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Abstract Inertial sensors are important at application level
and also in fundamental physics. Ring laser gyroscopes,
which measure angular rotation rates, are among the most
sensitive ones. Large area ring laser reach sensitivities at the
level of fractions of prad/s, allowing measurements of rele-
vant geophysical signals. Improvements of a factor 10–100
would make these instruments able to measure general rel-
ativity effects; this is the goal e.g. of the GINGER project,
an Earth based experiment aiming to test the Lense–Thirring
effect with an accuracy of 1%. However, the laser induces
non-linearities, effects larger in small scale instruments. We
discuss a novel technique to analyse data, able to reduce non-
linear laser effects. We apply this technique to data from two
ring laser prototypes, and compare the precision of the mea-
surement of the angular rotation rate obtained with the new
and the standard methods. We show that the back-scatter
problem of the ring laser gyroscopes is negligible with a
proper analysis of the data. These results not only allow
to improve the performance of large scale ring laser gyro-
scopes but also pave the way to the development of small
scale instruments with nrad/s sensitivity, which are precious
for environmental studies and as inertial platforms.

1 Introduction

Ring laser gyroscopes (RLGs) are inertial sensors based on
the Sagnac effect [1–3]. They are largely utilised for inertial
navigation, and applications in geodesy, geophysics and even
for General Relativity tests are foreseen [4]. Since 2011 we
are studying the feasibility of the Lense Thirring test at the
level of 1% with an array of large frame RLGs [5–7]. For that
purpose it is necessary to push the relative accuracy of the
Earth rotation rate measurement in the range from 1 part in
109 up to 1 part in 1012. RLG consists of a laser with a cavity
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comprising of three or four mirrors, depending if the cavity is
triangular or square, rigidly attached to a frame; large frame
RLGs are utilised to measure the Earth rotation rate, being
attached to the Earth crust. Because of the Sagnac effect, the
two counter-propagating cavity modes have slightly different
frequency, and the beat note of the two beams is proportional
to the angular rotation rate felt by the ring cavity. Large frame
RLGs are the most sensitive instruments for inertial angular
rotation measurements. The Sagnac frequency of a RLG is in
fact proportional to the angular rotation rate � which affects
the apparatus:

fs = SΩ cos θ

S = 4
A

λL
(1)

where A is the area of the ring cavity, L is its perimeter, λ the
wavelength of the light, and θ is angle between the area versor
of the ring and the orientation of �. For RLGs horizontally
aligned (area versor vertical) θ is the colatitude angle, while
for RLGs aligned at the maximum Sagnac signal θ = 0.
Equation 1 connects Ω with the scale factor S, which depends
on the geometry, and λ, quantities than can be measured.
Further to sensitivity, other advantages of such instruments
rely on the broad bandwidth, which can span from kHz down
to DC, and the very large dynamical range. In fact the same
device can record microseismic events and high magnitude
nearby earthquakes [8], owing to the fact that the signal is
based on the measurement of the beat note. It has been proven
that large size RLGs with state of the art mirrors can reach
the relative precision of 3 parts in 109 in one day integration
time, for the Earth rotation rate measurement [1]. If shot noise
limited, the sensitivity scales with the second power of the
size of the ring cavity.

The main limitation of RLG performances is given by the
coupling between the two counter propagating laser modes.
On each cavity mirror a little fraction of the two traveling
waves is backscattered in the opposite direction. As a result
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of the interference between the reflected waves from each
mirror, we have effective backscattering amplitude reflectiv-
ity r1 and r2 of the beam 1 over the beam 2 and of the beam 2
over the beam 1, respectively. We outline that the interference
of the back reflected waves, and consequently the values of
r1,2 are very sensitive to any perturbation of the optical cavity
geometry. This coupling produces for small rotational rate a
pulling of the Sagnac frequency from the fs value given by
Eq. 1, and eventually a locking of the two laser frequencies
when the fs value become lower than flock = r1,2c/(πL)

[9]. As a rough estimation, it is possible to evaluate for a
square cavity flock = cμλ

πdL , where c is the velocity of light, d
the diameter of the beam and μ the total scattered fractional
amplitude at each reflection.

