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Abstract The matter creation model of Prigogine–
Géhéniau–Gunzig–Nardone is revisited in terms of a rede-
fined creation pressure which does not lead to irreversible
adiabatic evolution at constant specific entropy. With the
resulting freedom to choose a particular gas process, a flat
FRWL cosmological model is proposed based on three input
characteristics: (i) a perfect fluid comprising of an ideal gas,
(ii) a quasi-adiabatic polytropic process, and (iii) a particular
rate of particle creation. Such model leads to the description
of the late-time acceleration of the expanding Universe with
a natural transition from decelerating to accelerating regime.
Only the Friedmann equations and the laws of thermodynam-
ics are used and no assumptions of dark energy component
is made. The model also allows the explicit determination as
functions of time of all variables, including the entropy, the
non-conserved specific entropy and the time the accelerat-
ing phase begins. A form of correspondence with the dark
energy models (quintessence, in particular) is established via
the Om diagnostics. Parallels with the concordance cosmo-
logical �CDM model for the matter-dominated epoch and
the present epoch of accelerated expansion are also estab-
lished via slight modifications of both models.

1 Introduction

Cosmological models with adiabatic matter creation were
first introduced by Prigogine et al. [1–4] through the formu-
lation of the second law of thermodynamics in the frame-
work of general relativity. Lima et al. – see [5–9] and the
references therein – showed that cosmological models with
certain rates � of irreversible particle creation at the expense
of gravitational energy are capable of describing the late-
time acceleration of the Universe without the need to intro-
duce dark energy, that is, such models offer an alternative to
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the dark energy. Adiabatic matter creation models are fully
dominated by cold dark matter particles with non-conserved
number and the matter creation is assumed to happen in such
way that the specific entropy is constant. However, there are
no equations from which the form of � can be determined.
The consensus [1–14] is that � should be considered as an
input characteristic in the phenomenological description.

In this paper the Universe is modelled as a perfect fluid
comprising of an ideal monoatomic gas containing a single
type of particles with non-conserved number. This is the first
of three input characteristics of the presented analysis. It is
argued that there is no need at all for adiabaticity. Very impor-
tantly, this also allows the freedom to choose the processes
that will undergo in the gas which models the content of the
Universe [a quasi-adiabatic polytropic process (with negative
specific heat) will be chosen] – another input characteristics
of the model. The last input characteristic will be the choice
� = 3βH , where β = const > 0 and H = ȧ/a is the Hubble
parameter (with a being the scale factor of the Universe).

As the limitations imposed by the requirement of con-
served specific entropy are now also fully lifted, the cosmo-
logical model with matter creation will be studied in its gener-
ality and it will shown that all model variables can be explic-
itly determined as functions of time. It will be demonstrated
that, for specific ranges of the model parameters, a natural
transition from cosmic deceleration into acceleration occurs
and the acceleration redshift will be determined (depending
on the model parameters). Through Om diagnostic [15], the
model will be found to correspond to a quintessence model
(even though there is no involvement of dark energy in the
matter creation models). By allowing the model parameter
β to depend on the cosmological epoch, a form of corre-
spondence will be established with the concordance �CDM
model for which � will be allowed to vary as the inverse sec-
ond power of slow cosmological time: it will be demonstrated
that such models are in agreement for the matter-dominated
epoch and also for the epoch of the late acceleration.
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2 The model of Prigogine–Geheniau–Gunzig–Nardone

Prigogine et al. showed [1–4] the equivalence between the
energy conservation equation and the law for adiabatic
and isentropic evolution of a homogeneous and isotropic
Universe, that is, the energy conservation equation, ρ̇ =
−3H(ρ+p), which stems from the covariance (∇μTμν = 0)
of the energy-momentum tensor Tμν = uμuν(ρ+ p)− pgμν ,
was shown to be equivalent to an adiabatic (δQ = 0) and
isentropic (dS = 0) thermodynamical system with evolution
TdS = δQ = dU + pdV = 0. When particles are produced
into the system at the expense of the gravitational field, the
entropy can be no longer conserved since the particle creation
enlarges the phase-space. In this case, one needs to introduce
a mechanism for entropy production within such framework
and the increasing entropy will necessitate a description in
terms of irreversible processes: TdS > δQ = 0, hence
only matter creation could be allowed, while the reverse pro-
cess must be thermodynamically forbidden. Prigogine et al.
showed that, in order to achieve entropy production, one has
to redefine the energy-momentum tensor Tμν so that a supple-
mentary pressure �, additional to the true thermodynamical
pressure p, is included:Tμν = uμuν(ρ+p+�)−(p+�)gμν

and hence dU + (p + �)dV = 0. Imposing a rather
limiting requirement [1–4] of conserved specific entropy
σ = S/N (that is σ̇ = 0, while Ṡ > 0), an explicit expres-
sion for this additional (“creation”) pressure was determined:
� = −h�/(3H), where h is the enthalpy density (enthalpy
per volume, H/V ), � = Ṅ/N is the particle creation rate.
In the case of conserved specific entropy, it immediately fol-
lows that Ṡ/S = Ṅ/N = �. Prigogine et al. illustrate their
model [1–4] with � = αH2 > 0, where α > 0 and regime
of contraction (H < 0) being also allowed (hence the square
in H ). By choosing � = 3γ H0 +3βH with 0 ≤ {γ, β} ≤ 1,

Lima et al. [5–9] ensured that there is a natural transition from
cosmic deceleration into acceleration. Other authors [10–14]
make different choices for �.

