Eur. Phys. J. C (2019) 79:891
https://doi.org/10.1140/epjc/s10052-019-7416-x

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Strong cosmic censorship in charged de sitter spacetime with
scalar field non-minimally coupled to curvature

Hong Guo'#, Hang Liu'", Xiao-Mei Kuang?><, Bin Wang?>~-4

! School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 College of Physical Science and Technology, Center for Gravitation and Cosmology, Yangzhou University, Yangzhou 225009, China
3 School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Received: 1 August 2019 / Accepted: 20 October 2019 / Published online: 5 November 2019

© The Author(s) 2019

Abstract We examine the strong cosmic censorship in the
Reissner—Nordstrom—de Sitter (RN-dS) black hole by inves-
tigating the evolution of a scalar field non-minimally coupled
to the curvature. We find that for the stable RN-dS black hole,
with the increase of the coupling parameter, the violation of
the strong cosmic censorship occurs at a larger critical charge
ratio. But such an increase of the critical charge is suppressed
by the increase of the cosmological constant. Different from
the minimal coupling situation, it is possible to accommo-
date 8 > 1 in the near extremal black hole when the scalar
field is non-minimally coupled to curvature. § here is defined
as B = —I,’?—i‘” where k_ is the surface gravity of Cauchy
horizon and w is the frequency of quasinormal modes. The
increase of the cosmological constant can allow 8 > 1 to be
satisfied for even smaller value of the coupling parameter.
The existence of 8 > 1 implies that the resulting curvature
can continuously cross the Cauchy horizon.

1 Introduction

It is well-known that the existence of the Cauchy horizon
(CH), i.e., the inner horizon of black holes implies the loss
of determinism of the physics laws beyond the C’H. To rescue
the determinism, Penrose proposed his famous Strong Cos-
mic Censorship (SCC) long ago. The SCC is based on the fact
that the C’H of realistic black holes formed dynamically in the
asymptotically flat spacetime is inextendible due to the occur-
rences of the so-called mass-inflation induced by the blue
shift amplification effect of the unavoidable time-dependent
remnant fields propagating along the C’H. The presence of
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this scenario relies essentially on the inverse power law decay
of the fields in the exterior region of asymptotically flat black
hole spacetime, which cannot compete with the aforemen-
tioned blue shift amplification [1].

However, when one considers the de Sitter (A > 0) black
holes, the situation we discussed above will change dramat-
ically. Because in an asymptotically de Sitter spacetime, the
perturbations outside the black holes decay instead exponen-
tially in the form of ™, where « stands for the spectral
gap, determined by the relation @ = inf{—Im(w;)} over all
possible quasi-normal modes (QNMs) w; [2]. This kind of
exponential decay behavior could be fast enough to make
that the inner horizon singularity so weak that the spacetime
metric would be extendible beyond the C’H as a weak solu-
tion to the Einstein field equation [3], leading eventually to
the violation of the SCC. The fate of the SCC depends on
the delicate competition between the exponential decay out-
side the black hole and the blue shift amplification along the
CH in the interior region of black hole. In particular, corre-
sponding to a linearized scalar perturbation, it was found that

the SCC may be violated if the condition = > % is satis-

fied [2] for all QNMs, where the «_ is the surface gravity of
the C’H. Whereas the SCC will be respected if the condition
B = —I‘;—i‘“ > % can not be satisfied by all QNMs in the
sense that the scalar field can not be extended across the CH.
This amounts to saying that if there exists one mode which
satisfies 8 = —I"?—_“’ < %, then the SCC will hold.