In order to ensure the functionality of small scale RLGs
[10], mechanical dithering is usually implied to increase the
bias between the two modes and avoid locking. Large frame
rings utilise the Earth rotation rate as bias. Any improve-
ment in the accurate evaluation of the backscatter noise,
and in general of the systematics induced by the non linear
dynamics of the lasing process, is advantageous for increas-
ing the performance of both large and small frame RLGs.
Presently there is large interest in this kind of device, large
scale apparatus should further improve their sensitivity and
accuracy for geodetic and fundamental physics application,
and small scale and transportable devices at nrad/s sensitiv-
ity are required to improve the low frequency response of
gravitational wave antennas, for the development of inertial
platforms, and for seismology [11–15].

The problem of the reconstruction of signals is a gen-
eral one, and sophisticated filters can be developed to this
aim. In the past we have addressed this problem utilizing
Kalman filters, with whom we have obtained good results,
but which were rather time consuming. At present, we have
the necessity to analyze a very large set of data and to set up
mathematical tools for the analysis with the aim not only to
evaluate the sensitivity, but also to precisely identify specific
issues in the setup which are limiting the sensitivity.

This paper presents a mathematical approach to measure
the Sagnac frequency taking into account the laser dynam-
ics. This issue has been addressed several times [9,16–19],
but no general solution exists. Analytical solutions can be
derived in the case the backscattered light is equal in the two
counter propagating modes, or the ratio between the inten-
sities of the two modes is constant, conditions which are
not fulfilled in the actual generation of RLGs [17]. The dis-
cussion is composed of two main parts. The first one, after
a short description of the RLG and the standard analysis
approach, describes the general RLG dynamics and recon-
structs the Sagnac frequency taking into account the laser
dynamics in the general case through a single analytical for-
mula containing the laser coefficients (Lamb coefficients),
which can be separately evaluated based on experimental

measurements. This formula can be further divided as lin-
ear sum of six contributions. One of the contributions, called
ωs0, is the dominant one, the others being small corrections.
In the second part of the paper the implementation of ωs0

is discussed and applied to data of the RLG prototypes GP2
and GINGERINO; showing that with proper signal recon-
struction middle size transportable RLG can reach the nrad/s
sensitivity. The other additional terms are not considered in
the implementation, they will be subject of future work based
on the data of GINGERINO. The appendix reports a short
discussion about noise, and practical methods to identify por-
tions of data which have to be discarded.

2 Typical RLG and standard analysis method

Figure 1 shows the typical lay-out of a square cavity RLG.
The four mirrors are placed at the corner of the square ring,
they are contained inside small vacuum chambers, which are
connected by pipes. The whole setup is vacuum tight and
filled with Helium and an isotopic 50/50 mixture of 20Ne
and 22Ne. In one of the side the laser discharge is located to
generate the plasma required for laser operation (top side).
Piezoelectric translators are utilised to translate the mirrors,
allowing a control of the RLG perimeter length. The Sagnac
beat note signal is observed at one corner (bottom-left) by
superimposing the two output beams on a photodiode. Other
two photodiodes monitor at one of the output corners (top-
left) the laser output power of the two beams (PH1, PH2).
We will indicate them in the following as themono-beam sig-
nals. Another photodiode (discharge monitor DM) records

Fig. 1 Typical scheme of RLG with a square ring cavity
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the fluorescence from the discharge, filtered around 633 nm
by a narrow width interferometer filter, which provides a
rough indication of the density of excited atoms. In the usual
operations, the plasma discharge is electronically controlled
in order to keep constant the output power of one of the two
mono-beam signal. All these signals are acquired by an ADC
with a frequency rate of a few kHz, suitable to well recon-
struct them from DC up to the Sagnac frequency.

In the standard analysis, the Sagnac angular frequency ωS

is assumed to be equal to the instantaneous frequency ωm ,
reconstructed from the interferogram by means of the Hilbert
transform or of the standard AR2 recursive algorithms based
on autocorrelation. The back scatter noise is usually sub-
tracted by fitting the quantity IS1 IS2

PH1PH2
cos 2ε, where ε is the

backscatter phase and PH1,2 and IS1,S2 are the amplitudes
of DC and ωs spectral components of mono-beams 1 and 2,
respectively [16].

