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Abstract We put forward a two-Higgs-doublet model, fur-
nished with a Z3 symmetry, wherein CP is conserved in the
dimension-four terms of the Lagrangian and is softly bro-
ken in the scalar potential. The new particles of our model
are one neutral scalar H , one neutral pseudoscalar A, and
two charged scalars H±. In our model the only locus of
CP violation is the CKM matrix. Strong CP violation is
absent both at the tree and one-loop levels. We work out the
phenomenological constraints on our model, which features
flavour-changing neutral Yukawa interactions, showing that
the new scalar particles may in some cases be lighter than
500 GeV.

1 Introduction

Non-perturbative effects in Quantum Chromodynamics
(QCD) may lead to P and CP violation, characterized by a
parameter θ , in hadronic processes. The experimental upper
bound on the electric dipole moment of the neutron neces-
sitates θ � 10−9.1 The presence in the Lagrangian of this
unnaturally small parameter is known as the ‘strong CP
problem’.

The angle θ is the sum of two terms, θQCD and θQFD.
Here, θQCD is the value of a P- and CP-violating angle in
the QCD vacuum, and θQFD originates in the chiral rotation
of the quark fields needed to render the quark masses real and
positive. Let p and n denote the three up-type quarks and the
three down-type quarks, respectively, in a weak basis. Let the
mass terms of those quarks be given by

1 For a recente estimate of the maximum possible value of θ , see Ref.
[1].
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Lmass = − p̄L Mp pR − n̄L MnnR + H.c., (1)

where Mp and Mn are 3 × 3 matrices in flavour space. Then,
θQFD = arg det (MpMn).

There are two general approaches to solving the strongCP
problem. In the first approach it is claimed that θ has no sig-
nificance or physical consequences; theories with different
values of θ are equivalent and one may set θ to zero without
loss of generality. This may happen either because one of the
quarks is massless2 or because of the presence in the theory
of a Peccei–Quinn symmetry [3]; there are also claims that
QCD dynamics itself cures the strong CP problem.3 The
second approach, which we shall follow, acknowledges the
strong CP problem and tries to find some symmetry that
naturally leads to the smallness of θ . One firstly assumes
the dimension-four part of the Lagrangian to be either CP-
symmetric or P-symmetric; this assumption sets θQCD to
zero. The CP or P symmetry must be either softly or spon-
taneously broken; one performs this breaking in such a way
that θQFD turns out to be zero at the tree level, because of some
peculiar form of Mp and Mn . Still, it is difficult to avoid loop
contributions to θQFD arising from the quark self-energies �;
they add to the tree-level mass matrices M and then

arg det (M + �) ≈ Im[tr(M−1�)] (2)

is in general nonzero. Artful models are able to obtain
Im[tr(M−1

p �p)] + Im[tr(M−1
n �n)] equal to zero at the one-

loop level and sometimes even at the two-loop level.
There are various ways to achieve quark mass matrices

displaying arg det (MpMn) = 0. Most of those ways, col-

2 For a recent speculation that some quarks may be massless, see Ref.
[2].
3 For a recent instance of such a claim, see Ref. [4].
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lectively known as Barr–Nelson-type models4, employ extra
quarks. There are also many models for solving the strong
CP problem that use extra gauge symmetries, especially the
left–right symmetry SU (2)L × SU (2)R ×U (1)B−L . In this
paper we propose a simple extension of the Standard Model
(SM), with gauge group SU (2)L × U (1) and without any
extra fermions, that partially solves the strong CP problem.
Our model is a two-Higgs-doublet model (2HDM) [6].

In a 2HDM the quark Yukawa Lagrangian is

LYukawa = −
3∑

j,k=1

2∑

a=1

Q̄L j

×
[
�a (�a) jk nRk + �̃a (�a) jk pRk

]
+ H.c. (3)

where �a = (
φ+
a , φ0

a

)T
and �̃a = (

φ0
a
∗
, −φ−

a

)T
for a =

1, 2 are scalar doublets of SU (2)L. Furthermore, Q̄L j =(
p̄L j , n̄L j

)
, and the �a and �a are four 3 × 3 matrices in

flavour space containing the Yukawa coupling constants. We
expand the scalar doublets as

�a = eiℵa

(
φ+
a

(va + ρa + iηa)
/√

2

)
, (4)

where va exp (iℵa)
/√

2 = 〈
0
∣∣φ0

a

∣∣ 0
〉

and the va are non-

negative real by definition. We define v =
√

v2
1 + v2

2 =
2mW /g = 246 GeV and tan β ≡ v2/v1; then,

v1

v
= cos β,

v2

v
= sin β, (5)

where the angle β is in the first quadrant. There is one phys-
ical pseudoscalar A and one unphysical (Goldstone boson)
pseudoscalar G0:

(
G0

A

)
=
(
cβ sβ
sβ −cβ

)(
η1

η2

)
. (6)

(From now on, sξ ≡ sin ξ and cξ ≡ cos ξ for any needed
angle ξ ). There is a pair of physical charged scalars H± and
a pair of unphysical (Goldstone bosons) charged scalars G±:

(
G±
H±

)
=
(
cβ sβ
sβ −cβ

)(
φ±

1
φ±

2

)
. (7)

There are two physical neutral scalars h and H :

(
h
H

)
=
(

sα −cα

−cα −sα

)(
ρ1

ρ2

)
. (8)

The neutral scalar h is chosen to coincide with the LHC-
observed particle with mass 125 GeV. In our specific 2HDM

4 For a recent example of one such model, see Ref. [6]

there are softly-broken CP and Z3 symmetries such that
h and H do not mix with A. The interaction Lagrangian
between a scalar and a pair of gauge bosons is

LSV V = g

v

(
mWW−

ξ W ξ+ + mZ

2cθw

Zξ Z
ξ

)
(v1ρ1 + v2ρ2)

(9a)

= −g

(
mWW−

ξ W ξ+ + mZ

2cθw

Zξ Z
ξ

) (
hsβ−α + Hcβ−α

)
,

(9b)

where θw is Weinberg’s angle. Because of the LHC data we
now know that

∣∣sβ−α

∣∣ ≈ 1.
The quark mass matrices are

Mn = v1eiℵ1�1 + v2eiℵ2�2√
2

, (10a)

Mp = v1e−iℵ1�1 + v2e−iℵ2�2√
2

. (10b)

Let the unitary matrices Un,p
L ,R bi-diagonalize Mn and Mp as

Un
L

†MnU
n
R = Md ≡ diag (md , ms, mb) , (11a)

U p
L

†
MpU

p
R = Mu ≡ diag (mu, mc, mt ) . (11b)

The CKM matrix is

V = U p
L

†
Un

L . (12)

We define

Nn = v2eiℵ1�1 − v1eiℵ2�2√
2

, (13a)

Np = v2e−iℵ1�1 − v1e−iℵ2�2√
2

, (13b)

and

Nd = Un
L

†NnU
n
R, (14a)

Nu = U p
L

†
NpU

p
R . (14b)

Then, the Yukawa interactions in the physical basis are given
by

Lphysical = i A

v
ū(Nu PR − N †

u PL)u (15a)

+ i A

v
d̄(N †

d PL − Nd PR)d (15b)

+h

v
ū[(sβ−αMu − cβ−αN

†
u )PL

+(sβ−αMu − cβ−αNu)PR]u (15c)

+h

v
d̄[(sβ−αMd − cβ−αN

†
d )PL

+(sβ−αMd − cβ−αNd)PR]d (15d)

+H

v
ū[(cβ−αMu + sβ−αN

†
u )PL

+(cβ−αMu + sβ−αNu)PR]u (15e)
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+H

v
d̄[(cβ−αMd + sβ−αN

†
d )PL

+ (cβ−αMd + sβ−αNd)PR]d (15f)

+
√

2H+

v
ū(N †

u V PL − V Nd PR)d (15g)

+
√

2H−

v
d̄(V †Nu PR − N †

d V
†PL)u, (15h)

where PL = (1−γ5)/2 and PR = (1+γ5)/2 are the projec-
tors of chirality. Also, u and d are column vectors subsum-
ing the fields of the physical up-type and down-type quarks,
respectively. In Eq. (15) we have omitted the Yukawa interac-
tions of the Goldstone bosons; they have the same Lagrangian
as in the SM.

In this paper we put forward a 2HDM where CP is con-
served in the dimension-four terms of the Lagrangian, hence
θQCD = 0, and det (MpMn) is real both because of CP and
because of a Z3 symmetry. (Another symmetry-furnished
2HDM that also purported to alleviate the strong CP prob-
lem was proposed long time ago [7]). Remarkably, our model
provides for the absence of strong CP violation even at the
one-loop level.

In Sect. 2 we explain our model. In Sect. 3 we demon-
strate that strong CP violation vanishes at the one-loop level
in our model. Section 4 is devoted to the phenomenological
constraints on the model. Section 5 contains the main con-
clusions of our work. Appendices A, B, and C present some
formulas used in the analysis of Sect. 4. Appendix D gives a
benchmark point for the parameters of the model.

2 The model

Our model is a 2HDM supplemented by the standard CP
symmetry and by a Z3 symmetry. Let ω = exp (2iπ/3),
then the Z3 symmetry reads

�2 → ω2�2, (16a)

QL1 → ω2QL1, QL2 → ωQL2, (16b)

nR3 → ωnR3, (16c)

pR1 → ωpR1, pR2 → ωpR2. (16d)

This represents just a slight change from the Z3 symmetry
of the 2HDM of Ref. [8].