In order to examine the stability of the Reissner—
Nordstrom—de Sitter (RN-dS) black holes, the QNMs have
been investigated at various aspects, including the charged
scalar field perturbation in four dimension [4], and the grav-
itational perturbation in higher dimensions [5,6]. In particu-
lar, due to the above relation between QNMs and SCC, the
QNMs of RN-dS black holes have recently attracted resur-
gent attentions [1,2,7—-17] since the pioneering work [2]. The

linear neutral massless scalar perturbation is studied respec-
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tively in dimension d = 4 [2], and in higher dimensions
[16]. As aresult, SCC is found to be violated when the black
hole parameters are taken in the near extremal regime. Such
a violation of SCC becomes more severe under the coupled
electromagnetic and gravitational perturbations [7]. The dis-
cussions have also been generalized to the charged mass-
less/massive scalar perturbation, and it has been shown that
the SCC will be saved from being violated provided that the
field is charged properly, but there is still a parameter regime
in which the violation of SCC occurs [1,9—-11]. The similar
result has also been obtained for the Dirac field perturbation
[13,18]. In addition, The non-linear evolution of massless
neutral scalar perturbation is considered in RN-dS space and
it turns out that the SCC might not be saved by such nonlinear
effects [19]. On the other hand, the SCC in lukewarm RN-dS
and Martnez—Troncoso—Zanelli black hole spacetime under
the non-minimally coupled massive scalar perturbation was
investigated and it was shown that the validity of the SCC
depends on the characteristics of the scalar field [15]. Last
but not least, although the Kerr-de Sitter black holes share
many similarities with the RN-dS ones, it is found that there
is no violation of SCC for the linear perturbations [12]. Later
on, no violation is further extended to higher dimensional
Kerr-dS backgrounds for minimally coupled fields [14], as
well as the non-minimally coupled massive scalar field [17].

It was argued that minimal coupling is of limited value in
the context of effective field theories, while non-minimally
coupled interactions were appreciated in the general study in
gravity [20]. Specially, plenty of studies have been done in
this direction, such as the spontaneous symmetry-breaking
effect in gravity [21],the scalar field models of dark energy
[22-25] and the low-energy limits of the superstring theory
[26-28]. Besides, it was addressed in [29] that non-minimum
coupling is necessary to avoid causal pathologies in field
propagation in a general curved background. On the other
hand, it is obvious that instead of perturbation minimally
coupled to curvature, a non-vanishing coupling term would
apparently influence the spectrum of QNMs such that the
decay speed of the perturbation will be affected. Then the
question, whether the local energy of the scalar perturbation
is finite or not at C’H, is not obvious and deserves to be figured
out.

Thus, it is interesting and important to study SCC under
non-minimally coupled scalar field. The evolution of a scalar
field coupled to curvature in topological black hole space-
times was investigated in [30]. So far all investigations on
the SCC are limited to fields that are minimally coupled to
curvature in RN-dS spacetime, it is natural to generalize the
study to the non-minimal coupling scalar field. The work
[17] studied the SCC and the quasinormal resonance of non-
minimal coupling scalar field in the Lukewarm Reissner—
Nordstrom-de Sitter black holes, however they set the charge
and the mass of the RN-dS black holes to be equal to each
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other. In our present work, we will not impose any relations
between black hole charge Q and mass M, and we will dis-
close the general validity of the strong cosmic censorship in
four-dimensional Reissner—Nordstrom—de Sitter black hole
against non-minimal coupling massless neutral scalar field
perturbations. Considering that in [2] the SCC for massless
neutral scalar perturbation with minimal coupling has been
investigated, it is interesting to reveal the rich influences of
the coupling parameter on the perturbation stability and the
validity of the SCC.

The rest of the work is organized as follows. In Sect. 2, we
give a brief and general introduction of the RN-dS spacetime
in d > 4 dimensions and derive the basic equations which
control the motion of linear scalar perturbations. In Sect. 3,
we analyze the stability of RN-dS black holes under non-
minimally coupled linear scalar perturbations to disclose the
impact of coupling constant on the stability of the RN-dS
spacetime. In Sect. 4, we would like to investigate the validity
of the SCC under scalar perturbations with different coupling
constants, and we conclude with some discussions in the last
section.