The form of the pressure term � obtained in [1–4] can
also be determined from the following considerations. The
Gibbs equation for a system with a varying number of par-
ticles, TdS = dU + pdV − μdN , can be re-written as
T Ndσ = dU + pdV − μdV − TσdN = dU + pdV −
χdN = dU+(p+�)dV , where χ = μ+σT is the specific
enthalpy (enthalpy per particle, H/N ) and � = −χdN/dV
with the interpretation of the expression dN/dV as Ṅ/V̇ =
n�/(3H). Owing to the fact that the specific enthalpy χ is
related to the enthalpy density h via χ = h/n, one imme-
diately obtains the above � = −h�/(3H). Given that the
Gibbs law becomes T Ndσ = dU + (p + �)dV and given
that one must have dU + (p + �)dV = 0 due to the energy
conservation equation, it is obvious why conservation of the
specific entropy is required.

3 The model with non-conserved specific entropy

The first input characteristic for the proposed model is the
consideration of the Universe as a perfect fluid comprising
of an ideal monoatomic gas with three degrees of freedom.
As usual, the Universe is studied in terms of a simple ther-
modynamical system [16] with its volume V as the single
external parameter and pressure p as the single generalized
force associated with the single external parameter V . Only
one type of particles with non-conserved number N will be
considered. The analysis will be done in terms of the thermo-
dynamical variables n (the number density, n = N/V ) and
T (the temperature). Units c = 8πG = kB = h̄ = ε0 = 1
will be used throughout.

The thermic equation of state for the ideal gas is:

p = nT . (1)

The mean kinetic energy of a gas particle with typical
rest mass m0 is (3/2)T . If one has N = nV such particles,
then the internal energy of the thermodynamical system will
be U = [m0 + (3/2)T ]nV and, as U = ρ/V on the other
hand, the relationship between the energy density, the number
density, and the temperature is given by the caloric equation
of state U = U (V, T ) or

ρ = n

(
m0 + 3

2
T

)
. (2)

The Gibbs equation for the thermodynamical system is:

TdS = dU + pdV − μdN , (3)

where μ is the chemical potential.
Adiabaticity (δQ = dU + pdV − μdN = 0) will not

be forced upon the model. The Gibbs equation can also be
written as:

dU +
(
p − μ

dN

dV
− T

dS

dV

)
dV = 0. (4)

Only time variation of the quantities will be considered, thus,
dN/dV is interpreted as Ṅ/V̇ , while dS/dV – as Ṡ/V̇ .

Form this form of the Gibbs equation, one can identify
the term −μdN/dV − TdS/dV as pressure P , additional
to the existing thermodynamical pressure p. The additional
pressure P = −μdN/dV − TdS/dV is due to the fact
that neither the number of particles is conserved, nor the
entropy is conserved. Thermodynamically, one can view the
above relationship as one describing an effective adiabatic
thermodynamical system with fixed number of particles, but
with an additional pressure term: dU + (p + P)dV = 0.
The extra pressure term P could be referred to as “creation–
entropy pressure” and is due to the introduction of particles
to the system by some mechanism and, through this, it is also
due to the increase in the total entropy S as the phase space
enlarges.
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As the enthalpy of the system is H = U + pV = μN + T S,
in terms of the energy density ρ = U/V ; particle number
density n = N/V ; specific entropy σ = S/N ; enthalpy
density h = (U + pV )/V = ρ + p; and specific enthalpy
χ = (μN + T S)/N = μ + Tσ = h/n, the Gibbs equation
can be written as:

Tdσ = pd

(
1

n

)
+ d

(ρ

n

)
= 1

n
(dρ − χ dn). (5)

One then has

P = −μ
dN

dV
− T

dS

dV
= −χ

dN

dV
− T N

dσ

dV

= −χ
Ṅ

V̇
− T N

σ̇

V̇
. (6)

Consider next a Friedmann–Robertson–Walker–Lemaître
(FRWL) metric with flat spatial three-sections:

ds2 = dt2 − a2(t)[dr2 + r2(dθ2 + sin2 θ dφ2)], (7)

where a(t) is the scale factor of the Universe.
The matter energy-momentum tensor Tμν , in the presence

of an additional pressure term P of some origin, is given by:

Tμν = (ρ + p + P) uμ uν − (p + P) gμν , (8)

where uμ is the flow vector satisfying gμνuμuν = 1.
The Friedmann equations for the perfect fluid are:

ȧ2 = 1

3
ρ a2, (9)

ä = − 1

6
[ρ + 3 (p + P)] a (10)

or, in terms of the Hubble parameter H = ȧ/a:

H2 = 1

3
ρ, (11)

Ḣ = −1

2
(ρ + p + P). (12)

Energy conservation means vanishing of the covariant diver-
gence of the energy-momentum tensor: ∇μTμν = 0. This
leads to:

ρ̇ = −3H(ρ + p + P). (13)

Replacing H by ȧ/a and multiplying across by a3 yields
(d/dt)(ρa3)+(p+P)(d/dt)a3 = 0 or dU+(p+P)dV =
0 – exactly as (4), if one identifies the pressure P in (8) with
the creation–entropy pressure (6). In other words, the reason
for absorbing the entropy and particle creation terms from
(3) into the new pressure term P is to match the second
law of thermodynamics (3) with dU + (p + P)dV = 0,
which follows from the energy conservation equation ρ̇ =
−3H(ρ + p + P). Thus, the energy conservation equation
is equivalent to the second law of thermodynamics for an
effective thermodynamical adiabatic and isentropic system
exhibiting an additional pressure term P .

The continuity equation for the particles of the fluid is
Nμ

;μ = �, where Nμ = nuμ is the particle flow vector and
� = n� is the particle production rate. Thus

ṅ = −3nH + � = −3nH + n�. (14)

Given that V = a3, one has dσ/dV = σ̇ /(3HV ). Sepa-
rately, dN/dV = d(nV )/dV = n + ṅ/(3H) = �/(3H).

Hence:

P = − 1

3H
(χ� + nT σ̇ ). (15)

The Gibbs equation in the form (5) gives

σ̇ = 1

Tn
(ρ̇ − χ ṅ) = − 1

Tn
(3HP + nχ�). (16)

Prigogine et al. [1–4] consider processes of particle creation
which render the specific entropy constant (i.e. σ̇ = 0). In
such case, the creation pressure P will simply be equal to the
Prigogine–Geheniau–Gunzig–Nardone creation pressure �

which corresponds to adiabatic particle production – con-
served specific entropy, but not conserved full entropy S (in
the case of σ̇ = 0, one has Ṡ = SṄ/N ). This pressure is
given by:

� = −χ�

3H
= −ρ + p

n

�

3H
= −(ρ + p)

�

3H
(17)

and thus

P = � − nT

3H
σ̇ . (18)

In thermodynamical variables n and T one has:

ρ̇(n, T ) =
(

∂ρ

∂n

)
T
ṅ +

(
∂ρ

∂T

)
n
Ṫ . (19)

Substituting the energy conservation Eq. (13) and the par-
ticle conservation Eq. (14), using the thermodynamic identity

h = ρ + p = T

(
∂p

∂T

)
n

+ n

(
∂ρ

∂n

)
T

(20)

and also (18), leads to the following temperature evolution
law:

Ṫ

T
=

(
∂p

∂ρ

)
n

ṅ

n
+ nσ̇(

∂ρ
∂T

)
n

. (21)

In the absence of particle creation and with conserved specific
entropy, this reduces to Ṫ /T = −3H(∂p/∂ρ)n .

The entropy of the system will depend on the type of gas
used for the model of the Universe, on the type of the pro-
cess involved, and also on the particle creation rate �. All
these are input characteristics of the model as they cannot be
determined from any equations. Amongst the so far presented
equations (or, in other words, the laws of thermodynamics
and general relativity), there is not one from which one can
determine the entropy.
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Calvão et al. [10] introduce, through an ansatz, the following
form of the creation pressure:

P = −α
�

3H
(22)

where α is positive.
This is nothing else but an additional constraint on P ,

since P was already determined when the second law of
thermodynamics was cast into the form dU+(p+P)dV = 0
which, in turn, stems from the energy conservation equation
(13). Equating P from this ansatz to P determined in (15),
gives:

σ̇ = �

T
(α − χ). (23)

This relationship is also obtained in [10] and it is obvious that
when α = χ = (ρ+ p)/n, then the creation pressure is equal
to the Prigogine–Geheniau–Gunzig–Nardone creation pres-
sure �, the specific entropy is conserved, and the adiabatic
picture of Prigogine et al. [1–4] applies.

However, in the case of entropy production, α in (22)
remains undetermined and the resulting equation (23) leaves
the entropy production in turn undetermined.

To determine the produced entropy, as already mentioned,
one needs to commit to a particular type of gas for the model
of the Universe, a particular process, and a particular particle
creation rate.