Both CP and Z3 are softly broken by terms in the
quadratic part of the scalar potential. Soft breaking of a sym-
metry consists in that symmetry holding in all the Lagrangian
terms of dimension higher than some value, but not holding
for the Lagrangian terms of dimension smaller than, or equal
to, that value. In our case, both CP and Z3 hold for terms of
dimension four but are broken by terms of dimension two, viz.
by the terms with coefficient μ3 in line (17a). In principle,
a model with a softly broken symmetry should eventually

be justified through an ultraviolet completion, viz. a more
complete model, with extra fields active at higher energies,
which effectively mimics at low energy scales the model with
the softly-broken symmetry. Unfortunately, such a ultravio-
let completion is often quite difficult to construct explicitly
– we attempted such a construction by adding singlet scalar
fields to the theory, who would develop vevs at some high
scale and then be “integrated out”, leaving the desired low
energy potential with only two doublets. However, we were
unable to build such extensions that left both the CP and Z3

symmetries intact at low energies – which of course does not
mean such an UV completion does not exist. In the absence
of any such explicit construction, a softly broken symmetry
constitutes a strong, non-trivial assumption. This is, certainly,
a weakness of the model in this paper.

The softly broken CP and Z3 scalar potential is written
as

V = μ1 �
†
1�1 + μ2 �

†
2�2

−μ3(e
−iℵ�

†
1�2 + eiℵ�

†
2�1) (17a)

+λ1

2
(�

†
1�1)

2 + λ2

2
(�

†
2�2)

2

+λ3 �
†
1�1 �

†
2�2 + λ4 �

†
1�2 �

†
2�1, (17b)

where μ3 is real and positive by definition. The terms with
coefficient μ3 break the symmetry Z3 softly. The phase ℵ
breaks CP softly.

The vacuum expectation values 〈0|φ0
a |0〉 = va exp (iℵa)/√

2 have phases ℵa such that ℵ2 − ℵ1 = ℵ offsets the phase
−ℵ of the term −μ3e−iℵ�

†
1�2 of the scalar potential. Thus,

there is one gauge-invariant vacuum phase that offsets one
phase in the potential, with the consequence that the poten-
tial of the physical scalar fields is CP-invariant, in particular
there is no mixing between the scalars h and H and the pseu-
doscalar A. The stationarity equations for the vacuum are

μ1v
2
1 + λ1

2
v4

1 = μ2v
2
2 + λ2

2
v4

2

= μ3v1v2 − λ3 + λ4

2
v2

1v2
2 . (18)

Referring to Eq. (4) and defining

Ta = ρ2
a + η2

a

2
+ φ−

a φ+
a (19)

for a = 1, 2, the potential is then

V = −λ1v
4
1 + λ2v

4
2

8
− λ3 + λ4

4
v2

1v2
2 (20a)

+μ3

(
v2

v1
T1 + v1

v2
T2 − ρ1ρ2

− η1η2 − φ−
1 φ+

2 − φ−
2 φ+

1

)
(20b)
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+
2∑

a=1

λa

2
(vaρa + Ta)

2

+ (λ3 + λ4) (v1ρ1 + T1) (v2ρ2 + T2) (20c)

− λ4

2

{[
(v1 + ρ1) φ−

2 − (v2 + ρ2) φ−
1

]

× [
(v1 + ρ1) φ+

2 − (v2 + ρ2) φ+
1

]
(20d)

+ (
η1φ

−
2 − η2φ

−
1

) (
η1φ

+
2 − η2φ

+
1

)
(20e)

+ i
(
φ−

2 φ+
1 − φ−

1 φ+
2

)
[η1 (v2 + ρ2)

− η2 (v1 + ρ1)]} . (20f)

The potential (20) is invariant under the CP transformation

CP :

⎧
⎪⎪⎨

⎪⎪⎩

φ−
a (x) → exp (iλ) φ+

a (x̄) ,

φ+
a (x) → exp (−iλ) φ−

a (x̄) ,

ρa (x) → ρa (x̄) ,

ηa (x) → −ηa (x̄) ,

(21)

for a = 1, 2, where x = (t, r) and x̄ = (t, −r). The phase
λ in the CP transformation (21) is arbitrary.

The physical potential contains seven parameters μ1,2,3

and λ1,2,3,4, since the phase ℵ in line (17a) is cancelled out
by the vacuum phase. Instead of those seven parameters we
will use as input v = 246 GeV, mh = 125 GeV, the angles α

and β, and the masses mH of H , mA of A, and mH+ of H±.
Then [9],

μ3 = m2
Asβcβ, (22a)

λ1 = −m2
As

2
β + m2

hs
2
α + m2

Hc
2
α

v2c2
β

, (22b)

λ2 = −m2
Ac

2
β + m2

hc
2
α + m2

Hs
2
α

v2s2
β

, (22c)

λ3 = 2m2
H+ − m2

A

v2 + (m2
H − m2

h)sαcα

v2sβcβ

, (22d)

λ4 = 2(m2
A − m2

H+)

v2 . (22e)

In order for the potential to be bounded from below, one
must impose the conditions [6]

λ1 > 0, λ2 > 0, λ3 > −√λ1λ2, λ3 + λ4 > −√λ1λ2.

(23)

In order to avoid the situation of ‘panic vacuum’ [9] one must
enforce the condition [10]

2μ3

v1v2
> λ3 + λ4 −√

λ1λ2. (24)

The conditions in order for tree-level unitarity not to be vio-
lated are

|λ1| < 8π, (25a)

|λ2| < 8π, (25b)

|λ3| < 8π, (25c)

|λ3 + λ4| < 8π, (25d)

|λ3 − λ4| < 8π, (25e)

|λ3 + 2λ4| < 8π, (25f)∣∣∣∣λ1 + λ2 +
√

(λ1 − λ2)
2 + 4λ2

4

∣∣∣∣ < 16π, (25g)
∣∣∣∣3λ1 + 3λ2 +

√
9 (λ1 − λ2)

2 + 4 (2λ3 + λ4)
2

∣∣∣∣ < 16π.