2 Scalar perturbations with non-minimal coupling and
the relation between QNMs and SCC

In this section, we would like to give a general derivation of
the equation of motion of the scalar field in d > 4 dimen-
sional RN-dS background. The metric of RN-dS spacetime
in d-dimension (d > 4) is given by [31]

dﬂ:rﬁﬂﬂm2+}%3ml+r%954, 2.1
where
20 Y PR R L TS
r r2d=3 " (d—2)d - 1)
and
d-2
A @=2@-D i)L(j _ 1), dQ3 , =dx3 + l_[ sinxidx7y
= (2.3)

in which L is the cosmological radius associated with cosmo-
logical constant A, while the parameter g and m are related
to the electric charge Q and the ADM mass M of the black
hole as

d—2 V2d=2)d =3)
= wg_om, Q= w4q-29,
167 8
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2.4

with w, being the volume of the unit d-sphere. Furthermore,
we have the electromagnetic field F' and gauge potential A

/ d—2
Fap = (dA)ap, Aa= 2(d 3 r d 3 ——(dt), 2.5)

The action of the scalar field with a coupling constant A cou-
pled with constant Ricci curvature R = 2d/(d — 2)A is

1 R
Sy =3 f dx /=g DI D"y + W2+ ARY P, (26)

by which the equation of motion and energy-momentum ten-
sor of the scalar field in the d-dimensional curved spacetime
can be obtained as

(D'D, — (1 4+ XR)HY =0 2.7)
1
Tp,v = D(/thv)w g;w(DpINplﬁ + |1ﬂ| )
+ (g = VuVy + Gl |2, (2.8)

where G, is the Einstein tensor, the operator D, = V,, —
ieA, is the extended covariant derivative, while e and p are
the electric charge and the mass of the field, respectively. We
expand ¥ in the following way

Y(r1,0)=Y e —ior )Yzmu) (2.9)
Im r
Whence the equation of motion reads
0= f()f (P () + 2" (r) + (B + B¢ (1),
(2.10)
in which
o (d — 2)e2q2r26-d - V2eqri—d )
T 2@y (43)}
= (0= ®(r)* @.11)
ld+1-3) 2d
By = f(r) <_r—2 i mAl
d-2)f d—4)(d-2
L« Zif (r)> e )( ) e
and
O(r) = —2° (2.13)

[26d=3) ,.a-3
a—2 T

In the present paper, we focus only on the massless neutral
scalar perturbations in the four-dimensional RN-dS space-
time, which correspondstoe = 4 = Oandd = 4. As a
result, the equation can be simplified into

FOV @ () + £2)¢" () + (@0 — Vepp)p(r) =0,
(2.14)

where

Ia+1

!/
f m) (2.15)

-
As one can see, the only effect of non-minimal coupling
constant A is that the effective potential V. will be affected
by the term 4 AA. Note that we are considering the case with
a positive cosmological constant A, thus a positive A will
increase the value of V, sy while a negative A will decrease
Verr such that V,rr will have a wider and deeper negative
region, leading to a potential instability of the black hole
spacetime, as we shall discuss in Sect. 3.

By introducing the tortoise coordinate dr, = %,

we finally arrive at the master equation in the form of a
Schrodinger equation

eff_f()<

d*¢(r)

2 _
drf +@

Verr)p(r) =0, (2.16)

which gives rise to the spectrum of QNMs once the boundary
conditions are imposed as follows

d(r) ~ U (r = 1.

(2.17)

P(r) ~ eI (r — ry);

To relate the QNMs to SCC, we may as well go to the ingo-
ing coordinate v = t + r, outside the black hole. Because
our QNMs behaving as e~®Y across the event horizon are
analytic functions in this coordinate, we can analytically con-
tinue our QNMs solutions to the inside of the black hole. In
the inside of the black hole, we can go back to the ¢ coor-
dinate, where our analytically continued solutions behave as
e~i“" One should note that generically we will have both the
ingoing and outgoing modes at the C'H, i.e.,

Gour ~ €%, in ~ e > . (2.18)
Taking into account that the ingoing coordinate v is singular
while the outgoing coordinate u = ¢ — r, is well defined at
the C’H, we would like to move onto the u coordinate, where

the two modes behave as
—iwu —iwu—2iwr.
Pour ~ € . Qin~e *
lu)
~ e IO — )= > .

