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Abstract A number of recent observations have suggested
that the Einstein’s theory of general relativity may not be
the ultimate theory of gravity. The f (R) gravity model with
R being the scalar curvature turns out to be one of the best
bet to surpass the general relativity which explains a num-
ber of phenomena where Einstein’s theory of gravity fails.
In the f (R) gravity, behaviour of the spacetime is modi-
fied as compared to that of given by the Einstein’s theory
of general relativity. This theory has already been explored
for understanding various compact objects such as neutron
stars, white dwarfs etc. and also describing evolution of the
universe. Although researchers have already found the vac-
uum spacetime solutions for the f (R) gravity, yet there is a
caveat that the metric does have some diverging terms and
hence these solutions are not asymptotically flat. We show
that it is possible to have asymptotically flat spherically sym-
metric vacuum solution for the f (R) gravity, which is dif-
ferent from the Schwarzschild solution. We use this solution
for explaining various bound orbits around the black hole
and eventually, as an immediate application, in the spherical
accretion flow around it.

1 Introduction

As the Newtonian theory of gravity falls short to describe
various observational data, Einstein’s theory of general rel-
ativity (GR) becomes the most powerful theory to replace
the former. It is undoubtedly the most effective theory to
describe the theory of gravity. It can well explain the proper-
ties of various compact objects such as black holes, neutron
stars, white dwarfs [1]. It can also explain the various eras of
cosmological history of the universe. This theory has already
been well tested through various experiments, which Newto-
nian theory cannot explain, such as deflection of light rays,
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gravitational redshift, the perihelion precession of Mercury
etc. Recently it has again been confirmed through detection
of gravitational wave generated from the mergers of binary
black holes and neutron stars [2].

Although GR is one of the most efficient and powerful
theories, a number of recent observations have suggested
that it may fall short in very high density regions [3–5].
For example, the observations of peculiar type Ia super-
novae (SNeIa) either with extremely high luminosity or with
extremely low luminosity, which were inferred to be respec-
tively originating from white dwarfs of super-Chandrasekhar
limiting mass as high as 2.8M� [6,7] or from white dwarfs
of sub-Chandrasekhar limiting mass as low as 0.5M� [8–
13]. In both the scenarios, there is a clear indication of
violation of the Chandrasekhar mass-limit. Chandrasekhar
mass-limit is the maximum possible mass of white dwarfs
(currently accepted value ∼ 1.4M� for non-rotating, non-
magnetized, carbon-oxygen white dwarfs [14]) above which
the balance due to the outward force of degenerate electron
gas and the inward force of gravitational pull, no longer
sustains, resulting in producing SNeIa. Similarly, a num-
ber of neutron stars observed with mass much larger than
2M� [15,16] are argued to be induced by modified Einstein’s
gravity [17,18]. Moreover, GR cannot explain the era when
the size of the universe was smaller than Planck’s length.
All these observations/inferences suggest that GR may not
be the ultimate theory of gravity. Starobinsky was the first
who overcame some of these shortcomings in cosmology
by means of the modified theory of general relativity [19].
He used the f (R) gravity model, with R being the scalar
curvature, to explore some important problems in cosmol-
ogy. Eventually, a plenty of different models have been pro-
posed to explain various other aspects of observations in
astrophysics [20]. Capozziello and his collaborators showed
that by means of Starobinsky’s f (R) gravity and its higher
order corrections, the problem of massive neutron stars can
easily be explained [18,21–24]. Similarly, Mukhopadhyay
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and his collaborators also showed that these models can also
explain both the classes of the white dwarfs, viz. sub- and
super-Chandrasekhar limiting mass white dwarfs which pro-
duce the peculiar SNeIa [25,26]. However none of the above
explorations was for the vacuum solution.

