), Q(�2)} = Q([�1,�2]) + C(�1,�2) (3.15)

where Dirac bracket is defined as {Q(�1), Q(�2)} :=
δ�2 Q(�1) and C(�1,�2) is central extension term. There-
fore, using the transformation laws (3.10), one can show that
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the algebra of charges (3.12) is

{J (ε1), J (ε2)} = J ([ε1, ε2]) − kα0

2π

∫
dφ ε1ε

′′′
2 ,

{J (ε), P(χ)} = P([ε, χ ]) − kα1

2π

∫
dφ εχ ′′′,

{J (ε), M(γ )} = M([ε, γ ]) − kα2

2π

∫
dφ εγ ′′′,

{P(χ1), P(χ2)} = M([χ1, χ2]) + 1

�
P([χ1, χ2])

− k

2π

(α1

�
+ α2

) ∫
dφχ1χ

′′′
2 ,

{P(χ), M(γ )} = 0,

{M(γ1), M(γ2)} = 0, (3.16)

where [x, y] = xy′ − yx ′. The resulting algebra corresponds
to an infinite-dimensional lift of the deformed Maxwell alge-
bra. Now we can express the above algebra in Fourier modes,

Jn := J (einφ), Pn := P(einφ), Mn := M(einφ), (3.17)

which give rise to the following centrally extended algebra

i {Jm, Jn} = (m − n) Jm+n + c1

12
m3δm+n,0,

i {Jm, Pn} = (m − n) Pm+n + c2

12
m3δm+n,0,

i {Jm, Mn} = (m − n) Mm+n + c3

12
m3δm+n,0,

i {Pm, Pn} = (m − n) Mm+n + 1

�
(m − n) Pm+n

+ 1

12

(c2

�
+ c3

)
m3δm+n,0,

i {Pm, Mn} = 0,

i {Mm, Mn} = 0. (3.18)

The central charges c1, c2 and c3 are related to the CS level
k and the arbitrary constant appearing in the invariant tensor
(2.8) as

ci = 12kαi−1. (3.19)

3.4 Change of basis

The infinite-dimensional algebra (3.18) can be seen as the
infinite-dimensional enhancement of the deformed Maxwell
algebra (2.1). In particular, in the flat limit � → ∞we recover
the asymptotic symmetry of the three-dimensional Maxwell
CS gravity theory introduced in [29]. Interestingly, as was
shown in [66], the algebra (3.18) is isomorphic to thêbms3 ⊕
vir algebra. To observe this at the level of charge algebra, we
use the change of basis proposed in [78].

Suppose ε, χ and γ are now state-dependent, i.e. they
are functions of dynamical fields. We require that charge

variation be integrable which leads to

ε = δG
δJ

, χ = δG
δP

, γ = δG
δM

, (3.20)

for some functional

G[J,P,M] =
∫ 2π

0
dφ G(J,P,M). (3.21)

By choosing

G = ε̃
(
J − �P − �2M

)
+ χ̃

(
�P + �2M

)
− �γ̃ M (3.22)

where ε̃, χ̃ , γ̃ are state-independent functions, one can show
that the charge variation (3.12) can be written as

δQ(ε̃, χ̃ , γ̃ ) =
∫ 2π

0
dφ (ε̃δL + χ̃δS + γ̃ δT) (3.23)

with

L =J − �P − �2M, (3.24a)

S =�P + �2M, (3.24b)

T = − �M. (3.24c)

Now, by introducing Fourier modes

Lm := Q(ε̃ = einφ, 0, 0), Sm := Q(0, χ̃ = einφ, 0),

Tm := Q(0, 0, γ̃ = einφ), (3.25)

one finds the direct sum of the ̂bms3 and Virasoro algebra:

i {Lm, Ln} = (m − n) Lm+n + cLL
12

m3δm+n,0,

i {Lm, Tn} = (m − n) Tm+n + cLT
12

m3δm+n,0,

i {Sm, Sn} = (m − n) Sm+n + cSS
12

m3δm+n,0, (3.26)

where the central charges are related to those appearing in
(3.18) as

cLL ≡ c1 − �c2 − �2c3, cSS ≡ �c2 + �2c3, cLT ≡ −�c3.

(3.27)

The central charges (cLL , cLT , cSS) of thêbms3⊕vir algebra
are related to the three independent terms of the CS gravity
action for the iso(2, 1) ⊕ so(2, 1) algebra.