(2.19)
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Obviously, the non-smoothness comes solely from the ¢;,
mode. the CH is extendible if and the energy-momentum ten-
sor (2.8) consisting of terms like 2, 0, Yoy and V, V2
of the scalar field should be integrable near the C’H, which
amounts to saying that [(r — r_)*P=Ddr should be finite
with p = /’(—‘f This requirement leads to 2[Re(p) — 1] > —1.
Thus the criterion for the violation of the SCC is given by

Im w

8 1
= — > —
2

K_

(2.20)

for all QNMs. This means that if we can find some modes
which meet the condition

8 1
< —_—
27

(2.21)
then the SCC will be respected.

We note that it is subtle to make the strong cosmic cen-
sorship conjecture precise and one should be careful when
mentioning “violation of SCC ™. This is because the exis-
tence of different formulations of SCC depends on the dif-
ferent smoothness of perturbation on CH in literatures. Given
that whether perturbations or observers can across the CH is
determined by the existence of solutions to the equations of
motion of the matter fields. Accordingly, the SCC may be
formulated since the maximal Cauchy development should
be inextensible as a solution to the equations of motion. One
may note that the fields equations are second order, which
implies that the smoothness of fields should be C2. This is
the C? formulation of SCC which states that the spacetime
can not be extended across the CH with C? metric. Actually,
as argued in Ref. [7], the generic perturbations arising from
the smooth initial data can be arbitrarily smooth at the CH
when the black holes are close enough to extremality as well
as large enough in a dS spacetime. This leads to the potential
violation of C” formulation of SCC with any r > 2. Besides,
the existence of the so called weak solutions motivates the
Christodoulou’s formulation of SCC, which states that gener-
ically the maximal Cauchy development is inextensible as a
spacetime with locally square integrable Christoffel symbols
(More detail also see [7]).

It is worthwhile to point out that the criterion for the viola-
tion of the SCC in this work is derived by Christodoulou’s for-
mulation. It was proven that in Ref. [32] that for any smooth
initial data, the scalar field is C! at the CH if B > 1, and if
B > 1/2 then the local energy at C’H of scalar field is finite.
This indicates that the Christodoulou’s formulation of SCC
is violated in RN-dS spacetime, while this version of SCC
is respected if B < 1/2. For B8 < 1, the generic scalar per-
turbations in RN-dS spacetime fail to be C ! therefore, the
blow up of Kretschmann scalar implies that the C? formula-
tion of SCC is supported as the curvature tensor includes the
second order derivative of metric. On the contrary, if 8 > 1,
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the scalar field is C! at CH resulting in finite curvature at CH
which implies a more severe violation of SCC. This will be
shown in our numerical results soon.

3 Stability analysis

Only for the stable black hole, the discussion of the cos-
mic censorship is meaningful. Thus before we investigate
the strong cosmic censorship, we would first like to conduct
a stability analysis of the RN-dS black hole under the neutral
massless non-minimally coupled scalar fields. By inspecting
the effective potential (2.15), we can see that the effective
potential is affected by the coupling constant A in the form
of 4AXx. Whence we can infer that the instability may occur
if A is negative with big enough magnitude no matter which
angular number / we choose. On the contrary, note that the
RN-dS black hole is stable under the neutral massless min-
imally coupled(A = 0) scalar field [4], and the appearance
of the positive coupling constant will increase the effective
potential such that the stability of the black hole is reinforced.
In the following discussion, we set M = 1 for simply.

InFig. 1, we show the behavior of effective potential V, ¢
between the event horizon r and the cosmological horizon
re forl =0and! = 1. As expected from the formula (2.15),
the larger angular number /, the more negative coupling con-
stant is needed to have the occurrence of negative effective
potential V,¢r in some region. Such an occurrence signals
the possible instability of the black hole [33,34]. To see what
really happens, one is required to calculate the corresponding
QNMs, where the positive imaginary part of QNM frequency
® = wp + iw; corresponds to the growing mode, indicating
the instability of the black hole. In this work, the QNMs are
computed by the asymptotic iteration method(AIM) of which
a brief introduction can be seen in the Appendix. There also
briefly do the analysis on numerical accuracy of AIM relative
to spectral method for sample of our model parameters, so
that our following numerical results are reliable.