(25h)

Because of the Z3 symmetry (16), the matrices �a and �a

are

�1 =
⎛

⎝
0 0 0
0 0 b1

d1 f1 0

⎞

⎠ , �2 =
⎛

⎝
d2 f2 0
0 0 0
0 0 b2

⎞

⎠ , (26a)

�1 =
⎛

⎝
0 0 0
p1 q1 0
0 0 r1

⎞

⎠ , �2 =
⎛

⎝
p2 q2 0
0 0 r2

0 0 0

⎞

⎠ . (26b)

The dimensionless numbers ba , da , fa , pa , qa , and ra (a =
1, 2) are real because of the CP symmetry. Clearly,

Mn = 1√
2

⎛

⎝
d2v2eiℵ2 f2v2eiℵ2 0

0 0 b1v1eiℵ1

d1v1eiℵ1 f1v1eiℵ1 b2v2eiℵ2

⎞

⎠ , (27a)

Mp = 1√
2

⎛

⎝
p2v2e−iℵ2 q2v2e−iℵ2 0
p1v1e−iℵ1 q1v1e−iℵ1 r2v2e−iℵ2

0 0 r1v1e−iℵ1

⎞

⎠ . (27b)

Therefore

det
(
MnMp

) = v4
1v2

2

8
b1 (d1 f2 − d2 f1) r1 (p2q1 − p1q2)

(28)

is real, hence θQFD = 0. Because of the assumed CP invari-
ance of the quartic part of the Lagrangian, θQCD = 0 too.
Thus, θ = θQCD + θQFD = 0, i.e. there is no strong CP
violation at the tree level.

We now define

βa ≡ arg ba, δa ≡ arg da, ϕa ≡ arg fa, (29a)

πa ≡ arg pa, χa ≡ arg qa, �a ≡ arg ra, (29b)

for a = 1, 2; and

�β ≡ β2 − β1, �δ ≡ δ2 − δ1, �ϕ ≡ ϕ2 − ϕ1, (30a)

�π ≡ π2 − π1, �χ ≡ χ2 − χ1, �� ≡ �2 − �1. (30b)

All the phases in equations (29) and (30) are either 0 or
π because ba, da, . . . , ra are real. We define the diagonal
matrices

123
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XLn = diag
(

1, ei(2ℵ+�δ+�β), ei(ℵ+�δ)
)

, (31a)

XRn = diag
(
ei(−ℵ2−δ2), ei(−ℵ2−ϕ2), ei(ℵ1−2ℵ2−�δ−β2)

)
,

(31b)

XLp = diag
(

1, ei(−ℵ+�π), ei(−2ℵ+�π+��)
)

, (31c)

XRp = diag
(
ei(ℵ2−π2), ei(ℵ2−χ2), ei(2ℵ2−ℵ1−�π−�2)

)
,

(31d)

where ℵ = ℵ2 − ℵ1. We then have

XLnMnXRn = 1√
2

⎛

⎝
|d2v2| | f2v2| 0

0 0 |b1v1|
|d1v1| | f1v1| ei(�δ−�ϕ) |b2v2|

⎞

⎠

(32a)

≡ M ′
n, (32b)

XLpMpXRp = 1√
2

⎛

⎝
|p2v2| |q2v2| 0
|p1v1| |q1v1| ei(�π−�χ) |r2v2|

0 0 |r1v1|

⎞

⎠

(32c)

≡ M ′
p. (32d)

The matrices M ′
n and M ′

p are real, therefore they may be
bi-diagonalized through real orthogonal matrices OLn , ORn ,
OLp, and ORp as

OLnM
′
nORn = Md , OLpM

′
pORp = Mu . (33)

Therefore, in the notation of Eq. (11),

Un
L

† = OLnXLn, Un
R = XRnORn,

U p
L

† = OLpXLp U p
R = XRpORp. (34)

The CKM matrix is then

V = OLp × diag

×
(

1, ei(−3ℵ+�π−�δ−�β), ei(−3ℵ+�π−�δ+��)
)

× OT
Ln .

(35)

One sees that the CKM matrix is complex because of the
presence of the phase 3ℵ.

When we compute the matrices Np and Nn defined in
Eq. (13), we find that

XLnNnXRn = 1√
2

⎛

⎝
− |d2v1| − | f2v1| 0

0 0 |b1v2|
|d1v2| | f1v2| ei(�δ−�ϕ) − |b2v1|

⎞

⎠

(36a)

≡ N ′
n, (36b)

XLpNpXRp = 1√
2

⎛

⎝
− |p2v1| − |q2v1| 0
|p1v2| |q1v2| ei(�π−�χ) − |r2v1|

0 0 |r1v2|

⎞

⎠

(36c)

≡ N ′
p, (36d)

and then, from Eq. (14),

Nd = OLnN
′
nORn, Nu = OLpN

′
pORp. (37)

The matrices Nd and Nu are real.
Thus, in our model

1. The CKM matrix is complex.
2. The matrices Nu and Nd are real.
3. There is one pseudoscalar A that does not mix with the

scalars h and H .
4. There is no CP violation in the cubic and quartic inter-

actions of the scalars.