The vacuum solution of f (R) gravity is an interesting
problem and the solutions for a static, spherically symmetric
spacetime in f (R) gravity were first obtained by Multamäki
and Vilja [27]. They also showed that for a large class mod-
els, Schwarzschild-de Sitter metric is an exact solution of the
field equations. Eventually many researchers have obtained a
number of solutions for different modified theories of gravity
in various spacetime geometry. Capozziello and his collab-
orators obtained spherically symmetric vacuum solutions in
f (R) gravity using Noether symmetry [28,29]. Later, they
also obtained axially symmetric vacuum solutions in f (R)

gravity considering Noether symmetry approach [30]. Even-
tually, similar axially symmetric vacuum solutions were also
obtained in Weyl’s canonical coordinates [31]. Similarly,
spherically symmetric solutions of f (R) gravity in the pres-
ence of matter were obtained by Shojai and Shojai [32] and
these solutions describe the equilibrium configuration of a
star. Moreover, Vernieri et al. obtained anisotropic interior
solutions in the presence of Hořava gravity [33,34]. These
new solutions alter the event horizon and various important
orbits, such as marginally stable, marginally bound, pho-
ton orbits, etc., and thereby, they change the dynamics of
the particles moving around the black hole. These solutions
have later been used by the researchers to solve various
problems of accretion discs [35,36]. Nevertheless, the solu-
tions, given in these literature, have some diverging terms in
the metric components and hence they never reduce to the
Schwarzschild metric and thereby to the Minkowski metric
at the asymptotic flat limit. This asymptotic flatness is how-
ever extremely important in the context of physical problem,
e.g. the accretion disc, as a disc extends to a very large region
around the compact object and, at the larger radius, no physics
should be violated as given by the Schwarzschild/Minkowski
metric. In other words, they should pass the solar system tests.
Moreover, many of these models assume constant scalar cur-
vature, R = R0 throughout, which is again questionable as
for the Schwarzschild metric, R = 0, and this needs to be sat-
isfied at the asymptotic flat limit. In this paper, we show that
the solution for f (R) gravity in vacuum, and hence for black
holes, can be obtained which behaves as the Schwarzschild/
Minkowski metric at asymptotic limit and hence this solution
can be used in accretion physics effectively.

The paper is organized as follows. In Sect. 2, we briefly
discuss the basic equations of the f (R) gravity, and following
in Sect. 3, we discuss the possible vacuum solution of these
equations. In Sect. 4, we discuss the behaviour of spacetime
obtained for this vacuum solution. We also illustrate various
marginal orbits such as marginally stable, marginally bound,

photon orbits etc., in case of the f (R) gravity and, eventu-
ally, in Sect. 5, we use this solution to explain the spherical
accretion flow. At last, we end with conclusions in Sect. 6.

2 Basic equations in f (R) gravity

Einstein-Hilbert action provides the field equation in gen-
eral relativity. With the metric signature (+,−,−,−) in 4
dimensions, it is given by [37]

S =
∫ [ c4

16πG
R + LM

]√−gd4x, (1)

where c is the speed of light, G the Newton’s gravita-
tional constant, LM the Lagrangian of the matter field and
g = det(gμν) is the determinant of the metric gμν . Vary-
ing this action with respect to gμν and equating to zero with
appropriate boundary conditions, we obtain the Einstein’s
field equation for general relativity, which is given by

Gμν = Rμν − R

2
gμν = 8πG

c4 Tμν, (2)

where Tμν is the energy-momentum tensor of the matter field.
In the case of f (R) gravity, the Ricci scalar R is replaced

by f (R) in the Einstein-Hilbert action of Eq. (1) resulting
in the modified Einstein-Hilbert action, which is given by
[38,39]

S =
∫ [ c4

16πG
f (R) + LM

]√−gd4x . (3)

Now varying this action with respective to gμν , with appro-
priate boundary conditions, we have the modified Einstein
equation, which is given by

F(R)Gμν + 1

2
gμν[RF(R) − f (R)]

− (∇μ∇ν − gμν�)F(R) = 8πG

c4 Tμν,

(4)

where

F(R) = d f (R)

dR
, (5)

