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Abstract It is investigated the gravitational waves phenom-
ena in the geometric scalar theory of gravity (GSG), a class of
theories such that gravity is described by a single scalar field.
The associated physical metric describing the spacetime is
constructed from a disformal transformation of Minkowski
geometry. In this theory, a weak field approximation gives
rise to a description similar to that one obtained in gen-
eral relativity, with the gravitational waves propagating at
the same speed as the light, although they have a character-
istic longitudinal polarization mode, besides others modes
that are observer dependent. We also analyze the energy car-
ried by the gravitational waves as well as how their emission
affects the orbital period of a binary system. Observational
data coming from Hulse and Taylor binary pulsar is then used
to constraint the theory parameter.

1 Introduction

Although general relativity (GR) has been a very successful
gravitational theory during the last century, many proposals
for modification of Einstein original formulation appeared in
the literature over the past decades. Most of these ideas come
up within the cosmological scenario, where GR only works
if unknown components, like dark matter or dark energy,
are introduced. Such alternative descriptions are basically
variations of Einstein’s theory, either assuming most general
Lagrangians for the gravitational field or adding new fields
together with the metric.

Unlike those variations of GR, it was recently proposed
a theory of gravity in the realm of purely scalar theories,
introducing some crucial modifications from the previous
attempts that took place before the emergence of GR [1]. It
represents the gravitational field with a single scalar function
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Φ, that obeys a non-linear dynamics.1 Interaction with matter
fields is given only trough a minimal coupling to the physical
metric qμν , constructed from a disformal transformation of
a auxiliary and flat metric γμν , namely

qμν = A(Φ,w) γμν + B(Φ,w)

w
∂μΦ ∂νΦ , (1)

with,

w = γ μν∂μΦ ∂νΦ , (2)

and the short notation ∂μ = ∂/∂xμ. Disformal transforma-
tions in gravity has been discussed early by Bekenstein [2]
and the role of disformal couplings in gravitational theories
have attracted interest recently, as in Refs. [3–5]. Moreover,
general ways to deform the spacetime has been considered to
enlighten many gravitational problems and metric disforma-
tions are also embedded in this class of transformations (see
[6] and the references therein). In this sense, the structure in
(1) can be seen as a natural way to introduce a general metric
structure through a scalar field.

A complete theory can only be set if one defines the
functions A and B, and also the Lagrangian of the scalar
field. Then, a field equation, characterizing the theory, can
be derived. We refer to this class of gravitational theories as
geometric scalar gravity (GSG). In early communications on
GSG, it was explored a specific set of those functions defining
the theory, which shows that it is possible to go further in rep-
resenting the gravitational field as a single scalar, giving real-
istic descriptions of the solar system and cosmology [1,7].
An analysis of GSG within the so called parametrized post-
Newtonian formalism was also made and, although the theory
is not covered by the formalism, a limited situation indicate

1 The non-linearity of the field must be specifically in the kinetic term
of the Lagrangian, namely w. Thus, the Lagrangian density of the scalar
field can be described as L = F1(Φ,w)w + F2(Φ), with the condition
that F1 can not be a constant.
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a good agreement with the observations [8]. Intending to
improve the understanding of how GSG deals with gravi-
tational interaction, the present work develops the theoret-
ical description and characterization of gravitational waves
(GW).

The direct detections of GW by LIGO and Virgo collab-
orations initiated a new era of testing gravitational theories.
It enables to construct constraints over a series of theoretical
mechanisms associated with GW’s physics, but crucial point
relies on the observed waveform and how a theory can repro-
duce it [9]. Notwithstanding, this is not the scope of this work.
We are mainly focused in analyzing the GW fundamentals on
the perspective of GSG, studying their propagation, polariza-
tion modes and defining an appropriated tensor to describe
the energy and momentum carried by the waves. The velocity
of propagation of GW has been measured with good preci-
sion indeed, but this data does not constraint GSG once the
gravitational signal travels in vacuum with the same speed
of light, as it will be shown later. However, the theory can
be constrained by observational data from pulsars through
its prediction for the orbital variation of a binary system that
should be caused by the loss of energy due to gravitational
radiation.

The paper is organized as follows. In Sect. 2 is presented a
brief overview of GSG in order to introduce to the reader the
main features of this theory. The following section describes
the theory’s weak field approximation. In Sect. 4 the study of
the propagation and vibration modes associated to gravita-
tional waves is made. The definition of a energy-momentum
tensor for the linear waves is treated in Sect. 5. Generation
of waves, including the computation of the orbital variation
of binary systems due to the emission of GW, is discussed in
Sect. 6 and the last section presents our concluding remarks.
Also, two appendices were introduced in order to comple-
ment the middle steps of calculations present in Sect. 6.