3 Ring laser dynamics, approximations and the
stationary solution

The present analysis is dedicated to the evaluation of the
Sagnac signal taking into account the dynamics of the ring
laser. The most general description of the RLG is based on the
model developed by Aronowitz following the more general
Lamb theory [20,21]. The general equations are

İ1 = c

L

(
α1 I1 − β1 I

2
1 − θ12 I1 I2 + 2r2

√
I1 I2 cos(ψ + ε)

)

(2)

İ2 = c

L

(
α2 I2 − β2 I

2
2 − θ21 I1 I2 + 2r1

√
I1 I2 cos(ψ − ε)

)

(3)

ψ̇ = ωs − σ1 + σ2 − τ12 I2 + τ21 I1

− c

L

(
r1

√
I1
I2

sin(ψ − ε) + r2

√
I2
I1

sin(ψ + ε)

)
(4)

where I1, I2 are the intra-cavity laser intensities expressed in
the dimensionless “Lamb units”; ψ and ψ̇ are the instanta-
neous phase difference and its time derivative (ωs = 2π fs);
index 1 and 2 refers to the clockwise and counter-clockwise
laser beam respectively. It is important to remind that all
terms of Eqs. 2–4 are time depending. Here α1,2, σ1,2, β1,2,
θ12,21, τ12,21 are the Lamb parameters. In particular, α1,2,
σ1,2 are the threshold gain minus losses, β1,2 is the self satu-
ration, θ12,21, τ12,21 describe cross-(mutual-)saturation. The
Lamb theory involves a large number of parameters, how-
ever, the special mixture of two isotopes of Neon and the
working point close to the laser threshold allow adoption of
a simplified model [17,18,22]. In our present analysis, we
assume β1 = β2 = β, and θ21 = θ12 = θ . This assumption
is justified by the fact that our RLGs operate close to thresh-

old in mono-mode regime (for operation near multi-mode
regime, a further approximation is feasible). In the following
θ will be neglected, owing to the mono-mode operation.

Without loss of generality we can define δns = σ2 − σ1 +
τ21 I2 − τ12 I1, which is usually referred to as null shift; it is
generally accepted that δns is a small quantity to be neglected
[9,17,20]. In the present analysis it will not be neglected:
δns will be considered a perturbation of ψ̇ , defining a new
variable ψ̇0 � ψ̇ − δns (ψ̇ being the frequency effectively
measured by the interferogram, called also ωm).

Assuming that RLG is at the steady state [17], the solutions
are the following:

I1(t) � α1

β
+

2
√

α1α2r2

(
Lωs sin(tωs+ε)

c + α1 cos(tωs + ε)
)

β(α2
1 + L2ω2

s
c2 )

−2cr1r2 sin(2ε)

βLωs

I2(t) � α2

β
+ 2

√
α1α2r1(α2 cos(ε − tωs) − Lωs sin(ε−tωs )

c )

β(α2
1 + L2ω2

s
c2 )

+2cr2r1 sin(2ε)

βLωs

ψ0(t) �
c
(√

α1
α2
r1 cos(ε − tωs) +

√
α2
α1
r2 cos(tωs + ε)

)

Lωs

+t

(
ωs − 2r1r2

( c
L

)2 cos(2ε)

ωs

)
(5)

The validity of the above solutions has been previously tested
with a Monte Carlo simulation and with the experimental
data of the RLG G-Pisa, which was a 5.40 m perimeter RLG
[18,23]. Here the validity of previous results is taken for
granted and ωs is analytically expressed.

Assuming that the parameters are constant in the time
interval between t and t + δt , we have ψ0(t + δt)−ψ0(t) =
ωmδt − δnsδt . From the above relation it is straightforward
to deduce that, at the first order in δt :

(ωm − δns)δt �
(

ωs + K (t)

L
− 2c2r1r2 cos(2ε)

L2ωs

)
δt. (6)

In the above equation ωs is the Sagnac angular frequency,
the quantity we are looking for, and we have conveniently
defined K (t):

K (t) =
√

α1

α2
cr1 sin(ε − tωs) −

√
α2

α1
cr2 sin(tωs + ε), (7)

K (t) contains oscillatory terms at the Sagnac frequency ωs .
Considering that ωs is almost constant, for frequency much
below the Sagnac frequency, it is possible to look for approx-
imated solutions. Equation 6 can be written as:
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ωs = ωm