� is the d’Alembertian operator given by � = ∇μ∇μ and ∇μ

is the covariant derivative. For f (R) = R, Eq. (4) reduces
to the Einstein field equation given in Eq. (2). For vacuum
solution, Tμν = 0, which reduces Eq. (4) to

F(R)Gμν + 1

2
gμν[RF(R) − f (R)]

−(∇μ∇ν − gμν�)F(R) = 0. (6)

The trace of this equation is given by

RF(R) − 2 f (R) + 3�F(R) = 0. (7)
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By substituting f (R) from this equation in the Eq. (6), we
have

FRμν − ∇μ∇νF = 1

4
gμν(RF − �F). (8)

This is the equation which is further used for obtaining the
solution in Sect. 3.

3 Solution for vacuum spacetime

We are interested in a spherically symmetric, time indepen-
dent vacuum solution for the above-mentioned modified Ein-
stein’s equation. To obtain that let us choose the spherically
symmetric metric gμν = diag(s(r),−p(r),−r2,−r2 sin2 θ),
where s, p are the functions of the radial co-ordinate r alone.
Substituting this metric in the Eq. (8) and performing some
manipulation, we have [27]

2
X ′

X
+ r

F ′

F

X ′

X
− 2r

F ′′

F
= 0 (9)

and

− 4s + 4X − 4rs
F ′

F
+ 2r2s′ F ′

F
+ 2rs

X ′

X

− r2s′ X ′

X
+ 2r2s′′ = 0, (10)

where X (r) = p(r)s(r) and ‘prime’ denotes derivative with
respect to r . Let us further assume F(r) = 1+B/r , such that
as r → ∞, F(r) → 1, which is the case for GR. Substituting
this in the Eq. (9) and solving for X (r), we obtain

X (r) = C0r4

(B + 2r)4 , (11)

where C0 is the integration constant. As argued before, the
solution has to be asymptotically flat, i.e. as r → ∞, s(r) →
1 and p(r) → 1. Hence X (r) → 1 as r → ∞, which implies
that C0 = 16. Therefore

X (r) = 16r4

(B + 2r)4 . (12)

It is evident that for B = 0, F(r) = 1 and X (r) = 1.
Substituting X (r) and F(r) in the Eq. (10) and solving for
s(r) along-with expanding it in the power series of r , for
B 	= 0, we have

s(r) = −16 + 2BC1 + 32 log 2 + (BC2 + 8)iπ

2B2 r2 + 1

+ B(−24 + BC2)

24r
+ B2 − 1

16 B
3C2

r2

+−B3 + 11
160 B

4C2

r3

+188B4 − 13B5C2

192r4 + . . . , (13)

where C1 and C2 are the integration constants obtained by
solving the second order differential Eq. (10). As the metric
needs to behave as the Schwarzschild metric at large distance,
we require the coefficient of r2 to be zero and the coefficient
of 1/r to be −2, which gives

C2 = 24(B − 2)

B2

and C1 = −8
B(−1 + log 4) + (−3 + 2B)iπ

B2 .

Therefore, from the Eq. (13), the temporal component of the
metric is given by

gtt = s(r) = 1 − 2

r
− B(−6 + B)

2r2 + B2(−66 + 13B)

20r3

− B3(−156 + 31B)

48r4 + 3B4(−57 + 11B)

56r5

− B5(−360 + 67B)

128r6 + · · · (14)

and hence the radial component of the metric is given by
grr = −p(r) = −X (r)/s(r). Moreover, the Ricci scalar or
scalar curvature R is given by

R = 3B(−2 + B)

r4 − 3B2(−12 + B)

10r5
+ B3(−51 + 8B)

10r6

− B4(−1776 + 293B)

280r7 + 9B5(−944 + 157B)

1120r8

− B6(−3968 + 661B)

448r9 + · · · . (15)

Since R has to be positive so that gravity has its usual prop-
erty, i.e. it is guarantees it attractive, B < 0 guarantees it.
Hence, from Eqs. (5) and (15), f (R) is given by

f (R(r)) =
∫

F(R)dR

=
∫

F(r)
dR

dr
dr

= 3B(−2 + B)

r4 + 3B2(−4 + 7B)

10r5

+ B3(−42 + 11B)

20r6 (16)

− B4(−552 + 101B)

280r7 + · · ·
= R + K1R

5/4 + K2R
3/2 + · · ·

= R + O(R>1), (17)
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with

K1 = 12

5 × 35/4

B3/4

(B − 2)1/4 , K2 = 1

60
√

3

B3/2(B − 12)

(B − 2)3/2 .

