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Abstract The present study explores the f (R, T )modified
gravity on the basis of observational data for three different
compact stars with matter profile as anisotropic fluid without
electric charge. In this respect, we adopt the well-known Kar-
marker condition and assume a specific and interesting model
for grr metric potential component which is compatible with
this condition. This choice further leads to a viable form of
metric component gt t by utilizing the Karmarkar condition.
We also present the interior geometry in the reference of
Schwarzschild interior and Kohler–Chao cosmological like
solutions for f (R, T ) theory. Moreover, we calculate the
spacetime constants by using the masses and radii from the
observational data of three different compact stars namely 4U
1538-52, LMC X-4 and PSR J1614-2230. In order to explore
the viability and stability of the obtained solutions, some
physical parameters and properties are presented graphically
for all three different compact object models. It is noticed that
the parameters c and λ have some important and considerable
role for these solutions. It is concluded that our obtained solu-
tions are physically acceptable, bearing a well-behave nature
in f (R, T ) modified gravity.

1 Introduction

In last few decades, various extended theories of gravity have
been proposed as the most promising candidates of myste-
rious dark energy for exploring the accelerated expansion
aspects of our cosmos. There are several independent obser-
vations in the context of astrophysics that provide evidences
about the accelerated expanding nature of space. These astro-
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physical experiments include the outcomes acquired from the
supernova type Ia (SNIa) [1–8], large scale construction sur-
veys [9], X-ray brightness from galaxy erect [10], cosmic
microwave background radiation (CMBR) [11–13], weak
lensing and the baryon acoustic oscillation (BAO) surveys
[14]. This phenomenon of accelerating cosmic expansion
is regarded as an outstanding critical riddles of contempo-
rary physics. It is argued that the expansion of cosmos is
accelerated due to the presence of some uncertain dominant
source of energy labeled as dark energy (DE). In order to
incorporate this unusual motive of dynamical cosmos, some
modifications in the Lagrangian density of Einstein’s gen-
eral relativity have been presented in the literature. One of
the way to deal with the problem is to modify the matter pro-
file of the density by adding some DE terms as scalar field
or cosmological constant, k-essence, canonical kinetic scalar
term, quintessence, and different versions of chaplying gas
etc. [15–20]. While in the alternative approach, researchers
extended the gravitational part by adding some extra degrees
of freedom there, which provided the group of extended
theories of gravity. In this respect, some leading examples
include f (T, TG) theory, f (G) gravity, f (R) framework,
braneworld scenarios, Kalb–Ramond background, Gauss–
Bonnet gravity and Brans–Dicke gravity theories etc. [21–
36]. Based on these modifications, many other remarkable
generalized modifications are also available, which help to
explore various cosmic aspects successfully. These all mod-
ifications have passed different astrophysical and necessary
solar system constraints and are regarded as viable candi-
dates.

After the formulation of general theory of relativity (GR),
the f (R) theory is regarded as one of the most interesting
and viable extension of GR. Later on, its different modi-
fied versions have been presented by researchers that are
also proved as successful in various respects. Particularly,
its recent extension namely f (R, T ) gravity, proposed by

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7588-4&domain=pdf
mailto:gmustafa3828@gmail.com
mailto:mzubairkk@gmail.com
mailto:drmzubair@cuilahore.edu.pk
mailto:swaheed@pmu.edu.sa
mailto:xiatc@shu.edu.cn


26 Page 2 of 17 Eur. Phys. J. C (2020) 80 :26

Harko et al. [37] almost 6 years ago, has attracted many
researchers. This modification is based on a governing func-
tion f (R, T ) depending on the Ricci scalar R and the
trace T of anisotropic like energy-momentum tensor. They
also derived the corresponding field equation by utilizing
the metric potentials formalism and discussed the signifi-
cance of this modification. Further, the authors have pre-
sented different models for f (R, T ) function in separa-
ble form, i.e., f (R, T ) = f1(R) + f2(T ). It is consid-
ered as a very interesting modification because the result-
ing field equations have not much difficult form or un-
handled order. There is a sufficient literature available where
numerous cosmological aspects of this theory have been
explored like expansion of universe due to accelerated mat-
ter, Birkhoff’s theorem, scalar field reconstructions, stabil-
ity using cosmological perturbation, large scale structure,
thermodynamical laws and its relevant features, constrains
regarding solar system, stellar equilibrium configurations
of compact stars, neutron stars, gravitational collapse phe-
nomenon [38–48].

The study of compact stars formation and phenomenon
of gravitational collapse is regarded as one of the most fas-
cinating subjects in modern cosmology and astronomy. In
1916, Carl Schwarzschild presented the exact solution of
interior of symmetric star spherically by using the uniform
density based matter profile [49]. In 1939, Oppenheimer and
Snyder [50] contributed to explore the gravitational collapse
with homogeneity based dust sphere. In literature [51–55],
hundreds of static analytic models representing the relativis-
tic stars have been constructed by introducing bulk viscous
effects, anisotropic pressures, charge, multilayered fluids and
equations of state etc. The discussion of ultra densities for
matter profile of order 1015 g cm−3 provides a new idea
that radial pressure profile and tangential pressure profile are
unequal. In this context, Ruderman [56] was the pioneer who
predicted that in the high density, relativistic interaction of
nuclear matter yields anisotropy as an inherent feature. Lobo
[57] used barotropic EoS for exploring some compact object
models which is defined as p = ερ; − 1 < ε < −1/3,
for the dark stars existence. He also presented a modified
version of Mazur–Mottola gravastar model by utilizing the
junction conditions to match Schwarzschild vacuum solu-
tion with static line element. Egeland [58] explained Neu-
tron stars by taking mass-radius relationship into account. In
another study [59], Mak and Harko proposed a spherically
symmetric model exhibiting the characteristics of strange
stars. Further, Rahaman et al. [60] discussed the possibil-
ity of compact stars formation by using Krori–Barua model
in the presence of Chaplygin gas matter distribution. In mod-
ified gravitational frameworks like f(R) gravity and scalar-
tensor theories, much work has already been done for mod-
eling the massive as well as neutron stars [61–65]. Hossein
et al. [66] have developed some compact stars models with

anisotropic matter and variable cosmological constant where
they assumed a linear equation of state. In different collabora-
tions [67,68], Herrera discussed some interesting anisotropic
solutions for static as well as non static sources. In the con-
text of GR and modified gravitational frameworks of f(T)
and f(G) theories, much work has already been done by the
researchers [69–76]. Zubair and Abbas [77] have explored
some interior compact star models in f(R) extension of GR
by including Krori and Barua solutions and discussed differ-
ent physical features as well as the stability of the obtained
models.

Naidu and Govender [78] investigated two new stellar
models with same radii and mass but distinct pressure distri-
butions. In another study, Zubair et al. [51–55] investigated
the possible existence of compact stars in f(R,T) framework
by taking the analytic models of Krori and Barua line element
into account and presented a detailed analysis of the models
by discussing some physical features. In 2013, Herrera and
Barreto [79] acquired a mathematical procedural technique
to produce a relativistic-polytropes with radial and tangential
pressure profiles by using curvature coordinates. Recently, a
considerable approach for deriving the analytic solutions of
Einstein field equations, representing the compact objects,
has been proposed by the researchers namely the Karmarkar
condition [80–87]. This condition was firstly proposed by
Karmarkar [88] and is regarded as a compulsory condition
for a spherically symmetric spacetime to be of embedding
class-I. It is basically a mathematical tool which helps us
in obtaining the exact solutions of field equations. In liter-
ature [89–93], this condition has been used by numerous
researchers for discussing the compact stars models. In the
present paper, we shall adopt the Karmarkar condition to
develop the analytic solutions representing compact objects
in f (R, T ) gravity.