Since (∂p/∂ρ)n = (∂p/∂T )n/(∂ρ/∂T )n , for an ideal gas
the temperature law (21) becomes

Ṫ

T
= 2

3

(
ṅ

n
+ σ̇

)
. (24)

This integrates to give

T = τ n
2
3 e

2σ
3 or σ = 3

2
ln

(
T

τ
n− 2

3

)
, (25)

where τ is an integration constant (temperature scale). To
determine τ , consider the following. If a particle has g inter-
nal degrees of freedom, then the density of states in the phase
space is given by g(2π)−3 f (p), where the distribution func-
tion

f (p) =
[
e

E(p)−μ
T ± 1

]−1
. (26)

for a system of particles in equilibrium is given by the Fermi–
Dirac distribution functions for fermions (positive sign) or
the Bose–Einstein distribution function for bosons (negative
sign). Hereμ = χ−σT is the chemical potential and E(p) =√
m2

0 + p2 = m0 + p2/2m0 is the energy of a particle of rest
mass m0 and momentum p.

The particle number density n is obtained after integrating
g(2π)−3 f (p) over the momentum

n = g

(2π)3

∫
d3 p f (p) = g

(
m0T

2π

)3
2

e−m0−μ

T

=
(
m0g

2
3

2π

)3
2

T
3
2 e−m0−χ

T e−σ =
(
m0g

2
3 e

5
3

2π

)3
2

T
3
2 e−σ .

(27)

since (χ − m0)/T = [(ρ + p)/n − m0]/T = 5/2.
Thus

σ = 3

2
ln

(
m0g

2
3 e

5
3

2π
Tn− 2

3

)
(28)

and hence

τ = 2π

m0g
2
3 e

5
3

(29)

– see also equation (46.1a) in [17].
Two further equations are needed in order to determine

how the two independent thermodynamical variables n and
T depend on time and from this – how all other variables of
the model depend on time. One of these equations is already
available – this is the particle conservation equation, ṅ/n =
−3H + �. To avail of this equation, a specific choice of the
particle creation rate � has to be made. Following [5–12], the
particle creation rate will be taken as � = 3βH with β > 0
and H > 0 (in view of the current state of the Universe, only
regime of expansion will be considered: H = ȧ/a > 0) and
this is the second input characteristic of the model. Note that,
because of Ṅ/N = �, the positivity of � leads to Ṅ > 0,
i.e. only a particle creation process is considered. But this is
not the only possibility – see [11–14].

To derive the needed equation for the evolution of the tem-
perature, a third (and final) input characteristic is needed –
the type of process which the ideal gas undergoes. With the
freedom to chose, a polytropic process TdS = δQ = NcdT ,
where c = const is the specific heat of the expanding Uni-
verse. To ensure increasing entropy in the regime of decreas-
ing temperature, one must have c < 0. Such polytropes are
called quasi-adiabatic processes [18].

Polytropes have very wide applications in astrophysics
and the related fields – see the extensive monograph [19].
Polytropic gas models of dark energy provide alternative
explanation of the accelerated expansion of the Universe –
see the review [18] and the references therein. These models
follow the steps of the Cardassian expansion cosmological
models [20–23] for which the right-hand side of the Fried-
mann equation H2 = (1/3)ρ is modified to involve an addi-
tional, polytropic, term: H2 = (1/3)ρ + Bρn , where B is
some constant and n < 2/3 in order to achieve accelerated
expansion. The authors of these models also allow a more
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general function f (ρ) to be added to the modified Friedmann
equation and this is referred to as generalized Cardassian
model. The Cardassian models fit with both quintessence and
phantom cosmology. A phenomenological model in which
the pressure density of (phantom) dark energy is given by
the generalized p = −ρ − f (ρ) was further investigated by
[24] in the context of the study of future singularities; see
[25] for the study of the future singularities in the case of
f (ρ) = Bρn and see also [26–32] and the references therein
for further developments, including interacting dark energy.

For the polytropic process TdS = δQ = NcdT (with
c < 0), the first law of thermodynamics, NcdT = dU +
pdV − μdN , becomes:(
c − 3

2

)
dT

T
= dV

V
+

(
3

2
+ m0 − μ

T

)
dN

N
. (30)

In the regime of low particle number densities n, one has
ρ ≈ m0n. Thus, p = nT ≈ (τ ∗/m5/3

0 )ρ5/3 > 0. This
corresponds to a polytropic process in a monoatomic ideal
gas with three degrees of freedom: p = (const)ρ(α+1)/α with
α = 3/2, giving a polytropic index of 5/3, equal to the heat
capacity ratio of the gas.

Given that σ = (χ − μ)/T = [m0 + (5/2)T − μ]/T
and also using (dN )/N = �dt and (dV )/V = (da3)/a3 =
3Hdt gives:(
c − 3

2

)
Ṫ

T
= 3H − � + �σ. (31)

This equation and the particle conservation equation

ṅ

n
= −3H + � (32)

form a two-dimensional autonomous dynamical system for
the two thermodynamical variables n(t) and T (t).