2 Overview of geometric scalar gravity

GSG is a class of gravitational theories which identifies the
gravitational field to a single real scalar function Φ, satisfying
a non-linear dynamic described by the action

SΦ =
∫ √−γ L(Φ,w)d4x , (3)

where γ is the determinant of the Minkowski metric and
w is defined in Eq. (2). Metric signature convention is
(+,−,−,−). The physical metric is constructed from the
gravitational field according to the expression (1) and its con-
travariant form is obtained from the definition of an inverse

metric, qμαqαν = δ
μ
ν , namely,

qμν = α(Φ,w) γ μν + β(Φ,w)

w
γ μαγ νβ∂αΦ∂βΦ , (4)

where,

A = 1

α
and B = − β

α(α + β)
. (5)

In order to describe the interaction of the scalar gravita-
tional field with matter, GSG makes the fundamental hypoth-
esis, according to Einstein’s proposal, that gravity is a geo-
metric phenomenon. Thus, it is assumed that the interaction
with Φ is given only through a minimal coupling with the
gravitational metric qμν . The matter action in GSG is then
described as

Sm =
∫ √−q Lm d4x . (6)

A complete theory should specify the metric’s functions
A and B together with the Lagrangian of the scalar field L ,
in order to be possible to derive its field equation. Up to now
in the literature, it has been explored the case in which the
following choice is made,

α = e−2Φ , (7)

β = (α − 1)(α − 9)

4
, (8)

L = V (Φ)w , (9)

with

V = (α − 3)2

4α3 . (10)

Using the standard definition of the energy momentum tensor
in terms of a metric structure, we set

Tμν ≡ 2√−q

δ(
√−q Lm)

δqμν
. (11)

Then, the dynamics of the scalar field is described by the
equation

√
V �Φ = κ χ , (12)

where the � indicates the d’Alembertian operator con-
structed with the physical metric qμν , κ is a coupling constant
and the source term χ is provided by

χ = − 1

2

[
T +

(
2 − V ′

2V

)
E + Cλ

;λ
]

, (13)
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where ‘ ; ’ indicates a covariant derivative with respect to the
physical metric, V ′ = dV/dΦ and

T = Tμνqμν , (14)

E = Tμν ∂μΦ ∂νΦ

Ω
, (15)

Cλ = β

αΩ

(
T λμ − E qλμ

)
∂μΦ , (16)

Ω = qμν∂μΦ∂νΦ. (17)

The choices made in (7)–(9) are such that the resulting the-
ory satisfies the Newtonian limit, the classical gravitational
tests and the spherically symmetric vacuum solution is given
by the Schwarzschild geometry. Moreover, in the absence of
any matter fields, Φ is a free wave propagating in the metric
qμν [10]. More details concerning the fundamentals of GSG
and how this specific model can successfully describe the
solar system physics and cosmology can be found in [1,7,8].
In the present work we will consider only this model. To work
with different functions α, β and L , all the process of con-
structing the field equation of the theory has to be redone, as
well as it should be checked the feasibility of the new theory.

3 Weak field approximation

To discuss linear gravitational waves we should consider
an isolated system, distant from any source, embedded in a
homogenous and isotropic universe. At a particular moment
of time and specific distance from the isolated system, the
background metric can be transformed to assume a flat
Minkowskian form, resulting in a geometric structure given
by,

qμν = ημν + hμν , (18)

where ημν = diag(1,−1,−1,−1) and hμν represents the
first order perturbations.

In this sense, the weak-field approximation of GSG con-
sists in a small deviation of a cosmological solution φ0. Thus,
we set

Φ ≈ φ0 + φ , with |φ| � 1. (19)

In order to construct the geometric structure as in (18), for
simplicity, we start with a coordinate system x̃μ, where the
auxiliary metric γμν assumes the usual diagonal form indi-
cated as ημν , and we expand the kinetic term and the metric
coefficients as follows,

w ≈ w0 + w1 , (20)

w0 = (∂0̃φ0)
2 , w1 = 2(∂0̃φ0)(∂0̃φ) (21)

α ≈ α0(1 − 2φ), β ≈ β0 − α0(α0 − 5) φ . (22)

The subindex “0” identifies quantities constructed with φ0

according to basic expressions given in the previous section.
The gravitational metric takes the form

q̃ μν = q̃ μν
0 − h̃μν , (23)

where,

q̃ 00
0 = (α0 − 3)2

4
, q̃ 0i

0 = 0 , q̃ i j
0 = −α0δ

i j . (24)

and,

h̃00 = α0(α0−3)φ, h̃0i = β0√
w0

∂ j̃φ δ j i , h̃i j = − 2α0φδi j .

(25)

With the following coordinate transformation

x0 = 2x̃0

3 − α0
, xi = x̃ i√

α0
, (26)

the desired structure is achieved,

qμν = ημν − hμν , (27)

where

h00 = 4h̃00

(α0 − 3)2 , h0i = 2h̃0i

√
α0(3 − α0)

, hi j = h̃i j

α0
.

(28)

In this new coordinate system, x0 is equivalente to the cos-
mological time and ∂0φ0 = H0 (in units where c = 1), where
H0 is the Hubble parameter (please see [7] for more details
on GSG cosmology).2 Then, the perturbed metric becomes,

h00 = 4α0

α0 − 3
φ , h0i = β0

α0H0
∂kφδki , hi j = − 2φ δi j .