Being motivated from the above literature, in the present
manuscript, we will discuss the formation of compact stars
in f (R, T ) modified gravity by considering three different
models of compact stars. For this purpose, we will consider
static spherically geometry filled with anisotropic matter con-
tents and also take the well-known Karmarkar condition. In
the up-coming section, we will define the mathematical struc-
ture of f (R, T ) gravity and formulate its field equations. In
the same section, we will present the Karmarkar condition
briefly and calculate isotropic like Class-I solutions with two
different cases of f (R, T ) gravity. In Sect. 3, we will discuss
the set up for a new family of embedding class-I solutions
along with the physical boundary conditions. In Sect. 4, we
will present the analysis of obtained solutions using three
different models for compact stars like 4U 1538-52, LMC
X-4 and PSR J1614-2230 by investigating different physical
properties analytically and graphically. In the same section,
we will discuss the stability of obtained model using dif-
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ferent viable measures. In last, we will conclude the whole
discussion by focusing on the main achievements.

2 f (R,T ) gravity field equations and anisotropic fluid
distribution

In this segment, we will describe the basic formulation of
f (R, T ) modified theory of gravity and develop its field
equations for a static spherically symmetric spacetime geom-
etry. Here we will also briefly explain the idea of Karmarker
condition and some assumptions taken for this work. The
modified Einstein–Hilbert action defining the well-known
f (R, T ) gravitational framework is given by [37]

Saction = 1

16π

∫
f (R, T )

√−gd4x +
∫

Lm
√−gd4x, (1)

where Lm denotes the Lagrangian density of ordinary mat-
ter and f (R, T ) represents a generic function depending
on two variables namely the scalar curvature R and the
energy-momentum tensor trace Tμν , which is defined as
T = T μνTμν . The variation of the above modified action
with respect to metric tensor leads to the following set of
field equations:

8πTμν − fT (R, T )Tμν − fT (R, T )�μν

−(gμν� − ∇μ∇ν) fR(R, T )

= −1

2
f (R, T )gμν + fR(R, T )Rμν. (2)

In the above set of equations, the notation ∇ refers to
the covariant derivative, while the symbol � denotes the
d’Alembert operator, i.e., � = ∂μ(

√−ggμν∂ν)/
√−g.

Moreover, the function f (R, T ) with subscripts R and
T represent the respective derivatives, i.e., fR(R, T ) =
∂ f (R, T )/∂R and fT (R, T ) = ∂ f (R, T )/∂T . Also, the
term �μν is given by

�μν = gαβδTμν

δgμν
= −2gαβ ∂2Lm

∂gμν∂gαβ
− 2Tμν + gμνLm.

The energy-momentum tensor representing the anisotropic
matter profile within a star is defined by

Tμν = (ρ + pt )ζμζν − ptgμν + (pr − pt )ξμξν, (3)

where ζμ and ξμ represent the 4-velocity vectors defined by
the relations ζμ = e−aδ

μ
0 and ξμ = e−bδ

μ
1 and also satisfy

the condition ζμζμ = −ξμξμ = 1. Here, the terms ρ, pt
and pr all are radial coordinate dependent functions and rep-
resent the energy density, radial and tangential components
of pressure, respectively. It is also interesting to mention here
that the function pt is orthogonal in the direction of ξν , while
pr is orthogonal in the direction of ξμ. By taking the varia-

tion of indices along with energy-momentum tensor (3), the
set of field equations (2) take the following form

Gμν = 1

fR(R,T )

(
(8π + fT (R,T ))Tμν

+(∇μ∇ν − gμν�) fR(R,T )

+ 1

2
( f (R,T ) − R fR(R,T ))gμν − ρgμν fT (R,T )

)
.

(4)

The line element representing the geometry of a static
object exhibiting spherically symmetry is given by

ds2 = −eμ(r)dt2 + eν(r)dr2 + r2d�2, (5)

where d�2 = (dθ2 +sin2 θdφ2) and defines the gθθ and gφφ

components. For the simplicity in calculations, we choose an
interesting simple model of f (R, T ) given by [38–48]

f (R, T ) = R + λT , (6)

where λ is an arbitrary constant. Using metric (5) in the Eq.(4)
and then by re-arranging the resulting field equations for the
functions ρ, pr and pt , we obtain

ρ = e−ν(r)

32π(λ + 1)(2λ + 1)r2

(
−4λ + 4λr2μ′′(r)

+(2λ + 1)r2μ′(r)2 − (λ + 1)
(

2r2μ′′(r)

− r2μ′(r)ν′(r) + r2μ′(r)2 + 4rμ′(r)
−4rν′(r) − 4eν(r) + 4

)
+ 2r2μ′′(r)

− (2λ + 1)rμ′(r)
(
rν′(r) − 4

) + 4λrν′(r) + 4λeν(r)
)

,

(7)

pr = e−ν(r)

32π
(
2λ2 + 3λ + 1

)
r2

(
−2

(
(2λ + 1)r2μ′′(r)

+2λ
(
eν(r) − 1

))
+ (2λ + 1)r2μ′(r)ν′(r)

− (2λ + 1)r2μ′(r)2 + (λ + 1)
(

2r2μ′′(r) − r2μ′(r)ν′(r)

+r2μ′(r)2 + 4rμ′(r)
− 4rν′(r) − 4eν(r) + 4

)
+ 4(λ + 1)rν′(r)

)
, (8)

pt = e−ν(r)

32π
(
2λ2 + 3λ + 1

)
r2

(
(λ + 1)

(
2r2μ′′(r)

−r2μ′(r)ν′(r) + r2μ′(r)2 + 4rμ′(r) − 4rν′(r)
− 4eν(r) + 4

)
+ 2

(−(2λr + r)μ′(r)

+2(λ + 1)
(
eν(r) − 1

)
+ rν′(r)

))
, (9)

8π(pt − pr ) = e−ν(r)

4(λ + 1)r2

(
r
(
2rμ′′(r) + μ′(r)

(
rμ′(r)

−rν′(r) − 2
) − 2ν′(r)

) + 4
(
eν(r) − 1

))
. (10)

Here the last equation for 8π(pt − pr ) gives a mea-
surement of anisotropy which is denoted by �, i.e., � =
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8π(pt − pr ). For having isotropic pressures condition, this
equation should be vanished, � = 0.

Now we will explain the well-known Karmarker condi-
tion briefly which is the most important tool considered in
the present study. The foundation of Karmarkar condition
depends upon the Riemannian space of class-I. Eisenhart
[80] presented a necessary and sufficient condition which
is based on a symmetric tensor of second order βμη and the
Riemann curvature tensor and is defined in terms of the fol-
lowing equations:

�(βμηβνγ − βμγ βνη) = Rμνηγ , (11)

βμν;η − βμη;ν = 0, (12)

where ; denotes the covariant derivative and � = ±1. These
values refer to a time-like or space-like manifold depending
on the sign taken as − or +, respectively.