In our model CP violation is located solely in the CKM
matrix and originates entirely in the phase 3ℵ. This is the
same that happened in the model of Ref. [8]; however, in that
model there was strong CP violation, while in the present
model strong CP violation is absent at the tree level.

3 No strong CP violation at the one-loop level

At one-loop level the diagonal and real quark mass matrices
Mq (where q may be either u or d) get corrected by self
energy diagrams: Mq → Mq +�q . If the diagonal elements
of �q are complex, then Im[tr(M−1

q �q)] may be nonzero
and strong CP violation may arise.

In our model there are no complex phases except in the
CKM matrix. Since the matrices Nq are real, and since the
scalars h and H do not mix with the pseudoscalar A, the �q

generated through the emission and reabsorption (E&R) by
the quarks of either h or H or A are real, hence innocuous.
The same happens with the �q generated through the E&R of
Z0 gauge bosons. On the other hand, diagrams with the E&R
of W± gauge bosons do not generate mass renormalization
(they just produce wavefunction renormalization), since the
coupling of W± to the quarks is purely left-handed. There-
fore, the only diagrams where the complex matrix V arises,
and might produce complex �q , are the ones with E&R of
charged scalars H±.

The Yukawa interactions of the charged scalars are given
by lines (15g) and (15h). They contain two complex matrices,
X ≡ N †

u V and Y ≡ V Nd . The one-loop self-energy of an
up-type quark uα caused by the E&R of H+ and a down-type
quark d j is

123
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− i�α (p) = 2

v2 μ4−d
∫

ddk

(2π)d

1

k2 − m2
j

1

(k − p)2 − m2
H+

(38a)

×(Xα j PL − Yα j PR)( � k + m j )

×(X†
jαPR − Y †

jαPL) (38b)

= 2

v2 μ4−d
∫

ddk

(2π)d

∫ 1

0
dx

1

(k2 − � j )2 (38c)

×(x |Xα j |2 � pPR + x |Yα j |2 � pPL
−Xα jm jY

†
jαPL − Yα jm j X

†
jαPR), (38d)

where

� j = p2x2 + (−p2 + m2
H+ − m2

j )x + m2
j (39)

and we perform the computation in a space–time of dimen-
sion d. Thus, the only potentially complex part of the self-
energy is

�α ( � p → 0) = −
∫ 1

0
dx

Xα jm jY
†
jαPL + Yα jm j X

†
jαPR

8π2v2

×
(

2

4 − d
− γ − ln

� j

4πμ2

)
, (40)

where γ is Euler–Mascheroni’s constant. One must sum the
expression in the right-hand side of Eq. (40) over the flavour
j of the quark d j .

The one-loop value of the strong-CP parameter θ is
Im[tr(M−1

u �u + M−1
d �d)]. The diagonal matrix elements

of M−1
u �u are m−1

α �α ( � p → 0). Now,

∑

α

Xαi Y
†
jα

mα

=
∑

α

(N †
d V

†) jα
1

mα

(N †
u V )αi (41a)

= (N †
d V

†M−1
u

†
N †
u V ) j i (41b)

= (Un
R

†N †
n M

−1
p

†
N †

pU
n
L) j i . (41c)

Therefore,

∑

α, j

Xα jm jY
†
jα f (m2

j )

mα

=
∑

j

f (m2
j )m j (U

n
R

†N †
n M

−1
p

†
N †

pU
n
L) j j (42a)

= tr[Un
L f (MdM

†
d )MdU

n
R

†N †
n M

−1
p

†
N †

p] (42b)

= tr[ f (MnM
†
n )MnN

†
n M

−1
p

†
N †

p]. (42c)

One easily finds that, in our model, both matrices MnM
†
n and

MnN
†
n M−1

p
†
N †

p, and all of their products too, have a structure
of phases of the form

⎛

⎝
0 2ℵ ℵ

−2ℵ 0 −ℵ
−ℵ ℵ 0

⎞

⎠ , (43)

where ℵ = ℵ2 −ℵ1. Therefore, the diagonal matrix elements
of f (MnM

†
n )MnN

†
n M−1

p
†
N †

p, and hence its trace, are real, no
matter what the function f is.

In this way we have demonstrated that tr(M−1
u �u) is real.

In a similar way one may show that tr(M−1
d �d) is also real,

hence strong CP violation vanishes at the one-loop level in
our model.

4 Phenomenological analysis of the model

4.1 Constraints

We proceed to analyse how our model conforms to the exper-
imental results. The model has tree-level flavour-changing
neutral currents (FCNC) coupling to the scalars, so there
is a wealth of flavour-physics observables that need to be
taken into account whilst performing a fit of the model to
the experimental data. Our procedure involves a global fit
of the model’s parameters, simultaneously requiring compli-
ance with the theoretical and experimental bounds from the
gauge, scalar, and fermionic sectors.