After checking an amount of the QNMs data within neg-
ative coupling parameter, we list the n = 0 QNMs with the
angular number/ = 0, 1, 5, 10 for negative and non-negative
A, respectively. Tables 1 and 2 respect our conclusion. For the
negative A, one can see there exists a purely imaginary unsta-
ble mode at / = 0. Moreover, the less negative the coupling
constant A is, the smaller the imaginary of part of this unsta-
ble mode is. While for A > 0, the unstable mode does not
exist, indicating that the black hole is stable.

4 Strong cosmic censorship

For the stable black hole configuration, whether the cosmic
censorship can be respected is an interesting question to be
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Fig. 1 M =1,A =0.14, 0/ Qpmar = 0.99

Table 1 The QNMs for negative coupling constant when M = 1, A = 0.14, O/ Qax = 0.99,n =0

Angular number r=-05 A =—-0.1 A = —0.001

=0 04i0.111107 0+i0.035139 04-:0.000470

=1 0 —i0.007209 0.181861 —i0.047444 0.191424 —i0.046261
=5 0.730575 —i0.045157 0.740796 — i0.044912 0.743318 — i0.044854
=10 1.41688 —i0.044862 1.42221 —i0.044798 1.42352 —i0.044782

Table 2 The QNMs for positive
coupling constant when
M=1,A=0.14, Q/Qmax =
0.99,n =0

Angular number

A=0

A=0.1

r=0.5

[=0
=1
=5
=10

0.041017 —i0.069190
0.19152 —i0.046245
0.743344 —i0.044854
1.42354 —i0.044782

0.057096 — i0.049195
0.201098 — i0.045302
0.745888 — i0.044796
1.42487 — i0.044766

0.143892 — i0.043464
0.237539 —i0.043293
0.756032 — i0.044575
1.43019 —i0.044704

examined. In the following we will investigate the strong cos-
mic censorship of the stable Reissner—Nordstrom—de Sitter
(RN-dS) black hole by studying the evolution of a scalar field
non-minimally coupled to the curvature.

4.1 The fate of SCC

Note that we always have an unstable mode for the nega-
tive coupling parameter, so regarding the potential violation
of the SCC, below we shall focus only on the non-negative
coupling parameter. We plot the most dominant modes for
I =0,1,2,10 in Fig. 2, where each column corresponds to
the result for the same cosmological constant with the cou-
pling parameter increased from the top to the bottom, and the
black vertical line is used to indicate the critical charge ratio
Q’anx when g arrives the critical value %

As one can see, the violation of the SCC occurs no matter
how we choose the value of the coupling parameter and cos-
mological constant. In addition, for a fixed cosmological con-
stant, the aforementioned critical charge ratio increases with
the coupling parameter. So the larger the coupling parameter
is, the harder the violation of the SCC is. To scrutinize such

a behavior, we plot the variation of the critical charge ratio
as the increase of the coupling parameter in Fig. 3. First, it
seems that such an increase will be saturated at a large cou-
pling parameter. That amounts to saying that a larger coupling
parameter will not affect the critical charge for the violation
of the SCC any more. Second, the larger the cosmological
constant is, the tinier such an increase is. In this sense, the
cosmological constant seems to play a role in refraining the
effect of the coupling parameter onto the critical charge.

4.2 The blow up of the curvature

It has been shown in [7] that 8 < 1 for all the modes in
the case of the minimal coupling, so the curvature blows up
although the C’H is extendible. Note that our scalar is coupled
with the curvature, thus it is interesting to ask whether the
curvature can cross the C’H continuously when the coupling
parameter is non-vanishing.

