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Abstract The objective of the present paper is to explore
and study an anisotropic spherically symmetric core-enve-
lope model of a super dense star in which core is outfitted
with linear equation of state whereas the envelope is con-
sidered to be of quadratic equation of state. There is smooth
matching between the three regions: the core, envelope and
the Schwarzschild exterior metric. We investigate that all the
physical and geometrical variables are realistic within the
core as well as the envelope of the stellar object and con-
tinuous at the junction. Our model is shown to be physically
plausible and validate with the intrinsic properties of the neu-
tron star in Vela X-1, SMC X-4 and Her X-1. Further, We
infer that with the increase of mass of star the core shrinks,
which vindicates the dominating effect of gravity for higher
mass astronomical objects.

1 Introduction

Neutron stars or strange stars are relativistic compact entities
that are remnants of massive stars at the end of their death
when the parent star has the mass of range of 8M� − 20M�.
The complex composition of their core is unknown, however,
it is supposed that they may comprise of a neutron super fluid
or quark state of matter. The properties and characteristics of
these giant gravity objects are yet to be solved completely
. However, the Einstein field equations (EFEs) of General
Relativity provide a powerful tool to infer these extremely
dense objects . Therefore, since the inception of the EFEs, the
relativists have been venturing to develop the stellar models
which are close to the realistic in nature. Due to the strong
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nonlinearity of EFEs and the lack of appropriate algorithm to
generate all solutions, it becomes difficult to obtain new exact
solutions. A well number of exact solutions of field equations
are known to date but not all of them are physically relevant
in the description of relativistic structure of compact stellar
objects. Two conventional approaches are followed to obtain
for perfect fluid stellar model.

(i) Oppenheimer–Volkoff method: In this approach one
can start with an explicit equation of state and the inte-
gration starts at the center of the star with a prescribed
central pressure. The integrations are processed until
the pressure decreases to zero, justifying that bound-
ary has reached. Such input equations of state do not
normally allow for closed form solutions [1].

(ii) Tolman’s method: In this approach one has to solve Ein-
stein’s gravitational field equations. It is almost impos-
sible to obtain an exact solution of such an under-
determined system of nonlinear ordinary differential
equations of second order. In order to explore exact
solutions, one can solve the field equations by making
an adhoc assumption for one of the metric functions or
for the energy density. Hence the equation of state and
other physical parameters can be computed from the
resulting metric [2–5].

Although, the perfect fluid models are toy models of star,
nevertheless, these models act as a seed models for the real-
istic stellar modeling by inclusion of anisotropy , charge or
both. For a realistic model of stellar object, the perfect fluid
is replaced by anisotropic fluid. An anisotropy is caused due
to various reasons e.g. the existence of solid core, in pres-
ence of type P super-fluid, phase transition, rotation, mag-
netic field, mixture of two fluid and ultra high density of the
order of 1015gcm−3 which are the essential inherent physical
properties of super-dense stars [6–9]. Various conventional
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approaches are followed to obtain for anisotropic fluid stellar
model:

(i) In order to solve the EFEs, one can assume suitable
function of one of the metric potential and appropriate
function of anisotropy so that the resulting solution may
get realistic trend of physical and geometrical parame-
ters [10–13].

(ii) We can assume the one of the equations of state (linear,
quadratic, polytropic or Vander Waals equation of state)
with one of the metric potential and solve the EFEs and
subsequently study the trends of physical and geomet-
rical parameters [14–27].

(iii) One can use class 1 condition for solving the field
equations which basically tells us that 4-dimensional
space-time can be embedded in 5-dimensional pseudo-
Euclidean space. By following the Karmarker condition
for using the class 1 metric and the relationship between
metric potentials can be achieved [28–32].

(iv) To develop a core-envelope model: The core is of Lin-
ear equation of state because it is of quark matter there-
fore, governed by MIT beg model i.e. linear equation of
state. Further, the envelope is of quadratic equation of
state because of the presence of baryonic matter. In the
recent past several core envelope models for massive
relativistic stars in general relativity have been studied
[33–38].