Substituting ρ from the caloric equation of state (2) into
the Friedmann equation H = +√

ρ/3 > 0 yields H =
+(

√
3/3)

√
m0n + (3/2)nT > 0 and the dynamical system

in the case of � = 3βH can be written as:

Ṫ

T
=

√
3

c − 3
2

√
nm0 + 3

2
nT

[
1 − β + 3

2
β ln

(
T

τ
n− 2

3

)]
, (33)

ṅ

n
= √

3 (β − 1)

√
nm0 + 3

2
nT . (34)

This dynamical system is integrable. To see this, introduce
variables x = ln n and y = ln T and divide the two equations
to get:

dy

dx
= 1

κ
(1 − β + βσ) = 1

κ

(
α + 3

2
βy − βx

)
, (35)

where κ = (c − 3/2)(β − 1) and α = 1 − β − (3/2)β ln τ .
The solution of this equation is

ln

(
T

τ
n− 2

3

)
= D n

3β
2κ + 4c(β − 1)

9β
, (36)

where D is an integration constant. The value of D, depends
on the prescribed initial conditions T0 = T (n0).
In view of (25):

σ = 3

2
D n

3β
2κ + 2c(β − 1)

3β
. (37)

If the integration constant D is zero, then the specific entropy
is constant. Thus D = 0 corresponds to adiabatic particle
creation. For a positive specific entropy, one must have D > 0
[the constant 2c(β−1)/(3β) will turn out to be also positive].

The temperature T as function n is therefore given by

T (n) = τ ∗ n
2
3 eDn

3β
2κ

, (38)

where τ ∗ = τ exp[4c(β − 1)/(9β)] = const.
Substituting this temperature law into equation (34)

yields:

ṅ = √
3 (β − 1) n

3
2

√
m0 + 3

2
τ ∗ n 2

3 eDn
3β
2κ . (39)

In view of the transcendental character of this equation, the
complete evolution of n(t) cannot be given explicitly in terms
of elementary functions. Proper phase-plane analysis, for
example in the n–H plane, would reveal qualitatively all fea-
tures of the bahaviour of the system.

Physically, it makes sense to have T → 0 when n → 0.
Thus, given that β > 0, one has to have κ > 0, which, in
turn, leads to 0 < β < 1 since c < 0. Having 0 < β < 1
also avoids a model in which, owing to (34), n increases with
time (and, together with it, T ), i.e. the parameter β in the
particle creation term � = 3βH is restricted.

Equipped with T (n) from (38), Eq. (34) becomes an equa-
tion for n(t) in separate variables and can be integrated (albeit
not analytically). In view of this, it is best to study the dynam-
ical system (33)–(34) numerically in order to determine T (t)
and n(t).

For small n, the dynamical Eq. (34) in leading order is:

ṅ ≈ √
3m0(β − 1)n

3
2 . (40)

After integration one gets:

n(t) = 1[√
1
n0

−
√

3m0
2 (β − 1)(t − t0)

]2 , (41)

where n0 = n(t0).
As time increases (t → ∞), the number density behaves

so that
√
n(t) ≈ 2√

3m0 |β − 1| t . (42)

Thus

ȧ

a
= d

dt
ln a = H ≈

√
m0

3

√
n ≈ 2

3 |β − 1| t . (43)
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For the scale factor one gets:

a(t) = a0 t
2

3 |β−1| . (44)

The evolution of the scale factor a(t) in the general case
can be obtained after integration of

ȧ

a
=

√
3

3

√
m0n + 3

2
τ ∗ n 5

3 eDn
3β
2κ , (45)

where n = n(t) is the solution of (39).
When there is no particle creation (i.e. β = 0), the time-

dependence of the scale factor is the well known a(t) ∼ t2/3.

Accelerated expansion (ȧ > 0 and ä > 0) is achieved for
1/3 < β < 1. Smaller values of β (between 0 and 1/3)
correspond to particle creation that does not generate enough
particles to trigger acceleration of the expansion. In summary,
as the particle creation rate is proportional to H (with H ∼
1/t), for 0 < � < H , the Universe is expanding, without
acceleration, towards n → 0, T → 0. With a higher particle
creation rate, namely for H < � < 3H , the expansion is
accelerating – towards n → 0, T → 0 again. Finally, for
� > 3H (corresponding to β > 1), the particle creation rate
is so high that n increases with time.

Due to (37), one has:

σ̇ = 9β

4κ
Dn

3β
2κ

−1 ṅ = 27Dβ(β − 1)

4κ
H n

3β
2κ < 0 (46)

in view of β < 1, i.e. the specific entropy σ = S/N decreases
with time. This is not a contradiction to the second law of
thermodynamics, it simply means that N grows faster than
S. The full entropy S increases with time as can be easily
seen: one has Ṡ = (d/dt)(σa3n) = N (σ̇ + �σ) and thus

Ṡ = 3NH

2

[
3βD

κ
(c − 1)(β − 1)n

3β
2κ + 4

3
c(β − 1)

]
(47)

which is positive.