As such, we list the most dominant QNM data at each
angular number in Tables 3, 4 and 5 for the charge ratio
0 _ 0.9990244, where the most dominant mode is black-

Qmax
ened. As we see, B > 1 can happen to all modes when the

@ Springer
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N=0.02, A=0
054
052
B 0.50
0.48
0.46
0988 0.990 0.992 0.994 0996 0.998
Q/Qmax
N=0.02, A=1
054
052
B 0.50
0.48
0.46
0988 0.990 0.992 0.994 0996 0.998
Q/Qmax
N=0.02, A=2
054
052
B 050
0.48
0.46
0988 0.990 0992 0.994 099 0998
Q/Qmax

Fig. 2 The figures show how the different dominant modes cross
through the horizontal black line § = 0.5 in the different cou-

A=0.06, A=0
054
052
— 1=0
— =1 B o.
— =2
— I=10 0.48
0.46
0988 0990 0992 0.994 0996 0998
Q/Qmax
N=0.06, A=1
054
052
— I=0
— =1 BO.
— =2
— I=10 048
0.46
0.988 0.990 0992 0.994 0.996 0998
Q/Qmax
A=0.06, A=2
054
052
— =0
— =1 o
— 1=2
— =10 048
046
0988 0990 0992 0.994 0996 0998
Q/Qmax

pling parameters A = 0, 1, 2 when we fix the cosmological constant

Q/Qmax

Q/Qmax

Fig. 3 The variation of the critical charge ratio
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B=0.5, A=0.02

0.998

0.997

0.996

0.995

0.994

0.993

0.992

Q/Qmax

0.991
0.0

0.998

0.5

0.997 -

0.996 -

0.995

0.992 -

Q/Qmax

0.994 f
0.993

0.991
0.0

0.5

1.0 15 20
A

Omax

0.998

1=0
=1
1=2
=10

=0
1=1
1=2
1=10

N=0.14, A=0
054
— 1=0
— =1
— =2
— I=10
0.46
0.988 0.990 0.992 0.994 0.996 0.998
Q/Qmax
A=0.14, A=1
054
052
— I=0
B o. — =1
— I=2
048 — I=10
0.46
0.988 0.990 0.992 0.994 0.996 0.998
Q/Qmax
N=0.14, A=2
054
052
— I=0
B O. — =1
— 1=2
0.48 — =10
046
0.988 0.990 0.992 0.994 0.996 0.998
Q/Qmax

A =0.02,0.06, 0.14. The critical charge ratio o2 is determined by
the intersection of the black vertical line with the horizontal line

B=0.5, A=0.06

0.997 -

0.996 -

0.995

0.994 -

0.993 -

0.992

0.991
0.0

0.998

0.5 1.0 1.5 2.0

0.997 -

0.996 -

0.995

0.994 -

0.993 -

0.992 -

0.991

0.0

0.5 1.0 15 2.0

Oc_ with the increase of the coupling parameter
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Table 3 The most dominant QNMs K% at each angular number in the case of A = 0.06, ﬁ =0.9990244 for . =0, 1,2

K% r=0 A=1 A=2

[ =00 0.0 —i 0.910296 0.0 —i 1.135366 8.520377 —i 1.341330
[ =01 7.313771 —i1.777196 8.904893 — i1.452243 10.538373 —i1.319612
[ =02 12.363690 — i1.731134 13.289741 — i1.605510 14.250843 — i1.490133
=03 17.378690 — i1.718803 18.036803 — i1.655218 18.706578 — i1.592246
[ =04 22381133 —i1.713772 22.892211 — i1.675494 23.408555 —i1.637223
[ =05 27.377763 —i1.711241 27.795629 — i1.685680 28.216331 — i1.660093
[ =06 32.371227 —i1.709786 32.724677 — i1.691516 33.080409 —i1.673191
[ =07 37.362790 — i1.708877 37.669058 — i1.695166 37.976397 — i1.681435
[ =08 42.353112 —i1.708271 42.623293 —i1.696914 42.894239 — i1.686921
[ =09 47.342596 — i1.707848 47.584302 — i1.699309 47.826571 — i1.690759
=10 52.331439 —i1.707537 52.549653 — i1.700606 52.769209 — i1.693527