This is the best possible way to represent f (R(r)) in terms
of R(r). In Starobinsky model, the f (R) in Einstein-Hilbert
action is considered to be R1+1, whereas here it is R1+1/4

and higher power of R. It is different from the Starobinsky
model implies that the present gravity is the higher order
correction to GR which has many astrophysical and cosmo-
logical implications, will be discussed in the next sections.

In the case of B = 0, since F(r) = X (r) = 1, solving the
Eqs. (9) and (10), we have the Schwarzschild solution, given
by

s(r) = 1 − 2

r
, p(r) = 1

1 − 2
r

(18)

along-with R = 0. The solutions for the temporal and radial
components, given by Eq. (14), along with Eq. (12), show
a clear indication of the violation of the Birkhoff’s theo-
rem which says that any vacuum solution is essentially the
Schwarzschild solution. Hence we can conclude that the
Birkhoff’s theorem is valid only in the GR spacetime and
not in the f (R) gravity regime, which was also discussed
earlier for various f (R) gravity models [40,41].

4 Various properties of the vacuum spacetime for f (R)
gravity

In this section, we discuss various physics lying with the
vacuum solutions of modified Einstein equation for f (R)

gravity. We show that the property of spacetime is same
as for the case of the Schwarzschild metric at a large dis-
tance.

4.1 Temporal and spatial components of the metric

Figure 1 shows the variations of temporal and radial com-
ponents of the metric as functions of distance r for various
values of B. Note that r is in the units of GM/c2, where
M is the mass of the black hole. From the figure, it is evi-
dent that at a large distance, all the curves merge, which
implies that all of them tend to the Schwarzschild metric
at a large distance. However, near the black hole, there is a
significant deviation from the Schwarzschild metric, which
reflects the impact of the f (R) gravity therein and its sig-
nificant effect on the radius of black hole event horizon rH .
It is also confirmed from Fig. 2, which shows the variation
of R with respect to the distance r , that at a large distance,
R approaches to zero, indicating the Schwarzschild space-
time.

(a)

(b)

Fig. 1 The variation of temporal and radial metric elements as func-
tions of distance r . All the quantities are expressed in dimensionless
units, which is considered with c = G = M = 1

Interestingly, from the divergent nature of grr (and conse-
quently gtt ’s approaching zero) at smaller radial coordinate
r in Fig. 1, it is evident that with increasing B in magni-
tude rH increases. It is also depicted in Fig. 3. It confirms
the impact of f (R) gravity on the size of black hole for the
same mass as the Schwarzschild case. In GR, the size of
rH is completely determined by M for a non-rotating black
hole. However, above fact implies that in the f (R) gravity
premise, even a non-rotating black hole radius is determined
by additional metric parameter(s), depending on the property
of f (R).

4.2 Marginally stable and bound orbits in f (R) gravity

Here we explore various orbits of a test particle motion
around the black hole. The conditions required for the
marginally stable circular orbit, marginally bound circular
orbit and photon orbit for a spherically symmetric metric of
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Fig. 2 The variation scalar curvature R as a function of r . All the
quantities are expressed in dimensionless units, which is considered
with c = G = M = 1

Fig. 3 The variation of event horizon rH as a function of B. All the
quantities are expressed in dimensionless units, which is considered
with c = G = M = 1

the form gμν = diag(e2φ(r),−e2λ(r),−r2,−r2 sin2 θ) are
respectively given by

1 − e2φ(r) − r
dφ

dr
= 0, (19)

3
dφ

dr
− 2r

(dφ

dr

)2 + r
d2φ

dr2 = 0, (20)

r
dφ

dr
− 1 = 0. (21)