In this paper, we assume a new function of metric potential
grr and explore a new exact solution of the EFEs and subse-
quently, develop a core-envelope model for super-dense stars
by smoothly matching two interior regions and each satisfy-
ing a distinct equation of state. The exterior region is defined
by the well known Schwarzschild exterior metric. We discuss
the Einstein field equations in Sect. 2 for anisotropic fluid.
In Sect. 3, we discuss the conditions for physically realistic
core-envelope model. In Sect. 4, we explore the exact solu-
tions of the core and envelop. In Sect. 5, we present junction
conditions between two regions. A detailed physical analy-
sis is carried out in Sect. 6. We also investigate some of the
physical features of the model in connection with the neutron
star in Vela X-1, SMC X-4 and Her X-1 in Sect. 7.

2 A system of the Einstein field equations

The interior of an anisotropic fluid sphere is described
by the following spherically symmetric line element in
Schwarzschild coordinates (xi ) = (t, r, θ, φ):

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (1)

where ν(r) and λ(r) are known as the metric potentials.

Assuming the matter inside the fluid sphere is anisotropic,
the EFEs (for the units G = c = 1 ) are given as

− 8πT i
j = Ri

j − 1

2
Rgij , (2)

where

T i
j = [(pt + ρ)viv j − pt g

i
j + (pr − pt )χ

iχ j ], (3)

is the energy-momentum tensor, Ri
j is the Ricci tensor, R

denotes the scalar curvature, ρ, pr and pt are the energy den-
sity, radial pressure appraised in the direction of the spacelike
vector and transverse pressure in the orthogonal direction to

pr respectively. In comoving coordinates vi =
√

1
gtt

δit is

the 4-velocity normalized in such a way that gijv
iv j = 1

and χ j =
√

− 1
grr

δir is the unit spacelike vector in the radial

direction, i.e., gijχ
iχ j = −1.

For the geometry and matter accounted by the line element
(1) and energy momentum tensor (3), the EFEs generate the
following system of equations

8πρ =
(
1 − e−λ

)

r2 + λ̇e−λ

r
, (4)

8πpr = ν̇e−λ

r
−

(
1 − e−λ

)

r2 , (5)

8πpt = e−λ

4

(
2ν̈ + ν̇2 − ν̇λ̇ + 2ν̇

r
− 2λ̇

r

)
, (6)

where . denotes the derivative with respect to the radial coor-
dinate r .

Using Eqs. (5) and (6) we get the measure of anisotropy
(Δ) as

Δ = 8π(pt − pr )

= e−λ

[
ν̈

2
− λ̇ν̇

4
+ ν̇2

4
− ν̇ + λ̇

2r
+ eλ − 1

r2

]
. (7)

The force due to the pressure anisotropy is repulsive ifΔ >

0, and attractive ifΔ < 0 [39]. The existence of outward force
(Δ > 0), allows the building of more compact distribution
when using anisotropic fluid than isotropic perfect fluid (Δ =
0) [8].

In view of the following transformations x = r2, z(x) =
e−λ(r) and y(x) = eν(r), the system of Eqs. (4–7) becomes

8πρ = 1 − z

x
− 2z′, (8)

8πpr = 2z
y′

y
− 1 − z

x
, (9)

8πpt = z

[(
2y′′

y
− y′2

y2

)
x + 2y′

y

]
+ z′

(
1 + x

y′

y

)
,

(10)

8πΔ = z

(
2y′′

y
− y′2

y2

)
x + z′

(
1 + x

y′

y

)
+ 1 − z

x
. (11)
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where (′) and (′′) represent first and second derivatives with
respect to x .