(29)

The corresponding covariant expression for (27) is
obtained from the definition qμαqαν = δ

μ
ν . It reads

qμν = ημν + hμν , (30)

where,

hμν = ημαηνβ hαβ , (31)

2 The index 0 in the Hubble parameter is used to indicate a background
quantity.
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Equations (27) and (30) shows that in the weak field limit the
indices are lowered and raised by the Minkowski background
metric.

Note that, the perturbed metric (29) can also be derived
from the expansion of the exact form given in (4) starting
already with the coordinates xμ, where the auxiliary metric
γ μν takes the form

γ μν =
(

1

α0 + β0
,−δi j

α0

)
. (32)

The resulting covariant expression can be written as

hμν = −2α0φ γ μν + γ μαγ νβ

[
β0

w0
H(α∂β)φ

+
(

β1

w0
− b0w1

w2
0

)
HαHβ

]
, (33)

with

Hμ = ∂μφ0 = (H0, 0, 0, 0) and β1 = α0(α0 − 5)φ.

(34)

In reference [8] a distinct weak field approximation was
made where the scalar field was expanded around a vanishing
background value. Although consistent, that scheme is not
suitable for the description of GW, due to a term ∂μφ∂νφ/w

that is present in hμν . Oscillatory solutions would then lead
to a singular behavior of the metric, evidencing that the back-
ground cosmological scenario can not be neglected.

3.1 The cosmological backgroung

Before proceeding in the analysis of GW in GSG, let us
clarify important points of the cosmological background
described by φ0. To a more detailed discussion about the cos-
mology in GSG we refer to the reader the analysis present
in [7]. By considering the scalar field as a function of coor-
dinate x̃0 only, the metric arising is of Friedman-Robertson-
Walker type with a flat spatial section. The cosmological
time is achieved by the time transformation given by the first
expression in (26) and the scale factor, said a0(x0), is related
with the φ0 as follows,

a2
0 = 1

α0
. (35)

The dynamical equation (12) contains two regimes clas-
sified by the term

√
V0 ∝ |α0 −3|, a consequence of the par-

ticular choice of the scalar field Lagrangian. The case where
α0 < 3 (a0 > 1/

√
3), with a barotropic fluid as source,

describes a eternal universe without singularities. The uni-
verse has a bouncing, followed by a early accelerated phase

and a final decelerated expansion. The problematic value
α0 = 3 is unattainable, in other words, the minimal value
of the scale factor a0 is always greater than 1/

√
3. A distinct

behavior occurs for the solutions with barotropic fluids in
the region where α0 > 3 (a0 < 1/

√
3); the universe starts

from a initial singularity, it expands to a certain maximum
value of the scale factor, smaller than 1/

√
3, and then returns

to a final singular point. This two regions are then disjoint
classes of cosmological solutions. In the present work, we
will consider only the case where

α0 < 3, (36)

since it represents a class of more realistic descriptions of the
universe.

4 Propagation and polarization of gravitational waves

At the level of the dynamical equation we can consider φ0 as
a constant, since its timescale variation is longer compared
to the dynamical timescale for the local system. Expanding
the left hand side of Eq. (12) and neglecting second order
terms, one has,

√
V �Φ ≈ √

V0 �ηφ , (37)

where we refer to Minkowskian d’Alembertian operator as
�η . Thus, without the presence of sources, one has

�ηφ = 0 . (38)

The perturbed scalar field has oscillatory solutions which
propagates at the speed of light. Once the metric is con-
structed with the field and its first derivatives, such solutions
yields oscillations as GW in the geometric structure of the
spacetime. Moreover, it is verified that

�ηhμν = 0 , (39)

thus gravitational waves in GSG does propagate with the
speed of light, showing no deviation with respect to GR in
this aspect. Consequently, GSG is also supported by the com-
bined data of the GW event GW170817 and the gamma-ray
burst GRB 170817A, which constraint the velocity of prop-
agation of GW to be the same as the speed of light within
deviations of order 10−15 [11].

4.1 Polarization states

The most general (weak) gravitational wave that any metric
theory of gravity is able to predict can contain six modes
of polarization. Considering plane null waves propagating in
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a given direction, these modes are related to tetrad compo-
nents of the irreducible parts of the Riemann tensor, or the
Newmann–Penrose quantities (NPQ): Ψ2, Ψ3, Ψ4 and Φ22

(Ψ3 and Ψ4 are complex quantities and each one represents
two modes of polarization) [12]. The others NPQ are neg-
ligible by the weak field approximation, or are described in
terms of these four ones.

The linearized dynamical equations of a gravitational the-
ory can automatically vanish some of these NPQ, specifying
then the predicted number of polarization states. For instance,
in GR only Ψ4 is not identically zero, which characterizes two
transversal polarization modes, called “+” and “×” states.
In general, the six polarization modes can not be specified
in a observer-independent way because of their behavior
under Lorentz transformations. Nevertheless, if we restrict
our attention to a set of specific observers, which agree with
the GW on the frequency and on the direction of propaga-
tion, then is possible to make some observer-invariant state-
ments about the NPQ. Such assertions are on the basis of the
so called E(2)-classification of gravitational theories, intro-
duced in Ref. [13]:

– Class II6 If Ψ2 �= 0 , all the standard observers agree with
the same nonzero Ψ2 mode, but the presence or absence
of the other modes is observer-dependent.