Note that the common condition to obtain these equations is
the minimization of the effective potential. The other condi-
tions are the marginal stability for the marginally stable circu-
lar orbit, marginal boundness for marginally bound circular
orbit and maximization of the effective potential for the pho-
ton orbit. On the other hand, the effective potential for a mas-
sive particle is given by Vef f = gtt (1 + L2/r2), whereas for
massless particle like photon, it is given by Vef f = gtt L2/r2,
with L being the specific angular momentum of the particle.
For a massive particle, L is given by

Table 1 Various parameters of spacetime for different values of B: rH is
the event horizon, rMB the marginally bound orbit, rMS the marginally
stable orbit, LMB and LMS are their corresponding specific angular
momenta and rph is the photon orbit. All the values are in dimensionless
unit considering c = G = M = 1

B rH rMB rMS rph LMB LMS

GR 2.00 4.00 6.00 3.00 4.00 3.46

−0.1 2.15 4.30 6.45 3.20 4.15 3.61

−0.2 2.30 4.60 6.90 3.40 4.29 3.75

−0.5 2.74 5.52 8.28 3.98 4.71 4.15

−1.0 3.47 7.07 10.64 4.94 5.37 4.78

−1.5 4.18 8.66 13.08 5.89 5.99 5.37

L =
√

r3φ′(r)
1 − rφ′(r)

, (22)

and hence the total specific energy is given by

E =
√

1 + L2

r2 e
φ(r) = eφ(r)

√
1 − rφ′(r)

. (23)

Here for convenience, we assume c = G = M = 1. Table 1
shows various marginal orbits for different values of B and
Fig. 4 shows Vef f for marginally bound and marginally stable
circular orbits for various values of B. Here GR represents
nothing but the results in the Schwarzschild spacetime. It is
interesting to note that as B increases, rH increases and, as
a result, the radii of all the marginal orbits increase.

5 Spherical accretion flow in f (R) gravity

In this section, we explore the effect of above spacetime solu-
tion in the spherical accretion flow. Bondi introduced spher-
ical accretion in the Newtonian framework in which matter
flows radially to the central object without having any angular
momentum [42]. Eventually the spherical accretion problem
was solved in the Schwarzschild spacetime [43]. We use here
similar technique to investigate the effect of f (R) gravity in
the spherical accretion flow.

Let us consider the static spherically symmetric space-
time metric as gμν = diag(−e2φ(r), e2λ(r), r2, r2 sin2 θ).
The velocity gradient equation of the flow is given by (equiv-
alent equations for the Schwarzschild geometry are given in
[43])

du

u

[
V 2 − u2

u2 + e−2λ

]
+ dr

r

[
2V 2 + r(V 2 − 1)(φ′ + λ′)

+ rλ′e−2λ

u2 + e−2λ

]
= 0, (24)
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(a)

(b)

Fig. 4 Effective potential for marginally bound and marginally stable
circular orbits. All the quantities are expressed in dimensionless unit
with c = G = M = 1

where u = dr/dt , V 2 = 4T/3(1 + 4T ) with T being the
temperature of the fluid which is defined as T ≡ P/ρ, where
P and ρ are respectively the pressure and density of the fluid.
The adiabatic equation of state is considered here, which is
given by P ∝ ργ with γ being the adiabatic index. Assuming
the fluid mostly contains hot relativistic ions, we choose γ =
4/3.