In relativistic stellar objects, the inside matter distribution
may be compiled of two regions: an inner layer called as core
and an outer layer named as envelope with distinct pressures.
In order to make a core-envelope model for a given star, it is
mandatory to classify space-time into a number of discrete
regions. These regions comprise of the core (0 ≤ r ≤ RC ,
Region C), the envelope (Rc ≤ r ≤ RE , Region E) and
the exterior (RE > r , Region B). The corresponding line
elements for the three regions can be taken as

ds2|C = eνC (r)dt2 − eλC (r)dr2 − r2(dθ2 + sin2 θdφ2),

(12)

ds2|E = eνE (r)dt2 − eλE (r)dr2 − r2(dθ2 + sin2 θdφ2),

(13)

ds2|B =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2
(
dθ2 + sin2 θdφ2

)
. (14)

The exterior of a star for the Region B is the Schwarz-
schild exterior solution which is given in Eq. (14).

3 Conditions for a physically realistic core-envelope
model

In order to make the model physically doable, one needs to
verify the following conditions in core (Region C), enve-
lope (Region E) and exterior regions (Region B) (conditions
developed by [38] are further augmented):

(i) Geometrical non-singularity: The metric potentials
and matter variables should be defined at the center
and should be well behaved throughout the inside of
the star [38].

(ii) Density and pressures trends: The matter density ρ,
radial pressure pr and transverse pressure pt the core
and envelope of the star should be continuous at the
junction, positive and monotonically decreasing out-
ward. Further, the pressure-density ratios should be
positive and less than 1 throughout within the star (Zel-
dovich’s condition [40]) and continuous at the junc-
tion.

(iii) Mass-radius relation, Red-shift and Compactifica-
tion factor: The mass function m(r), compactification
parameter u(r) and gravitational red shift z(r) for the
core and the envelope of the star should be continuous
at the junction and increasing and decreasing respec-
tively with the radial coordinate r .

(iv) Anisotropic constant Δ: The radial pressure should
coincides with the tangential pressure at the center

of the star i.e. Δ = 0 and should be monotonically
increasing outward and asymptotic at the boundary.
Further, for core-envelope model Δ should be contin-
uous at the junction.

(v) Causality condition: The radial sound speed of a com-
pact star model should satisfy the causality condition
at the center and should be monotonically decreasing
outward besides being continuous at the junction.

(vi) Adiabatic index: The adiabatic index should be con-
tinuous at the junction and should satisfy the Bondi
condition.

(vii) Energy conditions: The core and the envelope for the
star should satisfy the energy conditions besides being
continuous at the junction.

(viii) TOV condition: The TOV condition should be satis-
fied within the star and all the three forces should be
continuous at the junction resulting the system to be
in static equilibrium.

(ix) At the stellar boundary pr (RE ) = 0 [38].
(x) The metric potentials of the core region should match

smoothly with the gravitational potentials of the enve-
lope region [38].

(xi) The gravitational potentials of the envelope layer
should connected smoothly over the boundary with
the Schwarzschild exterior metric [38].

4 Relativistic core-envelope model

For core region (0 ≤ r ≤ RC ), we choose a new function for
metric potential grr (= eλ) also satisfying linear EOS

z = e−λC = ax

(bx + 1)2 + 1, (15)

prC = αρ − β, (16)

where a, b, α, and β are constants. Substituting z value from
Eq. (15) in Eq. (11) and using Eqs. (8, 9, 15) and Eq. (16),
we obtain the following differential equation:

y′(x)
y(x)

+ a(3α + (1 − α)bx + 1) + 8πβ(bx + 1)3

2(bx + 1)
(
ax + (bx + 1)2

) = 0.

(17)

On integrating Eq. (17), we obtain

y = eνC

= c1(bx + 1)2αep2−4πβx p
2πaβ
b2 −α

1 , (18)

where

p1 = ax + (bx + 1)2,

p2 =
√
a

(
4πβ(a + 2b) + (α + 1)b2

)
tanh−1

(
a+2b(bx+1)√

a
√
a+4b

)

b2
√
a + 4b

,
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and c1 is an integration constant. In view of Eqs. (15) and
(18) the system of Eqs. (8)–(11) becomes

ρC = a(bx − 3)

8π(bx + 1)3 , (19)

prC = aα(bx − 3)

8π(bx + 1)3 − β, (20)

ptC = d1 + d2 + d3

d4
, (21)

ΔC = ptC − ptC , (22)

where

d1 = a2x
(
α2(bx−3)2 − 4αbx(bx−7) + bx(2 − bx)+3

)
,

d2 = 32πβ(bx + 1)6(2πβx − 1),

d3 = 4a(bx + 1)2(α(−(bx(bx − 8) + 3))

−4πβx(bx + 1)((α + 2)bx − 3α)),

d4 = 32π(bx + 1)4
(
ax + (bx + 1)2

)
.