– Class III5 If Ψ2 = 0 and Ψ3 �= 0 , all the standard
observers measure the absence of Ψ2 and the presence
of Ψ3, but the presence or absence of all other modes is
observer dependent.

– Class N3 If Ψ2 = Ψ3 = 0 , Ψ4 �= 0 and Φ22 �= 0 , this
configuration is independent of observer.

– Class N2 If Ψ2 = Ψ3 = Ψ2 = 0 and Ψ4 �= 0 , this
configuration is independent of observer.

– ClassO1 If Ψ2 = Ψ3 = Ψ4 = 0 and Φ22 �= 0 , this
configuration is independent of observer.

– ClassO0 If Ψ2 = Ψ3 = Ψ4 = Φ22 = 0 , this configura-
tion is independent of observer.

The E(2)-classification of GSG is easily obtained by
noticing that the Ricci scalar is not identically null. Actu-
ally, from the weak field approximation, one has

R ≈ ∂μ∂νh
μν − �ηh , (40)

with h = ημνhμν and, using relations (29) together with
linearized vacuum field Eq. (38), it is verified that,

R ≈ 2(α0 + 3) ∂2
t φ

(α0 − 3)c2 − 2β0 ∂3
t φ

α0H0c2 . (41)

This result implies Ψ2 �= 0 (cf. Eq. (A4) of [13]) and GSG
is from the class II6. This Ψ2 represents a pure longitudinal
polarization state (see Fig. 1) that is always present in the

Fig. 1 Diagram for the effects of a Ψ2-polarized wave when passing
through a ring of test particles. The black arrow in the upper right
indicates the direction of propagation of the wave

GW, although other modes can be detected depending on the
observer.

GSG belongs to the most general class of theories with
respect to the E(2)-classification, where is always possible
to find an observer that measures all six gravitational wave
modes. The authors in [13] already pointed out the fact that
the number of polarization states predicted by a gravitational
theory does not necessarily match the numbers of degrees of
freedom inside the theory. They also give an example of this
with the so called stratified theories. Other examples of the-
ories also classified as II6 is the well know f (R) extensions
of general relativity [14–16].

Thus, the description of GW by GSG carries a substancial
distinction from GR, as it predicts the presence of a longitu-
dinal polarization mode. Up to now, the recent detections of
GW can not exclude the existence of any one of the six modes
of polarization [17,18]. But in the future, with the appropri-
ated network of detectors, with different orientations, this
information can be used to restrict gravitational theories.

5 Energy of the gravitational wave

In order to associate an energy-momentum tensor to the grav-
itational waves in GSG we follow a standard procedure, iden-
tifying the relation between the second and the first order
perturbations of the gravitational field [19]. First note that,
without approximations, the following relation holds,

�Φ = α3V

(
�ηΦ + dV

dΦ

w

2V

)
. (42)

Thus, taking φ ≈ φ(1) + φ(2), where the subindexes indicates
the order, and computing the second order vacuum field equa-
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tion, it yields

�ηφ(2) = − 9 − α0

3 − α0
w(2), (43)

with w(2) = ημν∂μφ(1)∂νφ(1). The right hand side of this equa-
tion contains only the derivatives of the first order field φ(1),
thus it can be interpreted as the source for the second order
field generated by the linear waves.

From the general structure of the field equation of GSG,
the influence of any energy-momentum tensor enters in the
equation of motion uniquely through the quantity χ [cf. Eq.
(13)]. Thus, the energy-momentum tensor of the GW, said
Θμν , must be consistent with,

χ(2)(Θμν) = − 9 − α0

2κα
3/2
0

w(2) , (44)

where χ(2)(Θμν) means the second order approximation of
the source term calculated with the energy-momentum tensor
of the gravitational field Θμν , instead of Tμν . Therefore, we
write

√
V0 �ηφ(2) = κχ(2)(Θμν) , (45)

which has the same general structure of GSG’s field equation.
To describe the energy and momentum carried by the lin-

ear waves, the second-order approximation of Θμν must be
quadratic in the first derivatives of φ(1). This lead us to a
specific form for it,

Θ(2)μν = 1

κ

(
σw(2)ημν + λ ∂μφ(1) ∂νφ(1)

)
, (46)

with σ and λ being arbitrary constants. The condition (44)
returns the relation

σ

(
9 − 5α0

3 − α0

)
− λ

(
2α0

3 − α0

)
= 9 − α0

α
3/2
0

. (47)

Any tensor, described like in Eq. (46) and satisfying the
above relation, can be used as the energy-momentum tensor
of the linear GW in GSG. This ambiguity already appeared
in Ref. [20], where the authors show how to construct
the energy-momentum tensor of the gravitational field in
GSG, without using approximate methods. In that occa-
sion, they fixed the functions defining the energy tensor
by requiring that Θμν can be derived from the Lagrangian.
As expected, their results are consistent with the relation
above and are recovered (inside the approximation method)
if σ = 2

√
V0 and λ = −4

√
V0. In what follows we

will proceed with the generic expression for Θμν and look
for a specific example, the orbital variations in binary sys-
tems, to see how this ambiguity can influence in a observed
phenomenon.