Let us note that the algebra (3.18) can be obtained alterna-
tively as a central extension of the deformed Max3[66] and
deformed bms4 [67]. It is also worth pointing out that by
ignoring the generators Tm and central charge cLT in (3.26),
which is equivalent to ignoring the Maxwell generators Mm

and central charge c3 in (3.18), one obtains two copies of
Virasoro algebra, which is the asymptotic symmetry of the
AdS3 CS gravity (or Teleparallel theory [79]) with two cen-
tral charges as

cLL ≡ c1 − �c2, cSS ≡ �c2. (3.28)

123



967 Page 8 of 10 Eur. Phys. J. C (2020) 80 :967

4 Discussion and outlook

In this work, we have studied a CS gravity theory with a
deformed Maxwell algebra as a gauge group, which allows us
to introduce a non-vanishing torsion to the Maxwell CS grav-
ity. In particular, the CS action can be seen as a Maxwell gen-
eralization of a particular case of the MB gravity [54] whose
field equations correspond to those of the Maxwell gravity
theory but in presence of a non-vanishing torsion. Motivated
by the fact that the deformed Maxwell is isomorphic to the
iso(2, 1) ⊕ so(2, 1) algebra, we considered asymptotically
flat geometries and discuss the BMS-like solution. We then
explored the implications of the deformed Maxwell algebra
(2.1) at the level of the asymptotic symmetry. In particular, we
have shown that the asymptotic symmetry for the Maxwell
algebra with torsion is described by an infinite-enhancement
of the deformed Maxwell algebra which can be written as the
̂bms3 ⊕ vir algebra with three independent central charges.

It would be interesting to go further in the study of the solu-
tions of the present theory. In particular, one expects the solu-
tions to describe a Maxwell version of the so-called Telepar-
allel theory in which the cosmological constant is a source for
the torsion. As was shown in [57,79], both GR with cosmo-
logical constant and three-dimensional Teleparallel gravity
have the same asymptotic symmetry and dynamics. Further-
more, three-dimensional gravity with torsion possesses BTZ
[80] black hole solution [56,81,82] whose thermodynamics
properties have been discussed in [59]. Then, it seems natu-
ral to expect to find a BTZ type solution for our theory. The
approach to this last point and thermodynamics remains as an
interesting open issue to explore. In particular, one can study
the effects of the present deformation in the vacuum energy
and vacuum angular momentum of the stationary configura-
tion and their relations to the GR and Maxwell ones.

Although the three-dimensional Maxwell algebra can be
deformed into so(2, 2) ⊕ so(2, 1) and iso(2, 1) ⊕ so(2, 1)

algebras, the former can be obtained as a deformation of
the latter. The same argument is true for their corresponding
infinite enhancements, meaning that the bms3 ⊕witt algebra
can be deformed into the witt ⊕ witt ⊕ witt algebra. Since
both infinite-dimensional algebras are obtained as asymptotic
symmetry algebras of different three-dimensional CS gravity
theories, it might be interesting to consider the deformation
relation between these theories at the level of their solutions,
phase spaces and physical quantities. It should be pointed
out that the bms3 ⊕ witt algebra can also be deformed into
another algebra which is known as W (a, b) ⊕ witt, as was
proved in [30]. Regarding the recent work [78], where it was
shown that the W (0, b) algebra can be obtained as near hori-
zon symmetries of three-dimensional black holes, a natural
question that one can ask is what is the interpretation of the

W (a, b) ⊕witt algebra in the context of the new CS theory.
It would be worthwhile to explore the answer.

Another aspect that deserves to be explored is supersym-
metric extension of our analysis and results. Supersymmet-
ric extensions of three-dimensional gravity with torsion has
been constructed in [61,83]. On the other hand, the three-
dimensional CS supergravity invariant under the Maxwell
algebra has been recently presented in [45,49–51]. However,
to our knowledge, a supersymmetric Maxwell CS gravity
with torsion has not been discussed yet. It would be then
interesting to explore diverse supersymmetric extensions of
the deformed Maxwell algebra and study which superalgebra
is a good candidate to construct a well-defined supersym-
metric gravity with torsion in three spacetime dimensions.
The study of supersymmetric extensions of CS gravity with
torsion and their asymptotic structures could bring a better
understanding of the role of torsion.
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