The metric potentials e−λC , eνE and matter variables are con-
tinuous and well behaved in the core region.

For envelope region (RC ≤ r ≤ RE ), we choose the same
type of metric potential grr but satisfying quadratic EOS

z = e−λE = ax

(bx + 1)2 + 1, (23)

prE = Pρ2 − Q, (24)

where a, b, P and Q are constants. Putting z value from Eq.
(23) in Eq. (11) and using Eqs. (8, 9, 23) and Eq. (24), we
obtain the following differential equation:

4πQ
ax

(bx+1)2 + 1
+ a

2(bx + 1)2
(

ax
(bx+1)2 + 1

) + y′(x)
y(x)

=
(

ax
(bx+1)2 + 1

) (
a2P(bx − 3)2

)

4π(bx + 1)6 . (25)

On integrating Eq. (25), we get

y = eνE = C2d9e
d5+d6

48π (26)

where C2 is an integration constant. In view of Eqs. (23) and
(26) the system of Eqs. (8)–(11) becomes,

ρE = a(bx − 3)

8π(bx + 1)3 , (27)

prE = a2P
(
br2 − 3

)2

64π2
(
br2 + 1

)6 − Q, (28)

ptE = d11 + d12 + d13 − d14d15

d10
, (29)

ΔE = ptE − prE , (30)

where

d5 = P
(
a(3bx(9bx + 22) + 55) + 48b(bx + 1)2

)

(bx + 1)3

−192π2Qx,

d6 =
3 (d7 − d8) tanh−1

(
a+2b(bx+1)√

a
√
a+4b

)

√
ab2

√
a + 4b

,

d7 = 64π2aQ(a + 2b)

d8 = b2
(

9a2P + 42abP − 16πa + 32b2P
)

d9 = (bx + 1)−
3P(3a+8b)

16π

(
ax + (bx + 1)2

) 2πaQ
b2 + 3P(3a+8b)

32π
,

d10 = 2048π3(bx + 1)10
(
ax + (bx + 1)2

)
,

d11 = a4P2x(bx − 3)4 − 2048π3abQx2(bx + 1)9,

d12 = −32πbPx2(bx − 3)(3bx − 17)(abx + a)3

d13 = 2048π3Q(bx + 1)12(2πQx − 1),

d14 = 32πa2(bx − 3)(bx + 1)5

d15 = P(x(b(x(4πbQx + 3b − 8πQ) − 18) − 12πQ) + 3)

+2πx(bx + 1)2.

5 Junction conditions

Junction conditions implies that the continuity of gravita-
tional potentials and radial pressure at the junction and at the
boundary. Hence, we get the following two set of conditions:

5.1 Junction conditions at the interface of core-envelope
regions

eλC (RC ) = eλE (RC ), (31)

eνC (RC ) = eνE (RC ), (32)

prC (RC ) = prE (RC ). (33)

5.2 Junction conditions at the envelope and the boundary

The envelope metric potentials in the Eq. (13) must be con-
nected smoothly over the boundary (i.e. at r = RE ) with the
Schwarzschild exterior solution which is given in Eq. (14).
It implies that

eλE (RE ) =
(

1 − 2M

RE

)−1

, (34)

eνE (RE ) =
(

1 − 2M

RE

)
, (35)

and

prE (RE ) = 0, (36)
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Fig. 1 Variation of metric potentials with radial coordinate r for (i)
the neutron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1
(lower)

where RE is the radius of the star.
The six matching conditions (31–36)along with the eleven

constants, namely a, b, P, Q, C1, C2, RC , RE , M, α, β

form an undetermined system of equations. Solving the above
system of equations, the mass M of the star is obtained as