Now, by utilizing the non-zero Riemann curvature com-
ponents for the spacetime geometry (5) along with the non-
zero components of second order of symmetric tensor βμη in
Eq.(11), we get a relationship of the form

R1414R2323 = R1224R1334 + R1212R3434. (13)

This relation represents the well-known Karmarkar con-
dition where R2323 �= 0. Here the expression R2323 �= 0
represents the Pandey–sharma condition [94]. Pandey and
Sharma presented an argument about the Karmarkar con-
dition that this condition is not a sufficient condition for a
symmetric space time for being a class-I model. Further, by
plugging all the respective values of the Riemann curvature
components in Eq.(13), we get a differential equation, given
by

2μ
′′
(r)

μ
′
(r)

+ μ
′
(r) = ν

′
(r)eν

eν(r) − 1
, (14)

where eν(r) �= 1. The integration of Eq.(14) leads to a rela-
tionship between grr and gt t components of the line element
given by

eν(r) = (μ
′
(r))2eμ(r)K

4
+ 1, (15)

where K is introduced as a constant of integration. Now, we
calculate the derivative of ν(r) with respect to radial coordi-
nate r , which can be written as

ν′(r) = eμ(r)μ′(r)
(
2μ′′(r) + μ′(r)2

)
4B2 + eμ(r)μ′(r)2

, (16)

where B2 = 1/K . Using these value of eν(r) and ν′(r) in
Eq. (10), the anisotropy function for f (R, T ) takes the fol-
lowing form

� = 8π(pt − pr ) = μ′(r)
4(λ + 1)eν(r)

(
2

r
− ν′(r)

eν(r) − 1

)

(
eμ(r)μ′(r)

2B2r
− 1

)
, (17)

where λ �= −1. In the upcoming sections, we will talk about
the solutions representing stellar models for isotropic as well
as anisotropic cases respectively.

3 Isotropic like class-I solutions for f (R,T ) theory

In this segment, we shall discuss the case of isotropic pres-
sures and its consequent outcomes. The isotropic case, where
pr = pt , yields the anisotropy measure function as zero, i.e.,
� = 0. Assuming μ′(r) �= 0, Eq. (17) provides two interest-
ing results given by
(

2

r
− ν′(r)

eν(r) − 1

)
= 0, (18)

or(
eμ(r)μ′(r)

2B2r
− 1

)
= 0 (19)

or the product of both expressions equal to zero. Here Eq.
(18) corresponds to Schwarzschild’s constant like density
model, which is already presented by Bhar et al. [95], while
the second result given by Eq.(19) leads to the Kohler–Chao
cosmological like solution.

3.1 Schwarzschild interior solution for f (R, T ) theory

In order to find the Schwarzschild interior solution [49], we
integrate Eq. (18), which yields the following solution:

e−ν = 1 − cr2, (20)

where c is a constant of integration. Now, by utilizing Eq.
(20) in the Eq. (15), we get a differential equation given by

eμ(r)μ′(r)2

4B2 + 1 = 1

1 − cr2 . (21)

By solving this differential equation for μ(r), we obtain a
final solution for the gt t component of the line element given
by

eμ(r) =
⎛
⎝A − B

√
1 − cr2

c

⎞
⎠

2

, (22)

where A is another constant of integration. The above solu-
tion (22) is a well-known Schwarzschild interior solution
model that describes an incompressible static sphere with
uniform energy density. Now, we present the expressions for
energy density and both pressure components, which are cal-
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culated in Eqs. (7) and (8). In the present case, these expres-
sions take the following form:

8πρ =
3c

(
A
√
c(2λ + 1)

√
1 − cr2 + B(λ + 1)

(
cr2 − 1

))

(λ + 1)(2λ + 1)
(
A
√
c
√

1 − cr2 + B
(
cr2 − 1

)) ,

(23)

8πp = −
c
(
A
√
c(2λ + 1)

√
1 − cr2 + 3B(λ + 1)

(
cr2 − 1

))

(λ + 1)(2λ + 1)
(
A
√
c
√

1 − cr2 + B
(
cr2 − 1

)) ,

(24)

p

ρ
= −

A
√
c(2λ + 1)

√
1 − cr2 + 3B(λ + 1)

(
cr2 − 1

)

3
(
A
√
c(2λ + 1)

√
1 − cr2 + B(λ + 1)

(
cr2 − 1

)) .

(25)

This Schwarzschild solution is very interesting as well
as simple solution and have already been studied by several
researchers in literature.

3.2 Kohler–Chao cosmological like solution for f (R, T )

theory

Here we discuss the Kohler–Chao cosmological model like
solution [96]. For this purpose, we integrate Eq. (19) which
leads to the following solution for the reciprocal of grr com-
ponent of the line element given as follows

e−μ = 1

A + Br2 , (26)

where A denotes a constant of integration. Now, by using
the value from Eq. (26) of eμ in the Eq. (15), we acquire the
following solution for reciprocal of gt t component:

e−ν(r) = Br2 + A

2Br2 + A
. (27)

The above solution (27) corresponds to the Kohler–Chao
cosmological model like solution. Also, the corresponding
expressions for energy density and pressure components take
the following forms:

8πρ = B
(
A(9λ + 3) + 2B(4λ + 1)r2

)
(λ + 1)(2λ + 1)

(
A + 2Br2

)2 , (28)

8πp = B
(−Aλ + A + 2Br2

)
(
2λ2 + 3λ + 1

) (
A + 2Br2

)2 , (29)

p

ρ
= −Aλ + A + 2Br2

A(9λ + 3) + 2B(4λ + 1)r2 . (30)

Here the parameter B is assumed to be a positive quantity.

4 A new setup for a family of embedding class-I models

In this section, we shall study new stellar models which are
based on anisotropic fluid and are compatible with the Kar-
marker condition. It is a considerable point that the pressure
anisotropy, i.e., � has an important role in the discussion of
gravitational collapse process. Recently, Naidu and Goven-
der [78] studied the collapse dynamics which is related to
its radial pressure and density function of radial coordinate
under the stellar fluid. Further, they have assumed a linear
form of equation of state within a static configuration which
can be presented by the expression pr = ερ − ε, with ε and
ε as constants. They argued that the succeeding collapse is
responsive to the correlation of energy density function and
radial pressure. Further, they discussed the impact of param-
eter ε on the temperature description of collapsing configu-
ration.