6 Orbital variation of a binary system

This section focus on deriving an expression for the orbital
variation of a binary system, due to the emission of gravi-
tational waves, as it is predicted by GSG. In order to obtain
the energy rate emitted by the system one should consider the
influence of the source into the dynamics in the linear approx-
imation. Since the left hand side of Eq. (12) reduces to a
Minkowskian d’Alembertian when linearized [c.f. Eq.(37)],
from the method of Green functions, we immediately write
down the general solution as,

φ(t, x) = κ

4π
√
V0

∫
χL(tr , x′)
|x − x′| d3x ′ , (48)

where χL attends to the first order approximation of the
source term [cf. (13)] and tr = t − r/c, with r = |x − x′|, is
the retarded time.

By considering that the source is far away from the point
where we calculate the scalar field (R 	 r ′, where R = |x|,
and r ′ = |x′| is the typical distances between the source’s
components), it is possible to make a multipole expansion.3

Further assuming that the typical velocities of the source
components are non-relativistic, it is also possible to expand
the time dependent terms of the integrand in a Taylor series.
For our purpose here it is sufficient to take only the first term
of this expansion. Thus, one has

φ(t, x) ≈ κ

4π
√
V0R

∫
χL(tR, x′) d3x ′ , (49)

where tR = t − R/c and we have neglected terms of order
1/R2.

Most of terms in the above integration contains the scalar
field φ , explicitly. To solve them, we have to expand these
terms using the correspondent post-Newtonian approxima-
tion of the field in the near-zone region [21]. However, to
keep the final result up to order G2/c4, it is only neces-
sary the Newtonian approximation of the near-zone scalar
field, namely ΦN . By the viral theorem, we know that, for
slow motions, v2 ∼ GM/R, where v, M and R are the
typical velocity, mass and distances in the source’s compo-
nents, respectively. Thus, ΦN ∼ v2/c2, ∂0ΦN ∼ v3/c3 and
∂iΦN ∼ v2/c2 (see “Appendix A” for more details). The
energy-momentum tensor also depends on source velocities
with T 0i ∼ v/c and T i j ∼ v2/c2 . Thus, keeping terms up
to order v2/c2 (since κ ∼ v2/c2) and using the perturbed
metric expressions in (29), one gets

3 Although symbol R was previously used as the Ricci scalar in Sect.
4, we draw the reader’s attention that in this section it is indicating the
point where the gravitational field is being calculated.
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Tμνημν ≈ T 00 − T i jδi j , (50)

Tμνhμν ≈ 4α0

α0 − 3
ΦN T 00 , (51)

(
2 − V ′

2V

)
E ≈ − (3 + α0)

(3 − α0)

1

wN

(
T 00(∂0ΦN )2

+ 2T 0i∂0ΦN ∂iΦN + T i j∂iΦN ∂ jΦN

)
,

(52)

C0 ≈ − β0

α0wN

[
E ∂0ΦN

wN

+
(

1 + 9−α2
0

2α0
ΦN

)
(T 00∂0ΦN + T 0i∂iΦN )

]

(53)

The Ci
,i term does not contribute by Gauss law. Also, to

derive the above expressions we take into account that

wN ≈ ηi j∂iΦN ∂ jΦN ∼ v4/c4. (54)

Specifying the source for the case of a binary system, we
have

T 00 =
∑
n

mnc
2
(

1 + v2
n

2c2 + ΦN

)
δ3(x − xn)+O(v4/c4) ,

(55)

T 0i =
∑
n

mnc vin δ3(x − xn) + O(v3/c3) , (56)

T i j =
∑
n

mnv
i
nv

j
n δ3(x − xn) + O(v4/c4) , (57)

where summation is over the two particles of the system, i.e.
n = 1, 2. With these expressions, all the integrals in (49) can
be analytically calculated (more details in “Appendix B”) to
give

φ ≈ (α0 − 3)

2α0

G

c4R

[
X0(ṙ

2 + rr̈) + 4G
m1m2

r

+ (α0 + 3)

(α0 − 3)
Mṙ2 + Y0

G
(2rṙ4 + 3r2ṙ2r̈)

+ β0

α0 − 3

m1m2

GM2 (4r3ṙ2θ̇2 + r4θ̇2r̈ + 2r4ṙ θ̇ θ̈ )

]
+ C,

(58)

where the dot indicates a derivative with respect to retarded
time, C attends to constant terms that does not contribute
to the radiation, G is the Newtonian gravitational constant
as measured today (see “Appendix A”) and the notation was
shortened by the definitions below,

X0 ≡ m1m2

M
+ β0

α0

(m2
1 + m2

2)