4 Accelerated expansion and the acceleration redshift

The accelerated expansion is not an ever-present feature of
the model. To understand when (at what redshift) the acceler-
ation becomes positive, consider the Friedmann Eq. (10) and
note that ρ +3(p+ P) < 0 is needed for ä > 0 (acceleration
of the expansion).

− 6
ä

a
= ρ + 3(p + P) = ρ + 3

(
p + � − nT

3H
σ̇

)

= ρ + 3

[
p − β(ρ + p) − nT

3H
σ̇

]
, (48)

as, in view of (17), � = −(ρ + p)�/(3H) = −β(ρ + p)
since � = 3βH . Further, in light of (46), one has σ̇ =
27Dβ(β −1)/(4κ) H n

3β
2κ . Using Eq. (2) for the relationship

between ρ and n and the equation of state (1) yields:

− 6
ä

a
= (1 − 3β) (m0n + 3

2
nT ) + 3(1 − β)nT

−9Dβ(β − 1)

4κ
T n

3β
2κ

+1. (49)

Substituting the temperature law (38), one finally gets the
acceleration in terms of n only:

− 6
ä

a
= (1 − 3β)m0n − τ ∗

2
(15β − 9)n

5
3 eDn

3β
2κ

+9τ ∗Dβ(1 − β)

4κ
n

3β
2κ

+ 5
3 eDn

3β
2κ

. (50)

Thus, there is some value of n, say nc, which depends on
all model parameters, nc = nc(m0, D, ε, c), and for which
the expression in the brackets changes sign (the last two
terms increase monotonically with n). Therefore, the transi-
tion from decelerated to accelerated behaviour occurs when n
drops to nc. Although the form of nc is not available explicitly
in terms of elementary functions, it is clear that such value
exists for small n.

As already seen, values of β greater than 1/3 lead to power
law accelerated expansion and there is no acceleration if 0 <

β ≤ 1/3. Also, β must be smaller than 1 so that T → 0 when
n → 0. To investigate the critical value βc = 1/3, consider
β = 1/3 + ε, where 0 < ε 
 1. Then (49) becomes:

− 6
ä

a
= n T (n)

(
−3m0ε

T (n)
+ 2 + D

2κ
n

1
2κ

)
with T (n)

= τ ∗ n
2
3 eDn

1
2κ

. (51)

Note that κ = 1 − 2c/3 when β = 1/3 + ε.
For values of β well above βc (but still β < 1), acceler-

ated expansion is always present within this non-relativistic
model.

To express the model quantities as functions of the redshift
z, instead of time t , introduce the cosmological redshift z for
a flat FRWL space-time via

1 + z = a0

a
. (52)

Thus, dz = −(a0ȧ/a2)dt = −(1+z)Hdt . One immediately
gets:

dH

dt
= dH

dz

dz

dt
= −(1 + z)H

dH

dz
= −1

2
(1 + z)

dH2

dz
,

(53)
dn

dt
= dn

dz

dz

dt
= −(1 + z)H

dn

dz
. (54)

Using the particle conservation equation ṅ = 3(β − 1)H on
the left-hand side of the latter yields:

dn

dz
= −3(β − 1)

1 + z
. (55)
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Fig. 1 The scaled deceleration parameter q̃ = (6H2)/ (nT ) q (plotted
with k = 4 which yields acceleration redshift za = 0.68)

This integrates easily to give

n(z) = n0(1 + z)3(1−β). (56)

The deceleration parameter q, given by:

q = −aä

ȧ2 = − ä

aH2 , (57)

with the help of (51), i.e. for small n and β = 1/3 + ε, can
be written as

q = n T (n)

6H2

[
2 − 3m0ε

T (n)
+ D

2κ
n

1
2κ

]
. (58)

For small n, one has T (n) ≈ τ ∗n2/3. In terms of the redshift
z, one immediately gets T (z) ≈ τ ∗n2/3

0 [(1 + z)3(1−β)]2/3.

When β = 1/3+ε, one further gets T (z) ≈ τ ∗n2/3
0 (1+z)4/3.

Introduce, for simplicity, the scaled deceleration parameter
q̃(z) given by q̃(z) = 6H2(z) n−1(z) T−1(z)q(z). The zeros
of q̃(z) and q(z) coincide. Then, for q̃(z) one has:

q̃(z) = 2 − k

(1 + z)
4
3

+ small terms, (59)

where k = (3m0ε)/(τ
∗n2/3

0 ) = const.
Clearly, the graph of q̃(z) intercepts the ordinate at 2 − k,

while the acceleration redshift is za = (k/2)3/4 − 1 =
[(3m0ε)/(2τ ∗n2/3

0 )]3/4 − 1 – see Fig. 1. The parameters
m0, ε, τ

∗, and n0 could be chosen in such way that q̃(z) > 0
for all z, namely, for q̃(z) > 0 for all z, one needs k =
(3m0ε)/(τ

∗n2/3
0 ) < 2.