For having a family of solutions compatible with the Kar-
marker condition and involve anisotropic matter contents,
we assume a specific model for the component grr which is
acceptable for all the gravitational aspects and is given by

eν(r) = 1 + ar2sin2(c + br2), (31)

wherea, c andb are parameters which can be calculated from
some physical boundary conditions. This models has been
extensively used and explored in many directions related
to astrophysics and cosmology. In 1999, Raychaudhuri and
Dadhich discussed its significance without utilizing the Big
Bang singularity to find the oscillating cosmological model.
Another important characteristic of this model is that it per-
mits the divination of blue shifts beyond violating the GR
basic aspects. By utilizing the Eq. (31) in Eq. (15), we get a
differential equation of the following form:

1

4
Keμ(r)μ′(r)2 = ar2 sin2

(
c + br2

)
. (32)

Solving Eq. (32) for the expression of μ(r), we get a rela-
tionship for the metric component gt t as follows

eμ(r) =
(
A −

√
a

2b
B cos

(
c + br2

))2

. (33)

Further, we use the values of gt t and grr components in the
field Eqs. (7)–(10), we get the expressions of the following
quantities:

8πρ

= 1

(λ + 1)(2λ + 1)
(
ar2 sin2

(
br2 + c

) + 1
)2 (

2Ab − √
aB cos

(
br2 + c

))
(√

a
(
a3/2(2λ + 1)

×r2 sin4
(
br2 + c

) (
2Ab − √

aB cos
(
br2 + c

))

−3
√
a(2λ + 1) sin2

(
br2 + c

) (√
aB cos

(
br2 + c

)

− 2Ab) + 4abBλr2 sin3
(
br2 + c

)
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−2bB sin
(
br2 + c

) (
2a(2λ + 1)r2 cos2

(
br2 + c

)
− 3λ

)

+ 4b2Bλr2 cos
(
br2 + c

))

+4aAb2(2λ + 1)r2 sin
(

2
(
br2 + c

)))
, (34)

8πpr

= 1

(λ + 1)(2λ + 1)
(
ar2 sin2

(
br2 + c

) + 1
)2 (

2Ab − √
aB cos

(
br2 + c

))
((√

a
(

sin
(
br2 + c

)

×
(

2b
(
a3/2(−A)(2λ + 1)r2 sin3

(
br2 + c

)

−√
aA(2λ + 1) sin

(
br2 + c

)
+ 2aB(λ + 1)r2

× sin2
(
br2 + c

)
+ B(λ + 2)

)

+aBλ sin
(

2
(
br2 + c

)))

+B cos
(
br2 + c

) (
a2(2λ + 1)

× r2 sin4
(
br2 + c

)

+a sin2
(
br2 + c

)
− 4b2λr2

)))
, (35)

8πpt

= 1

(λ + 1)(2λ + 1)
(
ar2 sin2

(
br2 + c

) + 1
)2 (

2Ab − √
aB cos

(
br2 + c

))
((√

a
(

cos
(
br2 + c

)

×
(
−4

√
aAb2(2λ + 1)r2 sin

(
br2 + c

)

+aB sin2
(
br2 + c

)
+ 4b2B(λ + 1)r2

)

+ sin
(
br2 + c

)

×
(
−2

√
aAb(2λ + 1) sin

(
br2 + c

)

+aBλ sin
(

2
(
br2 + c

))

+bB
(
−ar2 cos

(
2

(
br2 + c

))

+ ar2 + 2λ + 4
))

+2abB(2λ + 1)r2 sin
(
br2 + c

)
cos2

(
br2 + c

)))
, (36)

� =
√
ar2

(
a sin3

(
br2 + c

) − 2b cos
(
br2 + c

)) (−4
√
aAb sin

(
br2 + c

) + aB sin
(
2

(
br2 + c

)) + 4bB
)

16π(λ + 1)
(
ar2 sin2

(
br2 + c

) + 1
)2 (√

aB cos
(
br2 + c

) − 2Ab
) . (37)

4.1 Physical boundary conditions

In this portion, we shall describe some physically accept-
able boundary conditions by matching interior solution to
the exterior solution. Here we consider the exterior solution
as Schwarzschild space-time which is defined as

ds2 = −�dt2 + �
−1dr2 + r2d�2, (38)

where � = (1 − 2M/r) which further implies �
−1 =

(1 − 2M/r)−1 and d�2 = dθ2 + sin2θdφ2. Here we have
enforced a condition on the radial coordinate given by r > rς ,
where rς is termed as Schwarzschild radius. It is interesting
to mention here that without enforcing this restriction, we
may get some black hole solutions.

Now, at the boundary r = R, the junction conditions for
the continuity of metric components gt t , grr and ∂gt t

∂r are
given by

g−
t t = g+

t t , g−
rr = g+

rr ,
∂g−

t t

∂r
= ∂g+

t t

∂r
, (39)

where − and + correspond to the interior and exterior solu-
tions, respectively. By plugging all the corresponding values,
we obtain the relations(

1 − 2M

R

)
= A2 + a

4

(
B

b
cos

(
c + bR2

))2

−AB

(√
a

b
cos

(
c + bR2

))
, (40)

(
1 − 2M

R

)
= 1

1 + aR2sin2(c + bR2)
, (41)

pr (r = R) = 0. (42)

Further, by utilizing these boundaries conditions (40) and
(42), we get the following relations for unknowns:

a = −2M csc2
(
bR2 + c

)
R2(2M − R)

, (43)

B =
a2R2

8π(λ+1)(aR2+csc2(bR2+c))
2 + a csc2

(
bR2+c

)
8π(λ+1)(aR2+csc2(bR2+c))

2

a3/2R5/2 csc(bR2+c)
4π(2λ+1)

√
R−2M(aR2+csc2(bR2+c))

2 +
√
a
√
R csc3(bR2+c)(−2bλR2 cot(bR2+c)+λ+2)

8π(λ+1)(2λ+1)
√
R−2M(aR2+csc2(bR2+c))

2

,

(44)

A =
√
aB cos

(
bR2 + c

)
2b

+
√
R − 2M√

R
, (45)
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Table 1 Calculated values of a, A and B for different three small values of λ, under three different well-known compact stars 4U 1538-52, LMC
X-4 and PSR J1614-2230

Object a (km−2) b (km−2) c A B (km−1) R (km) M (M�)

4U 1538-52 (λ = 0.35) 0.1216 0.00025 0.1800 29.9455 0.04246 7.866 0.87

LMC X-4 (λ = 0.35) 0.1826 0.00020 0.1500 46.0060 0.04282 8.300 1.04

PSR J1614-2230 (λ = 0.35) 0.6123 0.00010 0.1000 177.8551 0.04553 9.690 1.97

4U 1538-52 (λ = 0.45) 0.1216 0.00025 0.1800 32.0451 0.04553 7.866 0.87

LMC X-4 (λ = 0.45) 0.1826 0.00020 0.1500 49.0519 0.04572 8.300 1.04

PSR J1614-2230 (λ = 0.45) 0.6123 0.00010 0.1000 188.7054 0.04832 9.690 1.97

4U 1538-52 (λ = 0.55) 0.1216 0.00025 0.1800 33.8717 0.04820 7.866 0.87

LMC X-4 (λ = 0.55) 0.1826 0.00020 0.1500 51.8354 0.04835 8.300 1.04

PSR J1614-2230 (λ = 0.55) 0.6123 0.00010 0.1000 198.5136 0.05084 9.690 1.97

Table 2 Calculated values of a, A and B for different three large values of λ, under three different well-known compact stars 4U 1538-52, LMC
X-4 and PSR J1614-2230

Object a (km−2) b (km−2) c A B (km−1) R (km) M (M�)