M
−

(
9 − α2

0

2α0

)
M, (59)

Y0 ≡ β0

α0 − 3

(
m1m2

M2 + 8α0(m5
1 + m5

2)

m1m2M3

)
. (60)

Also, we are adopting the usual center of mass notation such
that,

r1 = m2

M
r and r2 = − m1

M
r , (61)

with r = r1 − r2 and M = m1 + m2 .
Once we are dealing with a binary system as the source

of the gravitational field, we can use the Keplerian orbital
parameters to simplify the above expression [22]. The dis-
tance between the two masses are,

r = a(1 − e2)

1 + e cos θ
, (62)

where a is the semimajor axis and e is the eccentricity of
the orbit. They are related with the total energy E and the
angular momentum L by

a = −G m1m2

2E
, e2 = 1 + 2

EL2

G2

M

(m1m2)3 , (63)

with E < 0. The fact that L = (m1m2/M)r2θ̇ , allow us to
derive the following relation,

θ̇ =
√

GM

a3(1 − e2)3 (1 + e cos θ)2 . (64)

Then, in (58), all time derivatives can be expressed in terms
of θ , yielding

φ ≈ (α0 − 3)G2M

2a(1 − e2)α0c4R

[ (
X0 + m1m2

M

(
4 + β0

α0 − 3

))
e cos θ

− (α0 + 3)

(α0 − 3)
Me2 cos2 θ + Y0Me3 sin3 θ

( 2e sin θ

1 + e cos θ

+ 3 cos θ
)

+ β0 m1m2

(α0 − 3)M
e2 cos2 θ(2 + e cos θ)

]
+ C,

(65)

To calculate the energy-flux that is carried off by GW we
use the gravitational energy-momentum tensor presented in
the previous section. The flux in the radial direction will be
cΘ0r thus, the energy radiated per unit time that is passing
through a sphere of radius R, is given by

dE

dt
= 2α

5/2
0 λ

(3 − α0)2

c3R2

G
φ̇2, (66)

where we have used the fact that

∂0φ = 1

c
∂tRφ and ∂iφ = − xi

cR
∂tRφ + O

(
1

R2

)
. (67)
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At this point, we go further in the approximation scheme
in order to get a more treatable expression for the rate of
energy loss. Let us consider that the background field is too
small, i.e. φ0 � 1, and take only the leading order terms. This
is realistic since it is always expected that the cosmological
influence on local systems are minimal. Expression (66) can
be then simplified, reading

dE

dt
= λG3M2

2a2(1 − e2)2c5 ( f + 4Me cos θ)2 e2 sin2 θ θ̇2 ,

(68)

where f is given by

f = 5m1m2

M
− 4M. (69)

Averaging the energy loss over an orbital period T , where

T = 2πa3/2

√
GM

, (70)

we have,

〈
dE

dt

〉
= 1

T

∫ T

0

dE

dt
dt = 1

T

∫ 2π

0

dE

dt

dθ

θ̇
(71)

The above integral is directly solved, yielding

〈
dE

dt

〉
= λ

4

G4M3

a5c5
F(m1,m2, e), (72)

with

F(m1,m2, e) ≡ e2(1 − e2)−7/2
[
f 2

+
(

f 2

4
+ 4M f + 4M2

)
e2 + 2M2e4

]
.

(73)

To finish, we derive how this loss of energy changes the
orbital period of the system. From (70), one gets that

Ṫ

T
= 3

2

〈
ȧ

a

〉
= 3 a

Gm1m2

〈
dE

dt

〉

= 3λ

4

G3M3

m1m2 a4c5
F(m1,m2, e). (74)

The result has the same proportionality with the constants G
and c, as in GR, but has a rather more involved dependence
on the masses and the eccentricity of the orbit.

Note that Eq. (74) must be negative, otherwise it would
imply that the masses are moving away from each other. In
other words, the system would be increasing their energy by

Table 1 Data from PSR 1913+16 [23] adapted to the present notation

Parameter (units) Value

e 0.6171340(4)

m1 (solar masses) 1.438(1)

m2 (solar masses) 1.390(1)

T (days) 0.32997448918(3)

Ṫ −2.398(4) × 10−12

The numbers between round brackets indicate the erros in the last digit

the emission of GW, an unrealistic situation. The function F
is positive, as it can be verified by comparison between the
term f 2 and the part involved by the round brackets multi-
plying e2 (the only part that could be negative),

f 2 +
(

f 2

4
+ 4M f + 4M2

)
= m1m2

4M2

[
32

(m2
1 + m2

2)

m1m2

+ (m2
1 + m2

2)+77m1m2

]
> 0.

Since e2 < 1 for elliptical orbits, it follows that F is always
positive. Thus to guarantee Ṫ < 0, we must have λ < 0.

We can use the data from the so called Hulse and
Taylor pulsar, PSR 1913+16, to constraint λ demand-
ing that GSG prediction is in agreement with observa-
tions. The data comes from the measurements of time-
of-arrivals during 35 years [23]. They are collected in
Table 1.