M = − aR3
E

2
(
bR2

E + 1
)

2
, (37)

and radius RE is obtained from the following expression

Q = a2P
(
bR2

E − 3
)

2

64π2
(
bR2

E + 1
)

6
, (38)

Fig. 2 Variation of density with radial coordinate r for (i) the neutron
star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1 (lower)

and the constants C1, C2, β are of the form

C1 = C2σ6σ7 exp

⎛
⎝− 3(σ1+σ2)σ3√

ab2
√
a+4b

+ σ4 + σ5

48π

⎞
⎠ , (39)

C2 = σ12σ13e
−

3σ8σ9√
ab2√

a+4b
−σ10+σ11

48π , (40)

β =
a

(
− aP

(
bR2

C−3
)

2
(
bR2

C+1
)

6 + aP
(
bR2

E−3
)

2
(
bR2

E+1
)

6 + 8πα
(
bR2

C−3
)

(
bR2

C+1
)

3

)

64π2 ,

(41)
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Fig. 3 Variation of pressures with radial coordinate r for ((i) the neu-
tron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1
(lower)

where

σ1 = a2
(

9b2P + 64π2(β − Q)
)

+ 32b4P,

σ2 = 2ab
(

21b2P + 8παb + 64π2(β − Q)
)

,

σ3 = tanh−1

(
a + 2b

(
bR2

C + 1
)

√
a
√
a + 4b

)
,

σ4 = 192π2R2
C (β − Q),

σ5 = P
(
3bR2

C

(
bR2

C (9a + 16b) + 22a + 32b
) + 55a + 48b

)
(
bR2

C + 1
)

3
,

Fig. 4 Variation of pressures and density ratios with radial coordinate
r for (i) the neutron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii)
Her X-1 (lower)

σ6 =
(
bR2

C + 1
) − 3P(3a+8b)

16π
−2α,

σ7 =
(
aR2

C +
(
bR2

C + 1
)

2
)
a
(

2π(Q−β)

b2 + 9P
32π

)
+α+ 3bP

4π

σ8 = 64π2aQ(a + 2b) − b2
(

9a2P + 42abP − 16πa + 32b2P
)

σ9 = tanh−1

(
a + 2b

(
bR2

E + 1
)

√
a
√
a + 4b

)

σ10 = 192π2QR2
E

σ11 = P
(
a

(
3bR2

E

(
9bR2

E + 22
) + 55

) + 48b
(
bR2

E + 1
)

2
)

(
bR2

E + 1
)

3
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Fig. 5 Variation of mass with radial coordinate r for (i) the
neutron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1
(lower)

σ12 =
(

1 − 2M

RE

)(
bR2

E + 1
)

3P(3a+8b)
16π

σ13 =
(
aR2

E +
(
bR2

E + 1
)

2
) − 2πaQ

b2 − 3P(3a+8b)
32π

The remaining six constants a, b, α, P, Q and RC

are free parameters. These constants are selected in such a
way that all the physical properties of the considered stellar
objects are well-behaved.

Fig. 6 Variation of red-shift with radial coordinate r for (i) the neutron
star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1 (lower)

6 Discussion and conclusion for the core-envelope model

6.1 Geometrical non-singularity

The metric potentials for the core of the neutron star in Vela
X-1, SMC X-4 and Her X-1 at the center (r = 0), the val-
ues of eν are positive constant and eλ = 1. This shows that
the metric potentials are regular and free from geometric
singularities at the center of the star. Further, both the met-
ric potentials eν and e−λ are continuous at the junction and
monotonically increasing and decreasing respectively with
the radial coordinate r as well (Fig. 1).
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Fig. 7 Variation of compactification factor with radial coordinate r for
(i) the neutron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her
X-1 (lower)

6.2 Doable tendency of physical parameters

6.2.1 Density and pressures trends

The matter density ρ, radial pressure pr and transverse pres-
sure pt for the core and envelope of the the neutron star in
Vela X-1, SMC X-4 and Her X-1 are continuous at the junc-
tion, positive and monotonically decreasing outward (Figs.
2, 3) [41]. Further, the stars satisfy Zeldovich’s condition
[40] i.e. the pressure-density ratios are positive and less than

Fig. 8 Variation of anisotropy with radial coordinate r for (i) the neu-
tron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1 (lower)

1 throughout within the stars and continuous at the junction
(Fig. 4).