Table 4 The most dominant QNMs K% at each angular number in the case of A = 0.10, ﬁ =0.9990244 for . =0, 1,2

@ A=0 r=1 A=2

1=00 0.0 —i 0.894804 0.0 —i 1.2941 9.490167 — i1.467466
1=01 6.883138 — i1.653291 9.2443874 — i1.429376 11.332765 —i 1.402593
1=02 11.792684 — i1.606922 13.215042 — i1.497977 14.618450 — i1.434143
1=03 16.632350 — i1.595061 17.644728 — i1.535904 18.656848 — i1.487504
1=04 21.449082 — i1.590290 22.235217 — i1.553812 23.022197 — i1.520846
1=05 26.255466 — i1.587899 26.898147 — i1.563277 27.541511 — i1.540116
1=06 31.056298 — i1.586531 31.599857 — i1.568825 32.143897 — i1.551832
1=07 35.853795 — i1.585678 36.324751 — i1.572329 36.796042 — i1.559400
=08 40.649209 — i1.585116 41.064541 — i1.574717 41.480342 — i1.564540
1=09 45.442989 — i1.584706 45.814732 — i1.576372 46.186605 — i1.568186
1=10 50.235561 — i1.584247 50.572279 — i1.577484 50.908526 — i1.570854

Table 5 The most dominant QNMs K% in the case of A = 0.14, ﬁ =0.9990244 for A =0, 1,2

o A=0 r=1 A=2

1 =00 0.0 —i 0.865473 6.692527 — i1.401811 9.562236 — i1.415554
1 =01 6.295308 — i1.445910 9.046770 —i 1.349113 11.273336 — i1.358708
1=02 10.917835 — i1.415302 12.637447 — i1.360230 14.238852 —i 1.343550
1=03 15.444360 — i1.407717 16.682366 — i1.374939 17.882357 — i1.355230
1 =04 19.940636 — i1.404689 20.906034 — i1.383618 21.855045 — i1.367681
1=05 24.423416 — i1.403178 25.214220 — i1.388650 25.996507 — i1.376473
1 =06 28.898990 — i1.402315 29.568563 — i1.391740 30.233139 — i1.382379
1=07 33.370262 — i1.401774 33.950764 — i1.393755 34.528132 — i1.386401
=08 37.838760 — i1.401415 38.351116 — i1.395128 38.861309 — i1.389234
[ =09 42.305368 — i1.401164 42.763880 — i1.396114 43.220798 — i1.391338
1=10 46.770491 — i1.401242 47.185146 — i1.396836 47.599524 — i1.393582
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Fig. 4 The contour of 8 for the most dominant mode in the space of the charge ratio Onr and coupling parameter A

coupling parameter is non-vanishing. Furthermore, in Fig. 4,
we plot the contour of 8 for the most dominant mode in the
space of the charge ratio QL and coupling parameter A. As
one can see, when the cosmological constant is small, g will
not go beyond the limit 8 = 1. When the cosmological con-
stant is increased, the region of § > 1 emerges in the near
extremal regime and the corresponding range of coupling

parameter is enlarged toward the small values.

5 Conclusions and discussions

In this paper, we consider the perturbation of the non-
minimally coupled scalar field in four dimensional RN-dS
spacetime. In particular, we have investigated the stability of
the RN-dS black hole and the SCC under such a perturbation
by applying AIM method to calculate out the QNMs. When

@ Springer

the coupling parameter is negative, there exists a purely imag-
inary unstable mode, indicating the instability of the black
hole under consideration. When the coupling parameter is
non-negative, such an instability disappears. On the other
hand, with the increase of the non-negative coupling param-
eter, the violation of the SCC occurs at a larger critical charge
ratio. Such an increase of the critical charge is nevertheless
suppressed by the increase of the cosmological constant. In
addition, we also find that different from the minimal cou-
pling perturbation, the region for 8 > 1 emerges in the near
extremal black hole for the non-minimal coupling, where the
increase of the cosmological constant can make such a region
enlarged toward a smaller value of the coupling parameter.
The existence of this region implies that the resulting curva-
ture can continuously cross the CH.