2
+

√
8c2r1r2 cos(2ε) + (K − L(ωm + δns))2

4L2

− K

2L
+ δns

2
(8)

where we dropped the time dependence in K . The occur-
rence of the oscillations of K at the Sagnac frequency makes
the evaluation of ωs non trivial. The average value of K is
very small for frequencies much below Sagnac frequency,
since the average value of sinus and co-sinus oscillating at
the Sagnac frequency goes to zero for frequency much below
fs . ωs can be found with Eq. 8, provided that r1, r2, ε, δns ,
and the average value of K are available, which is in principle
feasible utilising the mono-beam signals and the measured
losses of the cavity and employing numerical recursive meth-
ods to evaluate K .

In the following Eq. 8 will be decomposed in several
pieces, which can be separately evaluated. In any case, when
|K | � Lωm and δns � ωm , Eq. 8 can be expanded in K and
δns at first and second order, obtaining:

ωs � ωs0 + ωns1 + ωns2 + ωK1 + ωK2 + ωnsK (9)

ωs0 =
⎛
⎝1

2

√
8c2r1r2 cos(2ε)

L2 + ω2
m + ωm

2

⎞
⎠ (10)

ωns1 = −δns ×
⎛
⎝ ωm

2
√

8c2r1r2 cos(2ε)

L2 + ω2
m

+ 1

2

⎞
⎠

ωns2 = δ2
ns × 2c2r1r2 cos(2ε)

(8c2r1r2 cos(2ε) + L2ω2)

√
8c2r1r2 cos(2ε)

L2 + ω2
m

ωK1 = K ×
⎛
⎝− ωm

2L
√

8c2r1r2 cos(2ε)

L2 + ω2
m

− 1

2L

⎞
⎠

ωK2 = K 2 ×
2c2r1r2 cos(2ε)

√
8c2r1r2 cos(2ε)

L2 + ω2
m

(8c2r1r2 cos(2ε) + L2ω2
m)2

ωnsK = δns K

2
√

8c2r1r2 cos 2ε + L2ωm
2

Equation 9 is composed of six terms, which can be indepen-
dently evaluated, and analysed. Careful evaluation is neces-
sary for ωns1,2, ωK1,2, since the determination of the param-
eters β, σ1, σ2, τ12, and τ21, which are function of the beam
area a, the output power, the mirrors transmission and the
total losses μ, is required. The mathematical relationships to
evaluate those terms can be found in previous papers [16–18].
The reconstruction of those terms will be addressed in future
work, and applied to the analysis of the data of GINGERINO.

In the following the implementation of the first term ωs0

will be specialised for data acquired with large frame RLGs
and compared with the standard analysis method. Backscatter
noise is accounted for, and it has been checked that the stan-

dard method to subtract the backscatter noise can be derived
from Eq. 10 assuming 8c2r1r2 cos(2ε)

L2 � ω2
m and expanding at

first order.

3.1 Application to the actual data

The analysis described in the following will take into account
data streams at normal operation and far from transients of the
laser as mode jumps and split modes. Appendix A describes
methods to identify and eliminate those portions of data. As
already said Eq. 9 is valid for K � Lωm ; referring to our
smaller prototype G-Pisa (perimeter 5.40 m), and utilising
published parameters [17], we obtain K ∼ 6 rad m/s, to be
compared with ωmL ∼ 3600 rad m/s: consequently Eq. 9
is valid. We underline that quoted values are conservative
ones, since K depends on the mirror quality and the size of
the ring. The prototype G-Pisa was smaller than GP2 and
GINGERINO and equipped with less performing mirrors.
Determining ωs0 requires in turn to evaluate r1 and r2. Fol-
lowing previous works [17,18], it is possible to link such
quantities with available measured data:

r1 = IS2ωm

2c
√
PH1PH2
L

(11)

r2 = IS1ωm

2c
√
PH1PH2
L

(12)

with all symbols already defined. Similarly, the relative phase
ε is found comparing the mono-beams signal at the Sagnac
frequency. All above quantities are commonly used in the
standard analysis [16,22,24]. Substituting and simplifying,
it is straightforward to show that:

ωs0 = 1

2

√
(1 + ξ)

2IS1 IS2ω2
m cos(2ε)