4U 1538-52 (λ = 2.00) 0.12168 0.00025 0.1800 49.6093 0.07119 7.866 0.87

LMC X-4 (λ = 2.00) 0.18269 0.00020 0.1500 75.6308 0.07093 8.300 1.04

PSR J1614-2230 (λ = 2.00) 0.61229 0.00010 0.1000 278.3272 0.07136 9.690 1.97

4U 1538-52 (λ = 4.00) 0.12168 0.00025 0.1800 58.4452 0.08410 7.866 0.87

LMC X-4 (λ = 4.00) 0.18269 0.00020 0.1500 88.8503 0.08347 8.300 1.04

PSR J1614-2230 (λ = 4.00) 0.61229 0.00010 0.1000 319.7631 0.08202 9.690 1.97

4U 1538-52 (λ = 6.00) 0.12168 0.00025 0.1800 62.7608 0.09041 7.866 0.87

LMC X-4 (λ = 6.00) 0.18269 0.00020 0.1500 95.2703 0.08956 8.300 1.04

PSR J1614-2230 (λ = 6.00) 0.61229 0.00010 0.1000 339.1949 0.08701 9.690 1.97

where the parameters b and c are treated as free parameters.
Moreover, M and R represent the mass and radius of the
object, respectively. Here we consider three different mod-
els for the compact stars namely 4U 1538-52, LMC X-4 and
PSR J1614-2230 for the discussion of the new obtained stel-
lar model of the present study. Since in the present study,
we have used a linear model of generic function given by
f (R, T ) = R+λT which demonstrates the coupling of the
Ricci scalar and the trace of the energy-momentum tensor,
so it is very important to explore the impact of parameter
λ on the obtained solutions. Here we shall investigate the
impact of this parameter by taking few small and large val-
ues of parameter λ into account. For graphical analysis and
further calculations, we have considered its three small val-
ues from the range 0 < λ < 1, i.e., λ = 0.35, λ = 0.45,
and λ = 0.55 and three large values such that λ > 1, i.e.,
λ = 2.00, λ = 4.00, and λ = 6.00. In the first place, we
have considered its small values and the calculated values
of different unknowns against these λ values are provided in
Table 1. Further in Table 2, we have provided the values of
theses unknowns against three assumed slightly large values
of λ. From both tables, it can be observed that the values of
parameters A and B increase with the increasing values of λ.

5 Analysis of the physical properties of the f (R,T )

stellar model

In this section , we explore our results in more detail by focus-
ing on some physical aspects and necessary properties of the
obtained f (R, T ) stellar configuration using three differ-
ent stellar objects observation data values. For this purpose,
we shall present the discussions about some physical mea-
sures analytically and graphically by taking different values
of parameter λ. Here we shall consider three different mod-
els for stellar objects like 4U 1538-52, LMC X-4 and PSR
J1614-2230.

5.1 Evolution of metric functions, energy density and
pressure components

Here we first discuss the behavior of metric function in
the stellar objects, i.e., gt t = eμ and grr = eν . It can be
noticed from the Eqs. (31) and (33) that eν(r=0) = 1 and
eμ(r=0) �= 0 which indicates that this model is physically
realistic and acceptable. Moreover, from the left penal of
Figs. 1 and 4, it is observed that the metric potential compo-
nents are regular and monotonically increasing in the inner
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side of the stellar object. Here the green graphs show the
behavior of metric components for 4U 1538-52 model, the
blue graphs represent the metric components for LMC X-4
model while the red graphs describe the metric components
for PSR J1614-2230 model. Now we calculate the energy
density and pressure components at the central values r = 0,
i.e., ρ(r = 0), pr (r = 0) and pr (r = 0) which are given as
follows

ρc = ρ(r = 0)

=
√
a

(
6bBλ sin(c) − 3

√
a(2λ + 1) sin2(c)

(√
aB cos(c) − 2Ab

))
8π(λ + 1)(2λ + 1)

(
2Ab − √

aB cos(c)
) , (46)

prc = pr (r = 0)

=
√
a

(
sin(c)

(
2b

(
B(λ + 2) − √

aA(2λ + 1) sin(c)
) + aBλ sin(2c)

) + aB sin2(c) cos(c)
)

8π(λ + 1)(2λ + 1)
(
2Ab − √

aB cos(c)
) , (47)

ptc = pt (r = 0) = prc = pr (r = 0). (48)

It can be easily observed from the Eqs. (46) and (47) that
the ratio prc/ρc is consistent with the Zeldovich’s condi-
tion. In the present scenario, the Zeldovich’s condition for
f (R, T ) theory can be written as

4bB(λ + 1)

6bBλ − 3
√
a(2λ + 1) sin(c)

(√
aB cos(c) − 2Ab

) − 1

3
≤ 1.

(49)

We have calculated the values of different physical param-
eters like metric potentials, energy density and pressures at
the center for both small and large choices of λ. The obtained
results are summarized in form of Tables 3 and 4. From
Table 3, it can be observed that the metric components sat-
isfy the important condition at the center, i.e., eν(r=0) = 1
and eμ(r=0) �= 0, for all three small λ choices. We have
also calculated that the values of energy density and pres-
sure components at the centre, i.e., ρ(r = 0), pr (r = 0)

and pr (r = 0) which indicate that the values of energy den-
sity, pressure components at the center, energy density at the

boundary, and the ratio prc/ρ0 = ptc/ρ0 (Zeldovich’s con-
dition) gradually decreasing as the λ increases.

This behavior can also be observed from the Figs. 1, 2,
3, 4, 5 and 6. Figure 1 shows that the energy density func-
tion exhibits positive and gradually decreasing behavior for
small increasing values of λ for 4U 1538-52, LMC X-4, and
PSR J1614-2230 stellar models. From Fig. 2, it can be seen

that both pressure components are also gradually decreasing
against increasing small values of λ. The existence of non-
zero anisotropy is considered as a significant aspect in the rel-
ativistic stellar configurations without an electric charge. In
the present case, the non-zero anisotropy played a special role
for exploring the compact stars solutions. Now we describe
the graphical development of anisotropy function, i.e., �(r)
and the derivatives of ρ, pr and pt with respect to radial coor-
dinate r (gradients) in the current scenario. For 4U 1538-52
model, the anisotropy function exhibits positive behavior for
increasing λ through small values. For LMC X-4 model, the
anisotropy function is observed positive for λ = 0.35, and
λ = 0.45 while it exhibits negative behavior for λ = 0.55.
Further for PSR J1614-2230 model, it shows positive behav-
ior for λ = 0.35 only. It is seen that in contrast to small
λ values, the anisotropy function exhibits negative behavior
for all large choices of this parameter. Clearly, in such cases
where the anisotropy function remains positive with increas-
ing behavior, it supports to the condition pt > pr . Further, it

Table 3 Calculated values of different physical properties at center and boundary for different three values of λ

Models eν(r=0) eμ(r=0) ρc (g/cc) prc (dyne/cm2) ptc (dyne/cm2) ρR (g/cc) prc/ρ0 = ptc/ρ0

4U 1538-52 (λ = 0.35) 1.0 0.635094 10.1893 × 1015 5.1871 × 1035 5.1871 × 1035 3.39813 × 1014 0.0512

LMC X-4 (λ = 0.35) 1.0 0.588418 10.6924 × 1015 6.3032 × 1035 6.3032 × 1035 3.39756 × 1014 0.0589

PSR J1614-2230 (λ = 0.35) 1.0 0.354732 16.2936 × 1015 15.9502 × 1035 15.9502 × 1035 3.53990 × 1014 0.0978