6.2.2 Mass-radius relation, red-shift and compactification
factor

The mass function m(r) and gravitational red shift z(r) for
the core and the envelope of the neutron star in Vela X-1,
SMC X-4, Her X-1 are continuous at the junction and increas-
ing and decreasing respectively with the radial coordinate r

123
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Fig. 9 Variation of radial velocity with radial coordinate r for (i) the
neutron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1
(lower)

(Figs. 5, 6). Also, the compactification parameter u(r) for
the above stars is continuous at the junction and increasing
in nature with r (Fig. 7) and lies within the Buchdahl limit
[42].

6.2.3 Anisotropic constant

In Fig. 8, the radial pressure coincides with the tangential
pressure at the center of the stars and continuous at the junc-
tion and increasing outward [41].

Fig. 10 Variation of adiabatic index with radial coordinate r for (i) the
neutron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1
(lower)

6.2.4 causality condition

The radial sound speed of the neutron star in Vela X-1, SMC
X-4 and Her X-1 satisfie the causality condition at the center
and monotonically decreasing outward with the continuity at
the junction. The profile of v2

r of both core and envelope of
the stars are given in Fig. 9.
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Fig. 11 Variation of energy conditions with radial coordinate r for (i)
the neutron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1
(lower)

6.2.5 Adiabatic index

For a relativistic anisotropic sphere the stability counts on the
adiabatic index �r , the ratio of two specific heats, defined by
[43],

�r = ρ + pr
pr

∂pr
∂ρ

.

Bondi [44] suggested that for a stable Newtonian sphere,
� value should be greater than 4

3 . The profiles of adiabatic
indexes of the core and the envelope of both the stars are
plotted in Fig. 10. From the Fig. 10, it is clear that the adia-

Fig. 12 Variation of balancing forces with radial coordinate r for (i)
the neutron star in Vela X-1(upper) (ii) SMC X-4 (middle) (iii) Her X-1
(lower)

batic indexes are continuous at the junction and satisfies the
Bondi condition [44].

6.2.6 Energy conditions

For a physically stable configuration, the core and the enve-
lope for the star should satisfy the following inequalities
simultaneously (which are known as energy conditions [18]):
(i) null energy condition ρ + pr ≥ 0 (NEC) (ii) weak energy
conditions ρ+ pr ≥ 0, ρ ≥ 0 (WECr ) and ρ+ pt ≥ 0, ρ ≥ 0
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Table 1 Values of constants that generate masses, core and envelope radii (RC , RE ) for the three well-known compact stars

a (km)−2 b (km)−2 P (km)−2 Q (km)−2 α(km)−2 β(km)−2 RC (km) RE (km) M(M�) Star

Model I −0.007354 0.0038 108 1.088 ×10−5 0.170708 7.833 ×10−5 2.9 9.56 1.77 Vela X-1

Model II −0.00607 0.0035 115 1.173 ×10−5 0.1502 6.077 ×10−5 3.00547 8.831 1.29 SMC X-4

Model III −0.005098 0.004 90 0.685 ×10−5 0.093761 3.127 ×10−5 3.45 8.1 0.85 Her X-1

Table 2 The variation of physical parameters, i.e., adiabatic index, density, radial pressure and red-shift for three well-known neutron stars i.e. (i)
Vela X-1 (ii) SMC X-4 and (iii) Her X-1 for the values of G = 6.67 × 10−11m3kg−1s−2, M� = 2 × 1030kg and C = 3 × 108ms−1