PH1PH2
+ ω2

m + ωm

2
(13)

The term ξ (ξ � 1) has been added in order to take into
account inaccuracies on the mono-beams signals. It is impor-
tant to remark that the quantities PH1, PH2, and IS1 and
IS2 refer to the laser power inside the optical cavity, while
measured ones are obtained utilising the power transmitted
outside the cavity. Since Eq. 13 exploits the ratios, in prin-
ciple it is not affected by the measurement scheme, and the
voltage output of the photodiodes can be used.
However, it is necessary to consider the presence of noise
in the mono-beams signals, which can be due to the inher-
ent noise of the photodiodes or by the discharge fluores-
cence, which cannot be completely removed. The related
noise affects the evaluation of ωs0 done with Eq. 13. There-
fore, in order to have the possibility to correct it with common
statistical methods, the term ξ has been added. Expanding at
first order in ξ , we obtain:
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ωs0 = 1

2

√
2ω2

m IS1 IS2 cos(2ε)

I1 I2
+ ω2

m + ωm

2
+ ωsξ (14)

ωsξ = ξ × IS1 IS2ω
2
m cos(2ε)

2I1 I2
√

2IS1 IS2ω
2
m cos(2ε)

I1 I2
+ ω2

m

(15)

It is straightforward to evaluate the term ωs0, while the cor-
rective one, ωsξ , must be evaluated by fitting the parameter
ξ ; this term could be negligible. Remarkably, the above rela-
tion does not contain any Lamb parameter of the laser and can
therefore be determined without knowledge of such param-
eters.

4 Reconstruction of ωs0 for GP2 and GINGERINO

Data acquired by our prototypes GINGERINO and GP2 are
utilised. GP2 is an apparatus with comparatively low quality
mirrors and located in a noisy environment [25,26], while
GINGERINO is located in a very quiet place [24,27], and is
presently equipped with state of the art mirrors. We remark
that GINGERINO is free running, the geometry is not con-
trolled and long time operation and high duty cycle (> 90%)
are possible since it is located in the underground Gran Sasso
laboratory, which exhibits high natural thermal stability (typ-
ically ∼ 0.01 ◦C in one day).

4.1 Comparison of standard and new analysis

Figure 2 shows the comparison between the Sagnac fre-
quency from GINGERINO data reconstructed with the stan-
dard method (referred to as ωm) and the one presented here.
It is interesting to observe that the average value of the fre-
quency ωs0 is higher, this is what we expect when the noise
is dominated by backscatter. In such conditions, frequency
is shifted upward (‘pull’) [9]. The average values are differ-
ent for the two analysis methods; as far as GINGERINO is
concerned, the difference is quite small, for example the anal-
ysis of 24 days in November 2018 gives a relative difference
of 6 × 10−5, with 〈ωs0〉 evaluated by the method presented
here a bit larger than 〈ωm〉. Since the absolute orientation
of the RLG is unknown, in both cases the measured Sagnac
frequency is compatible with the expected one assuming an
inclination of ∼ 1.5 mrad northwards with respect to the
horizontal plane.

Large frame RLGs are instruments dedicated to the study
of phenomena with typical frequency below 20 Hz; we have
checked that the two methods are equivalent in the high fre-
quency band of interest. Figure 3, showing the power spec-
tral density (PSD) as a function of frequency, demonstrates
that, for GINGERINO and above 200 mHz, the difference
between the two methods is less than 0.1 nrad/s in 1 s mea-
surement. This comparison shows that the new analysis is not
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Fig. 2 Comparison of the old and new analysis of GINGERINO data.
Blue trace: standard method with Hilbert transform; red trace: data
corrected using Eq. 14 neglecting ωsξ ; green trace: data corrected after
fitting for parameter ξ (Eq. 15, in the fit ξ = 0.16)
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Fig. 3 Comparison of the amplitude spectral density utilising the stan-
dard (blue data) and new analysis (red data). The two ASD are approxi-
mately equal above 200mHz, the main differences are at low frequency

introducing extra noise above 200 mHz at this level of sen-
sitivity. It has been also checked that the old method, which
estimates and subtracts the backscattering effect through
a linear fitting procedure, provides results distributed with
width similar to ωs0, and, as already said, slightly different
mean value. We outline that systematics of the laser dynam-
ics include non linear terms, which in principle cannot be
eliminated with linear methods. Then, the standard method,
being linear, cannot guarantee a full correction.