4U 1538-52 (λ = 0.45) 1.0 0.625062 09.8315 × 1015 5.0893 × 1035 5.0893 × 1035 3.26101 × 1014 0.0511

LMC X-4 (λ = 0.45) 1.0 0.578418 10.3176 × 1015 6.0143 × 1035 6.0143 × 1035 3.25889 × 1014 0.0582

PSR J1614-2230 (λ = 0.45) 1.0 0.341994 15.7891 × 1015 15.3191 × 1035 15.3191 × 1035 3.39658 × 1014 0.0970

4U 1538-52 (λ = 0.55) 1.0 0.616863 09.4913 × 1015 4.8655 × 1035 4.8655 × 1035 3.13246 × 1014 0.0510

LMC X-4 (λ = 0.55) 1.0 0.569217 09.9671 × 1015 5.7575 × 1035 5.7575 × 1035 3.13041 × 1014 0.0577

PSR J1614-2230 (λ = 0.55) 1.0 0.330763 15.3123 × 1015 14.7345 × 1035 14.7345 × 1035 3.26264 × 1014 0.0962
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Table 4 Calculated results for three different compact stars in f (R, T ) theory under Karmarkar condition

Expressions λ = 2.00, λ = 4.00, and λ = 6.00

4U 1538-52 model LMC X-4 model PSR J1614-2230 model

ρ ρ > 0 ρ > 0 ρ > 0

pr pr > 0 pr > 0 pr > 0

pt pt < 0 (near to boundary) pt < 0 (near to boundary) pt < 0 (near to boundary)

�(r) �(r) < 0 (throughout) �(r) < 0 (throughout) �(r) < 0 (throughout)

Gradients Gradients< 0 Gradients< 0 Gradients< 0

Fa,Fh and Fg Forces are balance Forces are balance Forces are balance

Energy conditions Energy conditions > 0 Energy conditions > 0 Energy conditions > 0

m(r), u(r), z(r) m(r) > 0, u(r) > 0, z(r) > 0 m(r) > 0, u(r) > 0, z(r) > 0 m(r) > 0, u(r) > 0, z(r) > 0

wr 0 ≤ wr < 1 (satisfied) 0 ≤ wr < 1 (satisfied) 0 ≤ wr < 1 (satisfied)

wt −0.01 ≤ wt < 1 (not satisfied) −0.02 ≤ wt < 1 (not satisfied) −0.03 ≤ wt < 1 (not satisfied)

v2
r 0 ≤ v2

r < 1 (satisfied) 0 ≤ v2
r < 1 (satisfied) 0 ≤ v2

r < 1 (satisfied)

v2
t 0 ≤ v2

t < 1 (satisfied) 0 ≤ v2
t < 1 (satisfied) 0 ≤ v2

t < 1 (satisfied)

v2
t − v2

r −1 ≤ v2
t − v2

r > 0 (not satisfied) −1 ≤ v2
t − v2

r > 0 (not satisfied) −1 ≤ v2
t − v2

r > 0 (not satisfied)

�r �r < 4/3 (not satisfied) �r < 4/3 (not satisfied) �r < 4/3 (not satisfied)

Fig. 1 Displays the evolution of metric functions and energy density function against r , for 4U 1538-52, LMC X-4 and PSR J1614-2230 along
with the values of parameters from Table 1. Here λ = 0.35 (solid), λ = 0.45 (dashed), and λ = 0.55 (small dashed)

Fig. 2 Shows the graph of radial and tangential pressures versus r , for 4U 1538-52, LMC X-4 and PSR J1614-2230, with the values of parameters
from Table 1. Here λ = 0.35 (solid), λ = 0.45 (dashed), and λ = 0.55 (small dashed)

is seen from the left part of Figs. 3 and 6 that the anisotropy
function is vanished at the central value, i.e, �(r = 0) = 0,
which is also another required condition for the anisotropic

distribution. This behavior of anisotropy parameter against
different small increasing choices of parameter λ are sum-
marized in Table 5. From Table 5, it can be concluded that
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Fig. 3 Indicates the behavior of anisotropy function and radial derivatives of ρ, pr and pt versus r , for 4U 1538-52, LMC X-4 and PSR J1614-2230
along with the values of parameters from Table 1

Fig. 4 Displays the evolution of metric functions and energy density function versus r , for 4U 1538-52, LMC X-4 and PSR J1614-2230, along
with the values of parameters from Table 2. Here λ = 2.00 (solid), λ = 4.00 (dashed), and λ = 6.00 (small dashed)

Fig. 5 Shows the behavior of radial and tangential pressures versus r , for 4U 1538-52, LMC X-4 and PSR J1614-2230, under the values of
parameters from Table 2

under the condition of non-zero anisotropy, our obtained
solutions are stable only when λ = 0.35. It is evident from
the graphs that all derivatives exhibit negative and decreasing
behavior and hence satisfy the necessary conditions given
by dρ/dr < 0, dpr/dr < 0 and dpt/dr < 0. It is also
observed that these derivatives are vanished at the central
radius, i.e., dρ(r = 0)/dr < 0, dpr (r = 0)/dr < 0 and
dpt (r = 0)/dr < 0. Finally, we can conclude that all these

gradients satisfy the required conditions in f (R, T ) theory.
Likewise, a similar behavior can also be noticed from the
Figs. 4, 5 and 6 where the large values of λ has been taken into
account. In this case, it can be concluded that these physical
parameters exhibit a quite similar behavior but their values
are decreasing more rapidly as compared to the small values
of λ. Mathematically, these results are also summarized in
Table 4.

123



Eur. Phys. J. C (2020) 80 :26 Page 11 of 17 26

Fig. 6 Shows the behavior of anisotropy function and radial derivatives of ρ, pr and pt versus radial coordinate r , for 4U 1538-52, LMC X-4 and
PSR J1614-2230, under the values of parameters from Table 2

Table 5 The behavior of anisotropy function for different three values of λ, under three different well-known compact stars 4U 1538-52, LMC
X-4 and PSR J1614-2230

Object λ = 0.35 λ = 0.45 λ = 0.55

4U 1538-52 � > 0, for 0.01 ≤ r ≤ 7.866 � > 0, for 0.01 ≤ r ≤ 7.866 � > 0, for 0.01 ≤ r ≤ 7.866

LMC X-4 � > 0, for 0.01 ≤ r ≤ 8.300 � > 0, for 0.01 ≤ r ≤ 8.300 � < 0, for 0.01 ≤ r ≤ 1.060

PSR J1614-2230 � > 0, for 0.01 ≤ r ≤ 9.690 � < 0, for 0.01 ≤ r ≤ 3.650 � < 0, for 0.01 ≤ r ≤ 5.350

5.2 Equilibrium condition

In this part, we shall investigate the stability of obtained solu-
tions by utilizing the equilibrium condition for three different
models of stellar system in f (R, T ) gravity. For this pur-
pose, we take the well-known Tolman–Oppenheimer–Volkov
(TOV) equation [38–48] given as follows

2

r
(pt − pr ) − dpr

dr
− μ

′
(r)

2
(ρ + pr ) = 0. (50)

The above Eq. (49) defines the equilibrium condition for
a configuration by taking three forces into account namely
hydrostatic, gravitational and anisotropic forces. The follow-
ing are the mathematical expressions for these forces

Fa = 2

r
(pt − pr ), Fh = −dpr

dr
,

Fg = −μ
′
(r)(ρ + pr )