One may rotate the right-handed quarks nR1 and nR2

between themselves in such a way that the entry f2 of the
Yukawa-coupling matrix �2 becomes zero. Similarly, one
may rotate pR1 and pR2 so that q2 becomes zero.5,6 We use
as input the ten entries b1, d1, f1, b2, d2, p1, q1, r1, p2,
and r2 ( f2 and q2 are set to zero) of the Yukawa-coupling
matrices (26), allowing those entries to be either positive or
negative. We further input the CP-violating phase ℵ. We
fit these eleven parameters in order to reproduce the quark
masses [11]7

mu = (2.2 ± 2 × 0.6) MeV, (44a)

md = (4.7 ± 2 × 0.5) MeV, (44b)

ms = (96 ± 2 × 8) MeV, (44c)

mc = (1.28 ± 0.03) GeV, (44d)

mb = (4.18 ± 0.04) GeV, (44e)

5 Notice that nR1 and nR2 transform in the same way under the Z3
symmetry (16), and pR1 and pR2 also transform in the same way under
that symmetry.
6 With f2 = q2 = 0, the phases �ϕ and �χ in Eq. (30) become
meaningless. That has no impact on our reasonings, in particular the
matrix V in Eq. (35) does not depend on those phases.
7 We have doubled the uncertainty intervals quoted in Ref. [11] for the
masses of the light quarks u, d, and s; we have done this because of
the large theoretical indefinition, due to QCD considerations, as to what
exactly should be interpreted as the value of those masses.
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mt = (173.2 ± 0.6) GeV, (44f)

and the CKM-matrix observables [11]

|Vus | = 0.2243 ± 0.0005, (45a)

|Vcb| = 0.0422 ± 0.0008, (45b)

|Vub| = 0.00394 ± 0.00036, (45c)

γ ≡ arg

(
−VudV ∗

ub

VcdV ∗
cb

)
= (73.5 ± 5.5)◦ . (45d)

We furthermore input tan β = v2/v1. We compute the matri-
ces N ′

n and N ′
p through Eq. 36), and the matrices Nd and

Nu through Eq. (37). Finally, we input α and get to know
Lphysical in Eq. 15).8

In the scalar potential (17) there are seven independent
parameters μ1,2,3 and λ1,2,3,4. We input instead the seven
observables

1. v =
√

v2
1 + v2

2 = 246 GeV, which produces the correct

masses for the electroweak gauge bosons W± and Z0;
2. the lightest CP-even-scalar mass mh = 125 GeV, corre-

sponding to the Higgs boson observed at the LHC;
3. the angle β = arctan (v2/v1);
4. the angle α;
5. the remaining scalar masses—mH of the second CP-even

scalar, mA of the pseudoscalar, and mH+ of the charged
scalar.

The last five parameters must be found through the fitting pro-
cedure. We have constrained mH+ to be larger than 100 GeV
and mH and mA to be larger than 130 GeV. We have further-
more assumed all three masses to be smaller than 1.2 TeV;
values of the masses larger than 1.2 TeV would certainly be
allowed by the fitting procedure.

The quartic couplings of the model are determined via
Eq. (22). We check that the scalar potential is bounded from
below, that it does not have a panic vacuum, and that it sat-
isfies unitarity, viz. we check conditions (23, 24, 25). The
constraints from the electroweak oblique parameters S and
T are also imposed, by using the expressions for the 2HDM
in refs. [12,13].

We will now go into detail about the further constraints
that we have imposed.

• We implement theb → sγ bound described in Appendix A,
including the contributions from both the neutral and the
charged scalars.

• The most relevant bounds on the off-diagonal entries
of the matrices Nd and Nu come from flavour-physics

8 The angle α may be restricted to lie either in the first quadrant or in
the fourth quadrant [6].

observables, specifically the K , Bd , Bs , and D neutral-
meson mass differences, and the CP-violating param-
eter εK . We detail the computation of those quantities,
and the requirements on them that we use in our fit, in
Appendix B.

• The Z → bb̄ constraints described in Appendix C
are also taken into account. In this case we use only
the charged-scalar contributions; the neutral-scalar ones
should be negligible.

• For the regions of parameter space where mt > mq +
mH+ , q being a down-type quark, or where mt > mq +
mS , q being either c or u and S being either h or H or
A, we require that the branching ratio for each of the
kinematically viable t → light quark+ scalar decays be
smaller than 5 × 10−3, in accordance with the current
results on FCNC top decays and on the total top-quark
width [11].