To relate to the experimental limits 0.4 ≤ za ≤ 0.8
[15], the parameters m0, ε, τ

∗, and n0 should be such that
1.4 ≤ [(3m0ε)/(2τ ∗n2/3

0 )]3/4 ≤ 1.8. This puts limits on k

and hence one can find the limits on ε = (k τ ∗n2/3
0 )/(3m0).

The functional dependence of the scaled deceleration
parameter q̃ on the redshift z is in agreement with the
one emerging from q̄ diagnostic of Union supernovae data,
reported in [15] – compare Figure 1 to Figure 7 in [15].

5 Link to dark energy models

Dark energy models are based on a component with equation
of state p = ωρ and the Friedmann equation in these mod-
els, namely ä/a = −(1/6)(ρ + 3p) = −(1/6)(1 + 3ω)ρ,
dictates that for cosmic acceleration (ä > 0), one has to have
ω < −1/3 and thus, negative pressure. This also results in
the violation of the strong energy condition: ρ + p ≥ 0 and
ρ + 3p ≥ 0. When ω = −1, the resulting model is the stan-
dard (concordance) cosmological model �CDM. Models
with −1 < ω < −1/3 are called quintessence models, while
those with ω < −1 are called phantom cosmological mod-
els. The latter violate all four energy conditions. Recently in
[15], a diagnostic test called Om has been proposed, which
is constructed from the Hubble parameter H = ȧ/a with
the latter determined directly from observational data. This
diagnostic provides a null test of the �CDM hypothesis and
allows for the differentiation between various dark energy
models [15]. If the Om diagnostics, as a function of the red-
shift z, that is Om(z), is constant (equal to the value of the
matter density �0m) for all z, then the model in question is
the concordance �CDM model (ω = −1). For dark energy
models with dynamical equation of state, a positive slope of
Om(z) suggests a phantom cosmological model (ω < −1),
while a negative slope corresponds to a quintessence model
(−1 < ω < −1/3) [15]. The Om diagnostics provides such
distinction between various dark energy models both with
and without reference to the value of the matter density �0m ,
thus having the ability to avoid a potential source of signifi-
cant uncertainty in the cosmological reconstruction [15].

The Om diagnostic is introduced in the following manner
[15]:

Om(x) = h2(x) − 1

x3 − 1
, (60)

where x = 1 + z and h(x) = H(x)/H0.
For the �CDM model [ω(z) = const] one has [15]:

h2(x) = �0mx
3 + (1 − �0m)xα with α = 3(1 + ω).(61)

Thus [15]:

Om(x) = �0m + (1 − �0m)
xα − 1

x3 − 1
. (62)

If the dark energy is modelled by the cosmological constant
[ω(z) = const = −1], i.e. for the �CDM model, one has
α = 0 and hence Om(x) = �0m .
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Dynamical dark energy models [having ω = ω(z)], as
opposed to the standard cosmological �CDM model, can
also explain the observational data with which the �CDM
model is in excellent agreement – see [15] and the references
therein. The following parametric ansatz for ω(z) is made
[15,33,34]:

ω(z) = ω0 + ω1
z

1 + z
. (63)

Then, if Om(x) > �0m , then the model describes
quintessence (α > 0), while if Om(x) < �0m , one has a
phantom cosmological model (α < 0), [15]. The graph of
the former has a negative slope, while that of the latter has a
positive slope – see the figures in [15].

The cosmological models with particle creation do not
describe dark energy: such models are alternative to the dark
energy models. In order to establish a form of correspondence
between the proposed model with particle creation and the
dark energy models, Om diagnostics will be applied to the
particle creation model. One has

Om(x) =
[

H(n)
H0(n0)

]2 − 1

x3 − 1
=

m0n+ 3
2 nT (n)

m0n0+ 3
2 n0T (n0)

− 1

x3 − 1
. (64)

To study the Om diagnostic for values in the leading order of
the particle number density n (namely, disregarding the con-
tributions of the non-conserved specific entropy σ ), expand
the temperature evolution law (38):

T (n) = τ ∗ n
2
3 eDn

3β
2κ = τ ∗n

2
3 + . . . (65)

and substitute in the above to get

Om(x) =
n
n0

(
1 + 3τ∗

2m0
n

2
3

)(
1 + 3τ∗

2m0
n

2
3
0

)−1

− 1

x3 − 1

=
n
n0

[
1 + ξ

[(
n
n0

) 2
3− 1

]]
− 1

x3 − 1
, (66)

where ξ = (3τ ∗n2/3
0 )/(2m0) = const.