The systematics of RLG depends on the size and the mir-
ror quality, large frame RLGs are usually closer to behave in
an ideal manner. For reduced size RLG and when the mir-
rors are not top quality, deviations from the ideal case are
more relevant. This is the case of our prototype GP2. Fig-
ure 4 shows the histogram of the Sagnac frequency data of
GP2 analysed with the two methods. The standard analysis
leads to a broader and highly irregular distribution, typical of
non linear system. GP2 is oriented at the maximum signal,
so its response should be close to (and never higher than)
the Earth rotation rate. The new method gives an averaged
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Fig. 4 Comparison of the histograms of the Sagnac frequency esti-
mated with the standard method (blue) and by the new one (red). Clearly
the new method leads to a narrower and more Gaussian-like distribution,
with mean value 184.29 Hz

rotation rate Ω = 7.2922 × 10−5 rad/s, in agreement with
the Earth rotation rate Ω⊕ = 7.292115 × 10−5 rad/s. With
the new analysis the average rotation rate is evaluated with a
relative systematic error of 1 part in 10−4, while with 6 part
in 10−3 with the standard analysis: a factor 60 improvement
in accuracy has been achieved. The present result is very
similar to the one obtained in previous work [18] based on
the Kalman filter in term of accuracy and sensitivity. In both
cases the best sensitivity was of the order of a few nrad/s with
tens of seconds integration time [18].

It is puzzling to note that with the standard analysis method
GP2 is showing higher than expected Sagnac frequency,
about 1Hz. A possible explanation is that GP2 has quite large
backscatter light and stable operation is favourite when the
laser operates in the so called “dissipative coupling regime”
[9], i.e. the two counter-propagating laser modes have an
extra shift (approximately 1 Hz in our case). Such increased
bias frequency is related to a decreased coupling between the
modes, accordingly stable operation is favourite. According
to Eq. 10 this is achieved by the system adjusting the value
of ε.

Figure 5 compares the fringe contrast (TOP) and the rela-
tive phase ε (BOTTOM) for GP2 data taken during the geom-
etry control test.1 This was achieved by keeping constant the
length of the two diagonals within 80 nm [26]. Figure 5 shows
that mode jumps occur not only to compensate changes of
the perimeter, but also in order to keep ε close to ±π

2 , keep-
ing the relative phase close to a certain range, as required
in the dissipative coupling regime. It has been checked that
GINGERINO exhibits all values of ε.

1 GP2 has been designed to test the geometry control developed for
GINGER and based on diagonal length measurements; data with and
without geometry control have been compared and it has been checked
that, with adequate analysis, sensitivities are comparable [26].

Fig. 5 Top: fringe contrast during geometry control of GP2, a few
features suggesting mode jumps are shown. Bottom: the relative phase
between the two modes ε is shown. In correspondence of the jumps
there is a rapid change in phase

5 Conclusion

Systematics induced by the non linear dynamics of the laser,
mainly due to back scatter light, induces non linear terms
in the output of high sensitivity RLGs, severely limiting the
development of RLGs with sensitivity of the order of nrad/s
level, which in principle should have a large range of appli-
cations. An analytical method, suitable to reconstruct the
Sagnac frequency ωs taking into account the laser dynam-
ics, has been developed in the general case in which the two
backscattered beams are not equal, and the ratio between the
power of the two counter-propagating modes is not constant.
The application of this formula requires the knowledge of the
fractions of backscattered waves, and the laser parameters
α1,2, σ1,2, τ and β, all quantities which can be evaluated. In
the present theory the term θ is not considered, this term takes
into account the multimode operation, and can be neglected
in the description of high sensitivity RLGs which operates
mono-mode close to threshold.

Expanding in series at first and second order it is possible
to divide the general formula as the sum of six terms which
can be separately evaluated. The analytical expansion for the
whole set of 6 terms is reported.

The term called ωs0, which is the dominant one and does
not contain any laser parameter, is evaluated in details and
expressed as a function of the available measurements; this
term has been evaluated for the two RLG prototypes GIN-
GERINO and GP2, and compared with the standard analysis
method. The advantage of the new approach is evident: not
only the width of the distribution is reduced, but the recon-
structed Sagnac frequency is more accurate and in better
agreement with the expected value. In short, ωs0 eliminates
the so called backscatter noise, which is the dominant sys-
tematics especially for small and medium size RLG.