It is noticed that here our discussion on the problem of
SCC is only focused on the linear massless neutral scalar



Eur. Phys. J. C (2019) 79:891

Page 9of 11 891

perturbation. However, a more general investigation on the
problem of SCC in RN-dS spacetime still deserves further
studies. One possible extension of our work is to examine the
validity of SCC by studying the nonlinear effects of this non-
minimal coupled scalar perturbation.On the other hand, more
recently In the model that the scalar field is coupled with the
Gauss—Bonnet term [35,36], it was found that more solutions
with different types of hairy BHs via the spontaneous scalar-
ization can be constructed [37—40]. So as another model with
scalar field non-minimally coupled to dS spacetime, study-
ing the strong cosmic censorship for those scalarized hairy
black holes could be another future direction.
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A A brief introduction of AIM

We calculate the QNM frequency w numerically by using
the asymptotic iteration method (AIM) [41]. As such, we
introduce a new variable & = % Rewrite ¢ (r) in terms of the
new variable & as follows

¢(&) = (E+—$)72%($—Sc)_2%x(§), (A.D)

with & = r;] and & =r ! and recast Eq. (2.14) into the
form as

X" (&) =20@E) 1) +50(E) x (&) (A.2)

Differentiating above equation, it is easy to obtain the itera-
tion formula

X"V E) = 1 )X ©) + 501 )X (6, (A3)
while these iterative parameters are given by

M (&) = dy 1 (E) + 50—1(8) + Lo (E)An—1(8), (A4)
sn(§) = 5,_1(&) 4+ 50(E)hn-1(&). (A.5)

Then, the large n asymptotic aspect and the quantization con-
dition are introduced as

sn(§)  sn—1(8)
ot = LB = B,
An (E ) An—1 (é’_ )

On = SpAn—1 — Sp—1ry = 0.

(A.6)
(A7)

As shown above, the quantization condition imposes a ter-
mination of the iterations, which can read the QNMs of the
system. In the development of the AIM method, an improved
version [42] was proposed to bypass the iterative derivatives
of each steps. The parameters 1, (§) and s, (&) are expanded
around the point &g

(€)=Y ch(& — &),

(A.8)

i=0

[e¢])
sn(€) =) di(& — &)’ (A.9)

i=0
while the expansion coefficients are given by

i
@ =G+ Dt +di +> el (A.10)
k=0
i
diE) = (i + D+ dici k. (A11)
k=0

In these terms, the quantization condition is reread as
d°0  —d’ 0 =o. (A.12)

Though the AIM has widely employed to compute quasi-
normal modes of black holes, it is still necessary to check its
numerical accuracy in our model.To this end, we compare
the results between the AIM and spectral method [43]. The

Table 6 The QNMs for AIM method and Spectral method when M = 1, A = 0.14, O/ Qnax = 0.99,n = 0,1 = 0. We also calculate the relative
deviation of the AIM method with the iteration N = 60 relative to spectral method

Coupling constant AIM method

Spectral method Relative deviation

A=0 0.309502 — i0.522089
A=0.5 1.085767 — i0.327964
A=1 1.561967 — i0.33067
A=15 1.925699 —i0.33257

0.309502 —i0.522088
1.085767 — i0.327964
1.561967 —i0.33067
1.925699 —i0.33257

(1.2x107%,5.5 x 1077)
(2.6 x 1072,5.7 x 107%)
(34 x1072,1.2 x 1079)
(8.7 x1072,7.4 x 107%)
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output for samples of model parameters is shown in Table
6, the data of the two methods are almost consistent with
six decimal places. Besides, we analyze the relative devia-
tion of AIM with the iteration N = 60 to spectral method,
which ensures that our computation via AIM are precise and
reliable enough.
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