2
(51)

and consequently, Eq.(50) can be rewritten in the form given
by

Fa + Fh + Fg = 0. (52)

The graphical illustration of these forces are provided in
the left penal of Figs. 7 and 8 for increasing small and large
values of λ. Here the green, blue and red curves provide
the forces for 4U 1538-52, LMC X-4 and PSR J1614-2230
model, respectively. From these graphs, it can be noticed that
the gravitational forces are displayed below the x-axis, the
anisotropic forces are observed almost on the x-axis, while

the curves representing hydrostatic forces are above the x-
axis for all three stellar models with small increasing values
of λ. So it can be concluded that these forces almost balance
each other’s effect and hence leave the configuration stable
with necessary mass and radii as described in Tables 1 and 2
in f (R, T ) theory of gravity

5.3 Energy conditions

Energy condition bounds have many cosmological applica-
tions in the context of GR and modified gravity theories. In
general, these conditions are defined in terms of four con-
straints namely DEC , SEC , WEC and NEC and are given
as

NEC : ρ ≥ 0,

WEC : ρ − pt ≥ 0, ρ − pr ≥ 0,

SEC : ρ − pr − 2pt ≥ 0,

DEC : ρ > |pr |, |pt |.
Here we shall discuss the behavior of energy constraints
namely NEC , WEC , SEC and DEC versus radial coor-
dinate which is provided in the right penal of the Figs. 7
and 8 where we have considered the small as well as
large values of λ. In these Figures, the green, blue and red
curves correspond to the energy conditions for 4U 1538-52,
LMC X-4 and PSR J1614-2230 models, respectively. It is
seen from these graphs that these constraints are satisfied
for the present model as these constraints show positive but
gradually decreasing behavior against the increasing values
of parameter λ. This is considered as one of the necessary
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Fig. 7 Illustrates the graphical behavior of forces namely Fa, Fh and
Fg and energy conditions versus r for 4U 1538-52, LMC X-4 and
PSR J1614-2230 along with the values of parameters from Table 1.

Here the solid, dashed and small dashed curves refer to the choices
λ = 0.35, λ = 0.45 and λ = 0.55, respectively

Fig. 8 Illustrates the behavior of Fa, Fh and Fg and energy constraints versus r for 4U 1538-52, LMC X-4 and PSR J1614-2230. Here λ =
2.00, λ = 4.00, and λ = 6.00, respectively

conditions for the stability of compact stars under the obser-
vational data of Tables 1 and 2. Here the impact of λ on
the obtained solutions is if we increase its value then these
conditions decrease more rapidly but remain satisfied. It is
interesting to mention here that the behavior of other con-
straints have already been presented in the Figs. 1, 2, 3, 4, 5
and 6.

5.4 Mass function, compactness parameter and
gravitational red-shift function

Here we will discuss the relation of mass and radius of a
compact star, which is defined by the following equation

m(r) =
∫ r

0
(4πr2ρ)dr, (53)

wherem represents the mass function depending on the radial
coordinate. Also, the compactness parameter of a compact
star is defined by the following expression

u(r) = 2m

r
. (54)

From Eq. (43) the gravitational red-shift of a stellar system
is given by

z(r) = 1

A − (
√
aB) cos(br2+c)

2b

− 1. (55)

Here we shall explore the impact of parameter λ on the
obtained solutions by discussing the behavior of correspond-
ing mass function, compactness parameter and gravitational
red-shift function versus radial coordinate graphically. It can
be observed from the Figs. 9, 10, 11 and 12 that mass func-
tion and compactness parameter exhibit a regular increas-
ing behavior with the increasing values of small or large λ

choices while the gravitational red-shift function indicates
the decreasing behavior in both cases of parameter λ. Here
it can also be seen that the λ has an impact on the obtained
solutions, i.e., if we consider large λ values, then function
are showing gradually increasing or decreasing behavior as
compared to its small values. These behavior show that all
these physical parameters satisfy the required condition for
compact stars in f (R, T ) theory.
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Fig. 9 Shows the graph of mass-radius relation function and compactness parameter versus r for, 4U 1538-52, LMC X-4 and PSR J1614-2230,
under the values of parameters from Table 1 with λ = 0.35 (solid), λ = 0.45 (dashed) and λ = 0.55 (small dashed)

Fig. 10 Shows the trend of mass-radius relation function and compactness parameter versus r for, 4U 1538-52, LMC X-4 and PSR J1614-2230,
under the values of parameters from Table 2 with λ = 2.00 (solid), λ = 4.00 (dashed) and λ = 6.00 (small dashed)

Fig. 11 Illustrates the behavior of the gravitational red-shift function
(left graph) and the ratios like pr

ρ
and pt

ρ
(right graph) versus r for

4U 1538-52, LMC X-4 and PSR J1614-2230 byusing the values of

parameters from Table 1. Here solid, dashed and small-dashed curves
correspond to λ = 0.35, λ = 0.45 and λ = 0.55, respectively

5.5 Equation of state

In this part, we formulate the equations of state parameter
for radial and tangential pressures denoted by wr and wt ,
respectively. These parameters are defined as follows

wr = pr
ρ

, (56)

wt = pt
ρ

. (57)

Here we discuss the graphical development of two dif-
ferent ratios, i.e., wr and wt versus radial coordinate. It is
observed from the right penal of Figs. 11 and 12, both ratios
pr
ρ

and pt
ρ

exhibit monotonically decreasing behavior less
than 1 against different small and large values of parame-
ter λ which is regraded as one of the necessary condition for
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Fig. 12 Demonstrate the graphical behavior of gravitational red-shift function (left graph) and pressure density ratios (right graph) versus r for
4U 1538-52, LMC X-4 and PSR J1614-2230 using the values of parameters from Table 2. Here λ = 2.00 (solid), λ = 4.00 (dashed) and λ = 6.00
(small dashed)

Table 6 The development of Herrera cracking criterion, i.e., −1 ≤ v2
t − v2

r ≤ 0 for different three values of λ, under three different well-known
compact stars 4U 1538-52, LMC X-4 and PSR J1614-2230

Object λ = 0.35 λ = 0.45 λ = 0.55

4U 1538-52 Satisfy, for 0.01 ≤ r ≤ 7.866 Satisfy, for 0.01 ≤ r ≤ 7.866 Satisfy, for 0.01 ≤ r ≤ 7.866

LMC X-4 Satisfy, for 0.01 ≤ r ≤ 8.300 Satisfy, for 0.01 ≤ r ≤ 8.300 Not satisfy, for 0.01 ≤ r ≤ 0.750

PSR J1614-2230 Satisfy, for 0.01 ≤ r ≤ 9.690 Not satisfy, for 0.01 ≤ r ≤ 2.500 Not satisfy, for 0.01 ≤ r ≤ 3.650

compact stars. It can also be noticed that these ratios decrease
more rapidly as λ increases.