• In order that the scalar h of our model complies with the
observational data from the LHC—it should be SM-like
in its behaviour—we require that its couplings to the elec-
troweak gauge bosons and to the top and bottom quarks
do not deviate significantly from the SM expectations.
We achieve this by focusing on the coupling modifiers
κX defined as ghZ Z = κZ gSM

hZ Z , ghWW = κW gSM
hWW ,

ght t̄ = κt gSM
ht t̄ , and ghbb̄ = κb gSM

hbb̄
. In our model

κZ = κW ≡ κV and

κV = sβ−α, κt = sβ−α − cβ−α (Nu)33

mt
,

κb = sβ−α − cβ−α (Nd)33

mb
, (46)

cf. Eqs. (15c) and (15d). In the first stage of the fit we
constrain these couplings to obey 0.8 ≤ κV ≤ 1, 0.8 ≤
κt ≤ 1.2, and 0.8 ≤ |κb| ≤ 1.2,9,10 in order to roughly
reproduce the LHC results. A second stage of the analysis
further constrains these couplings, as detailed below.

A numerical scan of the parameter space of the model,
in both the scalar and Yukawa sectors, was performed to
discover points that obey all the constraints described above.
It must be stressed that we have introduced nowhere in our
scan a ‘no-fine-tuning’ assumption: we have tolerated any
set of input values that led to the right outputs, even if either
the input values or any intermediate computations displayed
either ‘fine-tunings’ or ‘unnatural cancelations’. Strong fine-
tunings are often required in order to fit the D-meson mass

9 Notice that we allow the possibility of a ‘wrong-sign regime’ [14,15]
in the bottom-quark coupling. However, the combination of cuts applied
to the model ends up not allowing for that regime.
10 Notice that κV and κt must have the same sign, otherwise one would
expect a huge variation in the h diphoton width, in disagreement with
the SM-like observed values.
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difference constraint whenevermH andmA are not very high;
for the other constraints, fine-tunings are at most moderate
and do not occur at all for many points in our fit. As a matter
of fact, even for the D-meson mass difference, there are many
choices of parameters for which no fine-tuning is necessary
and one of the scalars has relatively low mass; one such case
is presented in Appendix D.

With those points we have proceeded to compute the LHC
production cross sections of the neutral scalars in the model,
using the software SusHI [16,17] to include the NNLO
QCD corrections. We have limited ourselves to the gluon–
gluon production process, which is the dominant one in the
LHC environment. Regarding the vector boson-fusion pro-
cess, no differences will occur in this model vis a vis the usual
2HDM, as the couplings of the scalars to the gauge bosons
are the same in both models.

The results for h are expressed in terms of the ratios

μX = σ (pp → h) BR (h → X)

σ SM (pp → h) BRSM (h → X)
, (47)

where X may be either Z0Z0, W+W−, bb̄, τ τ̄ , or γ γ .
The value μX = 1 indicates exact SM-like behaviour. We
require that all the μX be within 20% of 1, which is a fair
description of the current LHC results, taking into account
the uncertainties. With this imposition, the ranges of varia-
tion of κV = sβ−α , κt , and κb become much smaller than
initially allowed in the fit: we obtain 0.929 ≤ κV ≤ 1
and 0.952 ≤ {κt , κb} ≤ 1.04. For comparison, we will also
present results for the tighter constraint |μX − 1| < 0.1.

In principle, we should also consider the leptons. The Z3

symmetry in the quark sector must be extended to the leptonic
sector. Since flavour violation with leptons is much more
constrained than with quarks, the best choice would be to
extend Z3 to the leptonic sector in a way identical to the
flavour-preserving 2HDMs, allowing only one of the two
doublets �a to couple to the leptons and give them mass.
We would then have have two possibilities for the couplings
of the scalars to the charged leptons—either �1 couples to
the charged leptons or �2 does. The coupling modifier κτ =
ghτ τ̄ /gSM

hτ τ̄ is given by

κτ = cos α

sin β
and κτ = − sin α

cos β
(48)

for the first and second choices, respectively. For definiteness,
in our fit we have adopted the second option in Eq. 48), viz.
we have imposed

0.8 <

∣∣∣∣
sin α

cos β

∣∣∣∣ < 1.2 (49)

to the points in our fit. However, since the extension of our
model to the leptonic sector is largely arbitrary, we have

refrained from taking into account any other constraints on
our model that might arise from processes involving leptons.
We point out, though, that flavour-changing constraints from
processes like KL → μ+μ− or Bs → μ+μ− may pose
serious challenges to our model.

4.2 General results

The bounds on the scalar sector—unitarity, oblique parame-
ters, and vacuum stability—produce the same contraints on
the model’s parameters than those found in the usual version
of the 2HDM. On the other hand, since the symmetry that we
are considering affects in a non-trivial way the quark Yukawa
matrices, there are major differences relative to other 2HDMs
when the flavour-physics bounds are imposed. The flavour
constraints from meson observables and from the top-quark
FCNC decays and total width, previously described, con-
strain severely the magnitudes of the off-diagonal elements of
the matrices Nu and Nd . Our fit achieves to keep FCNC under
control even with extra scalars of “low” masses—H and A
may have masses below 500 GeV. This is in contrast with the
often-made assumption that models with tree-level FCNC
imply masses above 1 TeV; this had already been shown not
to necessarily apply in the previous version of the current
model [9]. In Ref. [18] it has been argued that contributions
from the scalar and pseudoscalar particles (H and A, respec-
tively) to FCNC meson observables tend to cancel each other;
we have explicitly observed that, for many points in our fit
(cf. the point given in Appendix D), the arguments of Ref.
[18] apply, and this is the reason why masses of the extra
scalars lower than 1 TeV are possible.