First, we rewrite Eq. (74) in a more appropriated form to
use the numerical values. Using (70), one has

Ṫ = 3λπ

2

G5/3

c5

M5/3

m1m2
F(m1,m2, e)

(
T

2π

)−5/3

. (75)

Substituting the numerical values, with the appropriated
propagation of errors, we estimate λ = −1.111 ± 0.003
and σ = 3.444 ± 0.002 [through condition (47)], constrain-
ing the parameters entering in the GW energy momentum
tensor.

It is worth to note that the orbital parameters of the binary
system are extracted from the timing pulsar observations in a
theory-independent way, but the determination of the masses
of the pulsar and its companion are model dependent [24].
The mass values in Table 1 are from GR but its usage here
is reasonable due to the satisfactory agreement of GSG in
the Solar System tests at the post-Newtonian level. How-
ever, any modification on these values will lead to a distinct
estimation of λ but not an invalidation of GSG by pulsars
data.
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7 Concluding remarks

We have presented a discussion on gravitational waves (GW)
in the context of the geometric scalar gravity (GSG), a class of
theories describing the effects of gravity as a consequence of
a modification of spacetime metric in terms of a single scalar
field. GSG overcomes the serious drawbacks present in all
previous attempts to formulate a scalar theory of gravity. Its
fundamental idea rests on the proposal that the geometrical
structure of the spacetime is described by a disformal trans-
formation of a conformal flat metric. The model analyzed
here has already showed several advances within the scalar
gravity program, featuring a good representation of the grav-
itational phenomena both in the solar system domains as well
as in cosmology.

Initially it was shown the procedure used to construct the
weak field limit in GSG considering an expansion of the
scalar field over a background cosmological solution. Within
this approximation scheme the scalar dynamical equations
assumes oscillatory solutions that represent GW in the space-
time structure propagating with light velocity, which is in
agreement with recent data from GW and gamma-ray burst
detections from the merge of a binary neutron star system.

An important distinction appears in the polarization states
of the waves, which is characterized by the presence of a
longitudinal mode in GSG. Within the E(2)-classification of
gravitational theories, GSG is of the type II6, since Ψ2 �= 0.
This is the most general class, where the detection of all the
other five polarization modes depend on the observer. The
detection of extra polarization states (or the absence of them)
shall be a decisive test to alternative theories of gravity [25].
Model-independent tools that allow to see how polarization
modes affect the response function in GW detectors has been
recently developed and must be also applied in GSG [26].
This procedure should be considered in the future.

It was also discussed how to define an energy-momentum
tensor for the linear GW, following a field theoretical point of
view. An ambiguity emerges since GSG fundamental equa-
tion includes a non trivial interaction between matter/energy
and the scalar field, leading to non-unique expression for the
approximated gravitational energy-momentum tensor. This
freedom is encoded in the constant parameter λ, which has
directly influence in the energy-loss rate when emitting grav-
itational waves. Consequently, GSG prediction for the orbital
variation of a binary system can be used to constraint the the-
ory’s parameter with observational data coming from PSR
1913+16. This numerical computation was performed using
GR mass values as a first estimation since GSG is in agree-
ment with classical tests and should not present strong devia-
tions on these values. It is then expected that, after analyzing
the so called post-Keplerian parametrization of the theory
to extract the mass values of a binary system according to

GSG,4 the theory can be more properly constrained. This
task will be addressed in a future work.
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Appendix A: The near zone scalar field

The linearized dynamical equation of GSG is a traditional
wave equation, which posses some properties depending
whether R (the point where the field is being calculated) is
larger or smaller than the typical wavelength λ of the solution
[28]. In the wave zone, where R 	 λ, the difference between
the retarded time tR and t is large, so the time derivative of
the field is comparable to the spatial derivative. This is the
region where the radiation effects are influent in determining
the metric. On the other hand, in the region where R � λ,
called near zone, the difference between the tR and t are
small and the time derivatives becomes irrelevant in front of
the spatial derivatives.

The near zone region is covered by the post-Newtonian
approximation of the gravitational field, expanding it in
orders of v/c, where v is the typical velocities of the source’s
components, and considering also slow motion. This is the
approximation required for the scalar field when integrating
the wave equation. Once the scalar field aways appears mul-
tiplied by Tμν in the integrand, we only need to know its
leading order, i.e. its Newtonian approximation. Thus, Eq.
(48) reduces to

ΦN (t, x) = − κ

4π

α
3/2
0

(3 − α0)

∫
T 00

|x − x′| d
3x ′, (A.1)

where only the zeroth-order terms is considered in the above
integral.