5.6 Causality stability analysis

In this portion, we discuss the causality condition for a com-
pact star. For this purpose, we take radial and tangential
speeds of sound for three different models of compact stars
which are denoted by v2

r and v2
t , respectively and are defined

by

v2
r = dpr

dρ
, v2

t = dpt
dρ

. (58)

According to causality condition, both radial and tangen-
tial velocities should be less than 1 and also, the difference of
both velocities, i.e., v2

t −v2
r must satisfy the constraint given

by −1 ≤ v2
t − v2

r ≤ 0. To check where the local anisotropic
matter source is stable or not, we assumed the Herrera crack-
ing criterion, i.e., −1 ≤ v2

t − v2
r ≤ 0. This describes that the

region is potentially stable, where the radial velocity of sound
is greater than the transverse velocity of sound. In the present
work, it is seen from the Tables 4 and 6 that our obtained
solutions have not fulfilled this criterion for λ = 0.45, and
λ = 0.55 and even for the large values satisfying λ > 1.
This indicates that our obtained solutions are stable only for
λ = 0.35. This behavior can also be noticed from the Figs. 13
and 14. Hence it is concluded that the causality stability can
be attained only for very small values of λ.

5.7 Adiabatic index stability analysis

In the reference of adiabatic index, here we shall discuss the
ratio of two specific heat functions given by

�r = ρ + pr
pr

v2
r (59)

It is interesting to mention here that the above parameter
yield the stability of Newtonian sphere under the condition
�r > 4/3. Further this relation is used to define an expression
representing neutral equilibrium under the condition �r =
4/3. While for �r < 4/3, we assume an unstable sphere
with anisotropic matter contents. Now we define a condition
for anisotropic matter profile which is described as

�r = 4

3
+

(
κ

2

ρ0 pr0

|p′
r0|

r + 4

3

(pt0 − pr0)

|p′
r0|r

)

where κ is taken as an arbitrary constant and pt0, pr0 and ρ0,
denote the initial tangential, radial components of pressure
distribution and energy density.

In Figs. 15 and 16, we describe the graphical behavior
of �r parameter versus radial coordinate along with different
small and large values of parameter λ. It can be observed that
the expression �r shows monotonically increasing behavior
with values greater than 4

3 for all 4U 1538-52, LMC X-4 and
PSR J1614-2230 models as shown by the green, blue and
red curves, respectively. Hence, it can be concluded that the
adiabatic index is compatible with the stability condition in
the reference of f (R, T ) theory.
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Fig. 13 Shows the behavior of v2
r , v2

t and v2
t − v2

r against r for 4U 1538-52, LMC X-4 and PSR J1614-2230 using the values of parameters from
Table 1 with λ = 0.35 (solid), λ = 0.45 (dashed) and λ = 0.55 (small dashed)

Fig. 14 Describes the behavior of v2
r , v2

t and v2
t − v2

r against r for all three stellar models using the values of parameters from Table 2 where
λ = 2.00 (solid), λ = 4.00 (dashed) and λ = 6.00 (small dashed)

Fig. 15 Demonstrate the behavior of Adiabatic index function against
r for all three stellar models. Here we have used the values of parameters
from Table 1 and the solid, dashed and small-dashed curves refer to
λ = 0.35, λ = 0.45, and λ = 0.55, respectively

6 Conclusion

In the present paper, we have described a new set up for a
new family of embedding class-I models in f (R, T ) theory
by using the well-known Karmarkar condition along with the
Pandey–Sharma condition for three different compact stars
namely 4U 1538-52, LMC X-4 and PSR J1614-2230. Here,
for exploring physical validity of the obtained solutions, we

Fig. 16 Provides the graphical illustration of Adiabatic index function
versus r for all three stellar models using the values of parameters from
Table 2. Here λ = 2.00 (solid), λ = 4.00 (dashed) and λ = 6.00
(small dashed)

have discussed all the compact stars related physical param-
eters analytically and graphically. For the present study, we
have employed the matter contents as anisotropic fluid with-
out any net electric charge for a spherically symmetric space-
time. The physical behavior of all relevant parameters have
been presented in the Figs. 1, 2, 3, 4, 5, 6, 7 and 8 for the
considered stellar models. All achieved results can be sum-
marized as follows
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• Energy density function and pressure profile It is evident
from Tables 3 and 4 that all the necessary conditions
for a physical model like the behavior of energy density
function as well as both pressure components like radial
and tangential profiles to be positive, have been achieved
throughout in the stellar interior for all 4U 1538-52, LMC
X-4 and PSR J1614-2230 compact stars models. Also,
these functions provided their compatible maximum val-
ues at the center and then decreased monotonically as the
radial coordinate increases towards the boundary surface.
Further the ratio of central pressure and density satisfied
the Zeldovich’s condition, i.e., prc/ρc ≤ 1. It is also
concluded from Tables 3 and 4 that the radial deriva-
tives of energy density, radial as well as tangential pres-
sure components showed negative behavior for U 1538-
52, LMC X-4 and PSR J1614-2230 compact stars models
in f (R, T ) theory. It is seen that the parameter λ has a
significant effect on the obtained spherically symmetric
solutions.

• Anisotropic pressure It is noticed that the measure of
anisotropic pressure �(r) is positive in few cases when
the small values of λ has been taken into account. In case
λ > 1, the anisotropic pressure shows negative behavior
for all three compact stars.

• Equilibrium condition It is seen from Tables 3 and 4 that
the forcesFa, Fh andFg satisfied the equilibrium condi-
tion for U 1538-52, LMC X-4 and PSR J1614-2230 mod-
els. It is also noticed from the same table that these forces
balanced each other’s effect and hence leaving a stable
configuration for all choices of small and large λ val-
ues. These forces have been illustrated graphically in the
Figs. 7 and 8.

• Energy conditions It is seen from the Tables 3 and 4 that
all the functions ρ, pr , pt , ρ − pr , ρ − pt , ρ − pr − 2pt ,
which are presented graphically and analytically satisfied
the respective bounds namely NEC , WEC , SEC and
DEC .

• Mass function, compactness parameter and gravita-
tional red-shift function In the present scenario, mass-
radii function, compactness parameters and gravitational
parameters have been investigated graphically. Tables 3
and 4 along with the corresponding graphs indicated that
the mass-radii function m(r) and compactness parameter
u(r) remained positive, regular and increasing and satisfy
the Buchdahl limit, i.e., u(r) ≤ 8/9. Further, the gravita-
tional red-shift function z(r) showed positive decreasing
behavior for all these compact star models and λ choices.

• Equation of state In radial and tangential directions, we
have investigated the equation of state (EoS) parameters
wr and wt graphically. From Table 2, it is noticed that
the value of these parameters remained positive inside the
stellar objects and also less than 1 for all three U 1538-52,
LMC X-4 and PSR J1614-2230 models in all cases.

• Causality stability analysis It is concluded from Tables
4 and 6 that the radial and tangential speeds of sound
for the considered compact stars, denoted by v2

r and v2
t ,

satisfied the condition of decreasing behavior with veloc-
ities less than 1 for all choices of λ. Furthermore, another
necessary condition −1 ≤ v2

t −v2
r ≤ 0, the difference of

tangential velocity and radial velocity is satisfied for the
λ = 0.35 only.

• Adiabatic index stability analysis In the reference of adi-
abatic index, it is seen from Tables and the corresponding
graphs that the adiabatic index �r , satisfied the condition
�r < 4/3 and showed an increasing development versus
radial coordinate for all choices of λ.

Thus it is concluded that our calculated results showed con-
sistency with all necessary conditions and hence all result are
physically interesting and acceptable.
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