The GP2 prototype has more backscatter light, because
it is smaller and has lower quality mirrors with respect to
GINGERINO. In this case the standard method evaluates the
Earth rotation rate with a relative systematic error of 6 part
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in 10−3, while in the new way 1 part in 10−4 is obtained,
a factor 60 improvement in accuracy, with a sensitivity in
the range of 2 nrad/s with tens of seconds integration time.
This work opens up the window for the development of high
sensitivity transportable RLGs, for applications in seismol-
ogy, as environmental monitors to improve the low frequency
performance of the test mass suspension of the gravitational
wave antennas, and for the development of inertial platforms
in general. Further efforts will be devoted to analyse the data
of GINGERINO using the full set of terms.
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Appendix A: Discussion about the noise

Since we deal with high sensitivity measurements, it is impor-
tant to estimate the noise injected in the evaluation of ωs0.
PHi and ISi (i, 1, 2) are utilised to evaluate ωs0, and their
noise will contribute to the total noise budget. In general all
measurements of these quantities are limited by shot noise
of the power collected by the photodiode δi , i = 1, 2, and
the total noise is the incoherent sum of the photodiode noise.
The contribution of each term, δPH1 and δ IS1 gives:

δ IS1 ∼ δ1 IS2ω
2 cos(2ε))

8PH2
1 PH2

√
IS1 IS2ω

2 cos(2ε)
2PH1PH2

+ ω2
(A.1)

δPH1 ∼ δ1 IS1 IS2ω
2 cos(2ε)

8PH1
2PH2

√
IS1 IS2ω

2 cos(2ε)
2PH1PH2

+ ω2
(A.2)

(I2 and IS2 are obtained changing 1 with 2 in a symmetric
way).

Usually for top quality mirrors losses are minimised, but
there are no requirements for the transmission. In order to
minimise the contribution of the mono-beams to the total
noise the optimal choice would be to have transmission of
the same order of the losses, at least for one of the mirrors
(one output only is enough since in order to evaluate ε it is
necessary to observe the two mono-beams transmitted by the
same mirror). Care is also necessary in order to avoid small
spurious reflections from one of the windows of the vacuum

chamber, and narrow band filters are necessary in order to
reduce the spurious signal from the discharge fluorescence.
In any case, especially the measurement of the two terms
PH1,2 could be a real limitation for the very low frequency
measurements, since they are DC quantities affected by the
well known 1/f noise of any electronic device.

AppendixB:The fringe contrast: a suitable tool to remove
bad portions of data

In large frame RLG attached to the Earth crust the Sagnac
frequency is usually above 100 Hz, and it is determined by
the Earth rotation rate, which is almost constant in time. The
relative phase ε is slowly changing, since the cavity is rigid.
In general, unless the geometry is electronically controlled, it
happens that the RLG changes its operational points; accord-
ingly the wavelength changes separately for both modes, or
for one only, and mode jumps or split mode operations occur.
Split mode operation occurs from time to time; in principle
the split mode regime provides good measurement of ωs ,
but in this case ωm = ωs + 2πFSR (FSR, Free Spectral
Range), and data acquisition at high rate and accurate knowl-
edge of the perimeter are necessary. In the present analysis

Fig. 6 Top: typical fringe contrast, the mode jumps are evident, it is
also clear that instabilities occur before the mode jumps, in the middle
there is a split mode operation of the duration of 2.6 h. Bottom: the
corresponding Sagnac frequency

Fig. 7 GINGERINO Sagnac frequency around a typical mode jump
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data affected by split mode operation have been disregarded.
Mode jumps are very fast transients, affecting only few sec-
onds of data acquisition. During these discontinuities the
RLG is not at the stationary condition, so portions of data
have to be discarded. The observation of the fringe contrast
provides a very efficient tool to identify and eliminate those
imperfections. Figure 6 shows corresponding split mode and
mode jumps. Sometime some instabilities in the operation
are visible before the mode jump takes place. Figure 7 shows
the typical behaviour of the mode jump.
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