Figure 5 illustrates the accretion and wind flows for the
spherical accretion in f (R) gravity. We assume that the mat-
ter starts exhibiting spherical accretion flow, once the Kep-
lerian disc flow ends. In other words, we assume that as the
matter comes close enough to the black hole, it loses all its
angular momentum, resulting in radial fall to the black hole.
Of course, in reality, such flow will be advective accretion
flow with non-zero angular momentum. However, here in the
first approximation, as an immediate simpler application of
our f (R) gravity solution, we assume the flow to be spher-
ical. The three panels, shown in Fig. 5, correspond to three
different temperatures (Tout ) at which matter starts behaving
like the spherical accretion flow. Note that, the sonic point
radius remains the same as for the case of Schwarzschild
spacetime and it is located very far from the black hole, if

(a)

(c)

(b)

Fig. 5 Spherical accretion flow in modified gravity: red solid line cor-
responds to the Schwarzschild spacetime and green dashed line corre-
sponds to the f (R) gravity with B = −1. The top panel is obtained
considering outside temperature 104 K, middle panel is for 108 K and
the bottom panel corresponds to 1011 K. All the quantities are expressed
in dimensionless unit with c = G = M = 1

Tout is very small. However, since the event horizon shifts in
the case of the modified gravity, both the accretion and wind
branches are deviated from those in the case of Schwarzschild
spacetime, close to the central object, particularly visible for
higher Tout . At r = rH , the velocity of accreting particle
reaches the velocity of the light, whereas the wind particle
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has a very low speed near rH and it starts gaining speed as the
radius increases. On the other hand, if Tout is large enough,
the sonic point corresponding to the Schwarzschild space-
time and that for the f (R) gravity differ significantly. This
model is of course a very simplistic model, but we use it just
to illustrate the imprint of the modified gravity. It however
seems that the f (R) gravity does not have significant practi-
cal effects on the spherical accretion flow, which means that
Einstein’s gravity is sufficient in order to explain the spher-
ical accretion flow. A better exploration in a realistic model
containing angular momentum profile, e.g. accretion discs,
will be carried out in future.

6 Conclusion

In the literature, it has already been discussed about the
behaviour of vacuum spacetime as well as various marginal
orbits in the context of f (R) gravity. However, the main
caveat in those models is the consideration of constant scalar
curvature R, due to which the temporal and radial compo-
nents of the metric turn out to be diverging at a large dis-
tance. In other words, the metric is not asymptotically flat.
In this paper, we have explicitly shown that we can still
obtain asymptotically flat vacuum spacetime metric in the
context of f (R) gravity of form R + O(R>1). The partic-
ular form of additional term O(R>1) plays the main role
in determining properties of spacetime deviated from GR,
while R corresponds to the GR effect. Nevertheless, this
form of f (R) is similar to those proposed by Starobin-
sky (O(R>1) = R2) [19] in cosmology to explain accel-
eration expansion of the universe, ourselves earlier (e.g.,
O(R>1) = αR2(1−γ R) and αR2e−γ R) [26] in astrophysics
to explain peculiar over- and under-luminous SNeIa, and oth-
ers (e.g., O(R>1) = γ R2 + βR3) [21] in various astro-
physical and cosmological contexts. There are many prop-
erties associated with black hole sources, e.g. quasi-period
oscillation, whose origins remain (completely) unresolved in
GR. The presently proposed asymptotically flat f (R) gravity
might be very useful to enlighten these issues.

It is achieved on consideration of varying scalar curva-
ture which vanishes in the limit r → ∞, giving rise to the
asymptotic flat spacetime metric. Hence, the effect of mod-
ified gravity reduces to that of general relativity and even-
tually of the Minkowski spacetime, far away from the black
hole. We have also argued that this is a clear indication of the
violation of Birkhoff’s theorem in presence of the modified
gravity.

To investigate the effect of this spacetime, we have first
explored the properties of various marginal orbits. We have
shown that the radii of various orbits as well as the event
horizon shift in modified gravity premise. This deviation is
prominent when the deviation in the f (R) is more compared

to that of general relativity. We have further investigated the
effect of f (R) gravity in the spherical accretion flow. Here
also, we have found that the physics of the spherical accretion
remains same as that for the case of general relativity at a very
large distance from the black hole. However, since the event
horizon shifts in the case of modified gravity, the properties
of the accretion as well as wind flows change close to the
central object, although the change is not very significant for
practical purpose. To summarize, we argue that it is possible
to obtain physically viable vacuum solution in the case of
f (R) gravity, which can be used for further applications in
astrophysics.
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