Neutron stars Vela X-1 SMC X-4 Her X-1

Center Junction Boundary Center Junction Boundary Center Junction Boundary

Adiabatic index (�) 2.26596 2.55535 ∞ 2.41454 2.77866 ∞ 2.3068 2.87442 ∞
Density (ρ) (g/cm3 × 1015) 0.746767 0.672276 0.27 0.612674 0.552173 0.27 0.595324 0.509574 0.27

Radial pressure (Pr ) (dyne/cm2 × 1034) 0.345393 0.273205 0 0.232105 0.180206 0 0.124505 0.0848173 0

Red-shift (z) 0.50226 0.474108 0.260175 0.341708 0.320245 0.188585 0.217897 0.197896 0.125

(WECt ) and (iii) strong energy condition ρ + pr + 2pt ≥ 0
(SEC). From the Fig. 11 it is clearly visible that the vari-
ation of energy conditions with r of the core and envelope
of the neutron star in Vela X-1, SMC X-4 and Her X-1 are
continuous at the junction and satisfying realistic conditions.

6.3 TOV equation of core-envelope model

Equilibrium state under three forces, i.e., the resultant of the
forces; gravitational (Fg), hydrostatic (Fh) and anisotropic
(Fa) must be zero throughout within the stars and continuous
at the junction. The TOV equation is given as [45]

− Mg(r)(ρ + pr )

r2 e(λ−ν)/2 − dpr
dr

+ 2Δ(r)

r
= 0, (42)

where Mg(r) is the gravitational mass within the radius r and
can be calculated as

Mg(r) = 1

2
r2ν′e(ν−λ)/2. (43)

from the Tolman-Whittaker formula and EFEs.
Equation (42) is equivalent to the following balanced force

equation

Fg + Fh + Fa = 0, (44)

where Fg , Fh and Fa respectively are components of Eqn.
(42) above.

From Fig. 12, we can visualize that the TOV condition is
satisfied within the stars and all the three forces are continu-
ous at the junction, thereby, concluding that the system is in
static equilibrium.

7 Conclusion

In this paper we have described an anisotropic spherically
symmetric core-envelope model of compact stars Vela X-1,
SMC X-4 and Her X-1 in which we equip core with linear
equation of state while the envelope as quadratic equation of
state so that the matter in the core becomes quark. From the
Figs. 1, 3, we can visualize that the core, envelope layers and
the Schwarzschild exterior connect smoothly at the junction.
The values of constants, parameters that generate masses,
core and envelope radii (RC , RE ) for the neutron star Vela
X-1, SMC X-4 and Her X-1 are given in Table 1. From the
Table 2, we can observe that the pressure in the core layer
has higher than in the envelope layer. Further, it justifies that
if the mass of the star increases then the value of central den-
sity higher and core shrinks due to the dominating effect of
gravity of astronomic objects of higher masses. The continu-
ity of metric potentials and physical quantities i.e pressures,
radial velocity, mass function, compactification factor, red-
shift, adiabatic indexes, balancing forces, pressure density
ratios and energy conditions are shown in figures for the
compact stellar objects Vela X-1, SMC X-4 and Her X-1.

Hence we conclude that our core-envelope model is phys-
ically doable and substantiate with the following stars:

(i) the neutron star in vela X-1 with mass M = 1.77M�
and radius RE = 9.56 km for the values of a =
−0.007354/km2, b = 0.0038/km2, P = 108/km2,
α = 0.170708 km2 and RC = 2.9 km;

(ii) the compact star SMC X-4 of mass M = 1.29M�
and radius RE = 8.831 km for the values of a =
−0.00607/km2, b = 0.0035/km2, P = 115/km2,
α = 0.1502/km2 and RC = 3.00547 km;
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(iii) the strange star Her X-1 of mass M = 0.85M�
and radius RE = 8.1km for the values of a =
−0.00005098/km2, b = 0.004/km2, P = 90/km2,
α = 0.0.093761/km2 and RC = 3.45 km;
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