From (29) and (30), and using a multipole expansion, one
can easily sees that the metric assumes the form

4 A phenomenological parametrization for binary pulsars introduced
by Damour [27], where the Keplerian and post-Keplerian parameters
can be read off.
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q00 = 1 − 2GM

c2R
+ O

(
v4

c4

)
, (A.2)

where

M = 1

c2

∫
T 00d3x (A.3)

andG attends for the Newton’s gravitational constant as mea-
sured today and it is a redefinition of the theory’s coupling
constant,

G = − κ c4 α
5/2
0

2π(3 − α0)2 . (A.4)

Note that the dependence of G with the cosmological back-
ground field implies its change as a result of the evolution
of the universe. This effect has not been evident in the pre-
vious analysis of GSG’s newtonian limit since the cosmo-
logical influence was neglect in those works [1,8]. We will
not discuss its implications in the present work, but it cer-
tainly shows the importance of take into account the cos-
mological background when analyzing the Newtonian and
post-Newtonian limits of GSG.

Appendix B: More detailed calculations

In this section we aim to be more clear on the calculation of
the integrals of the quantities appearing in expressions (51),
(52) and (53). We start with the linearized conservation law,
∂μTμν = 0, from where is possible to derive the following
expressions,

d

dt

∫
T 00 d3x = 0, (B.5)

∫
T i j d3x = 1

2c2 ∂2
t

∫
T 00 xi x j d3x ≡ Ï i j

2c2 , (B.6)

where I i j represents the second momenta of mass distribu-
tion. Only the trace of the quadrupole moment enters in the
field equation and it is directly calculated,

I =
∫

(0)

T 00 r2d3x =
∑
n

mnc
2r2

n = c2r2

M
m1m2 . (B.7)

The time derivatives can be now easily calculated.
The remaining integrals does contain the newtonian limit

of the scalar field explicitly. For the specific case of binary
system as a source, the solution (A.1) becomes

ΦN (t, x) = −G

c2

(α0 − 3)

2α0

∑
p

m p

|x − xp| . (B.8)

When calculating the Newtonian gravitational potential in
the position of one of the particles of the system we have to
neglect the infinity self potential, thus

ΦN (t, xn) = −G

c2

(α0 − 3)

2α0

∑
p �=n

m p

|xn − xp| , (B.9)

where the summation above is taken excluding terms when
p = n. This can be interpreted as a mass renormalization
[22]. Using this we can integrate expression (51) to give

∫
ΦN T

00 d3x ≈ − (α0 − 3)

α0

Gm1m2

r
. (B.10)

For the remaining integrals it is needed the derivatives of
the Newtonian scalar field, namely

∂0ΦN (t, xn) = −G

c3

(α0 − 3)

2α0

∑
p �=n

m p
(rnp · vp)

r3
np

, (B.11)

∂iΦN (t, xn) = G

c2

(α0 − 3)

2α0

∑
p �=n

m p
(x j

n − x j
p)δ j i

r3
np

, (B.12)

and the kinect term,

wN (t, xn) = −G2

c4

(α0 − 3)2

4α2
0

∑
p,q �=n

m pmq
(rnp · rnq)
r3
np r

3
nq

.

(B.13)

In the above expressions vp = ṙp, rnp = xn − xp,
and rnp = |rnp|. The sub-indexes (p, q, n) are summa-
tion indices assuming the values 1 or 2. The upper-indexes
(i, j, k) refer to the usual components of a three-vector and
they run from 1 to 3.

Let us calculate one of the integrals explicitly,
∫

T 00(∂0ΦN )2d3x

wN
= G2

c4

(α0 − 3)2

4α2
0

×
∑
n

∑
p,q �=n

mnm pmq

wN (t, xn)
(rnp · vp)

r3
np

(rnq · vq)
r3
nq

, (B.14)

where the symbol Σp,q �=n means the product of two summa-
tions, one in p and other in q, with both never assuming the
value of n. Using that

wN (t, x1(2)) = − (α0 − 3)2G2

4α2
0c

4

m2
2(1)

r4 , (B.15)

and

r · vn = r ṙn, (B.16)
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we have

∫
T 00(∂0ΦN )2

wN
d3x = − m1 ṙ

2
2 − m2 ṙ

2
1

− ṙ2

M2

(
m3

1 + m3
2

)
. (B.17)

In the last equality we used the relations (61). The procedure
is similar for the other integrals and, paying attention that
r21 = − r, it follows

∫
T 0i∂0ΦN ∂iΦN

wN
d3x = − ṙ2

M
m1m2 , (B.18)

∫
T i j∂iΦN ∂ jΦN

wN
d3x = − ṙ2

M
m1m2 . (B.19)

Putting all these terms together, following (52), we obtain
the relation,

∫
E d3x ≈ −Mṙ2 (B.20)

In the integral of (53) the following terms will appear,

∫
ΦN

wN

(
T 00∂0ΦN + T 0i∂iΦN

)
d3x ≈ cMrṙ , (B.21)

∫
T 00∂0ΦN + T 0i∂iΦN

wN
d3x ≈ − α0

α0 − 3

cm1m2

GM2

(
r2ṙ3

+ r4ṙ θ̇2
)

− c
(m2

1 + m2
2)

M
rṙ , (B.22)

∫
E∂0ΦN

w2
n

d3x ≈ 8α2
0

α0 − 3

c

G

(m5
1 + m5

2)

m1m2M3 r2ṙ3, (B.23)

and, with a time derivative, we obtain the last terms remaining
to get the expression (58).
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