Given that n/n0 = x3(1−β), the application of the Om
diagnostic for values of the parameter β near the critical
value βc = 1/3, i.e. β = 1/3 + ε with 0 < ε 
 1, gives

Om(x) = x + 1

x2 + x + 1
+ ξ

x2
(
x

1
3 + 1

) (
x

2
3 + 1

)
(
x

2
3 + x

1
3 + 1

) (
x2 + x + 1

) .

(67)

In the numerator of ξ one has T0 in the leading order of n0

and within the range of validity of the model, T/m0 
 1
for all T , including T0. Therefore ξ ≈ 10−9 or less for the
present epoch as, more precisely, the characteristic particles
of the model are of rest mass of about 0.5 MeV or more, that

is, 109 K or more. Even the highest possible redshift cannot
compensate the smallness of the second term in (67) and for
that reason this term should be neglected. Thus

Om(x) = x + 1

x2 + x + 1
. (68)

With the increase of x , this function tends monotonically
from 1 (at x = 0) to zero. As the slope is always negative, the
particle creation model bears the hallmarks of a quintessence
model.

6 Correspondence with the �CDM model

As the model is applicable to the matter-domination epoch
and the present epoch of accelerated expansion, to establish
a relation to the concordance �CDM cosmological model
for these two stages of the cosmological evolution, assume
that the parameter β could vary from one epoch to another.
This is, in fact, a modification of the particle creation model
making it differ from what was associated with quintessence
through the Om diagnostics in the previous section.

The matter-domination laws correspond to β = βmd 
 1,
which, using (44), leads to a(t) ∼ t2/3.

For the present epoch of accelerated expansion, obser-
vational data is fitted by the �CDM model1 with a(t) =
a0 exp

(√
�/3t

)
, where � is the cosmological constant. Thus,

H = ȧ/a = √
�/3. To draw a parallel to the presented

model, the substitution of the latter into the dynamical equa-
tion ṅ/n = −3(1−βpe)H yields ṅ/n = −3(1−βpe)

√
�/3.

On the other hand, from (34), for low temperatures, one has
ṅ/n = −√

3(1−βpe)
√
m0n. Comparison of these two gives

� ≈ m0n. Using Eq. (41), one gets

� ≈ m0 n∗
0[

1 +
√

3m0n∗
0

2 (1 − βpe) (t − t∗0 )

]2 , (69)

wherem0n∗
0 ≈ �(t∗0 ) is the energy density in the early stages

(t∗0 ) of the present epoch of accelerated expansion. The time-
dependence in the above would be very weak provided that
βpe = 1 − ε̃ with 0 < ε̃ 
 1. In this way, � would depend
on the “slow” time ts = ε̃(t − t∗0 ) and would be a constant
in the limit of ε̃ → 0. Dependence of � on time is not a
new has been widely discussed. Weinberg argues [36] that if
the cosmological constant is small now, it was not necessarily
always small. Dirac’s large number hypothesis [37–39] leads
to a cosmology where � varies very slowly with cosmolog-
ical time. Dirac argues that H ∼ t−1. Lima and Carvalho
[40] propose � ∼ H2, thus � ∼ t−2 – in agreement with
the above.

1 Recently, some tension has been reported between different high red-
shift observations and the �CDM model – see [35].
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7 Conclusions

The aim of this paper is to prove the concept that the spe-
cific entropy σ in cosmological models with matter creation
does not need to be constant. This new feature is studied in
the presented model, together with the viable cosmological
consequences it leads to. On one hand, the significant phys-
ical restriction presented by the requirement σ = const has
been lifted. On the other hand, new horizons are revealed, in
particular, it is exactly the non-conservation of the specific
entropy that allows one to uncover the possible transition
from decelerated phase to the current accelerated phase for
certain values of the model parameters, that is, models with
β close to the critical value 1/3 have the remarkable property
that the transition from deceleration to accelerated expansion
(hence between cosmological epochs) happens naturally with
the decreasing of the particle number density n (or the tem-
perature T ).

The presented analysis is in line with the existing parti-
cle creation models with conserved specific entropy, whose
results can be reproduced by setting D = 0; with the cos-
mological models without particle creation (reproduced by
setting β = 0); and with the models with adiabatic non-
accelerated expansion of the Universe (by taking c = 0).

The Om diagnostic allows the association of the model
with a quintessence model. Additionally, the presented model
with β allowed to vary with the epoch qualitatively matches
the behavior of the scale factor a(t) from the standard cos-
mological model for the matter domination epoch [for early
times: a(t) ∼ t2/3] and for the epoch of the late accelera-
tion [for late times: a(t) ∼ et/t� ]. This analogous �CDM
model has cosmological constant varying with a very slow
cosmological time.
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analysis and there is no data associated with it.]
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