One consequence of the present model is the fact that
the scalar h, which we have taken to be the 125 GeV state
observed at the LHC, has tree-level FCNCs, as indicated by
its Yukawa interactions in lines (15c) and (15d). Thus, unlike
in the (tree-level) SM, h has the possibility of FCNC decays
to final states sb̄, db̄, ds̄, uc̄, and their charge-conjugate
states. However, for all the points resulting from our fit, these
decays are extremely suppressed—the sum of the branching
ratios for all of them being at most 2 × 10−6 but usually
much lower. Therefore, in our model the FCNC decays of
the 125 GeV-particle are impossible to observe at the LHC,
and almost certainly even at future e+e− colliders such as
the ILC; the existence of those decays has no measurable
impact on the phenomenology of the scalar h. The FCNC
also raise the possibility of alternative production mecha-
nisms for h, such as ds̄ → h or uc̄ → h; such production
channels would be favoured by larger proton PDFs relatively
to the SM production mechanism bb̄ → h. However, once
again these FCNC processes are found to be extremely small
in our fit. According to (15c) and (15d), all the FCNC h
interactions are suppressed by their proportionality to cβ−α ,
which is required to be quite small by the SM-like behaviour
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Fig. 1 v2/v1 versus the charged-Higgs mass for the parameter-space
points that survived all the theoretical and experimental constraints

of the 125 GeV scalar h, by the ratio between a light-quark
mass and v = 246 GeV, and, sometimes, by the smallish off-
diagonal Nd and Nu matrix elements induced by compliance
with meson-physics bounds.

In Fig. 1 we show the points generated by our fit, displayed
on the tan β–mH+ plane.

(The observed low density of points is merely a con-
sequence of the difficulty in achieving good fits—further
searches would yield more points and fill many more regions
in the plot; lack of points in some areas has no physical mean-
ing, it is just an artifact of the limited parameter space scan).
A clear conclusion from Fig. 1 is that 1/20 < tan β < 20
in our model11; this is mainly a consequence of the b → sγ
bounds and, to a lesser degree, of the Z → bb̄ bounds. One
also sees in Fig. 1 that values of the charged-scalar mass as
low as 130 GeV are easily attained; this is in stark contrast
with the findings for the type II 2HDM, where a lower bound
on mH+ of roughly 580 GeV exists. Unlike in the usual type-
I and type-II 2HDMs, in our model the quark mass matri-
ces do not emerge from the Yukawa couplings to a single
scalar doublet, but rather from the couplings to both �1 and
�2. As such, although we employ the standard definition
tan β = v2/v1, the usual wisdom about the values of this
parameter does not apply.

The matrices Nu and Nd also exist in the usual flavour-
preserving 2HDMs, but there they are diagonal and propor-
tional to the quark mass matrices. In fact, in the type-I 2HDM

11 As is plain in equations (26), in our model there is a symmetry
between the Yukawa couplings of �1 and the ones of �2, so that, for
any given t , tan β = t is just as (im)possible to achieve as tan β = 1/t .
This is in contrast to what happens in the usual 2HDMs types I and II.

Nu = − Mu

tan β
, Nd = − Md

tan β
, (50)

whereas in the type-II 2HDM

Nu = − Mu

tan β
, Nd = Md tan β. (51)

Now consider Fig. 2, where we have plotted the values of
both |(Nd)33|

/
mb and |(Nu)33|

/
mt as functions of tan β.

The green line shown in plot (a), upon which many blue
points are superimposed, corresponds to |(Nd)33| /mb =
1/ tan β, that one would obtain if the model behaved, for the
bottom quarks, as a type-I 2HDM. The red line would cor-
respond to type-II behaviour, viz. |(Nd)33|

/
mb = tan β. It

appears that, in this model, most regions of parameter space
yield either approximate type-I behaviour or approximate
type-II behaviour for bottom quarks. Note that, although
the blue points appear superimposed on the green and red
lines, they are not exactly on them – the type-I and type-II
behaviours displayed are approximate and there are devia-
tions from them, which indeed can be large, as we observe
in particular for low values of tan β. In Fig. 2b we observe
the same behaviour for top quarks—most points have either
|(Nu)33|

/
mt ≈ tan β or |(Nu)33|

/
mt ≈ cot β.

From Eq. (50) it follows that, in the type I 2HDM,

(Nu)33 mb

(Nd)33 mt
(52)

is equal to one, whereas in the type II 2HDM, from Eq. (51),

− (Nu)33 (Nd)33

mtmb
(53)

is equal to one. In Fig. 3 we display the quantities (52)
and (53) plotted against each other.

That figure shows that, for most points, our model is more
similar to the type-I 2HDM, at least in what concerns giving
mass to the third generation, i.e. the top-quark and bottom-
quark masses originate mostly in the Yukawa couplings to the
same scalar doublet. However, there are also many allowed
points for which the quantity (52) isnot unity; for those points
another regularity applies, namely the quantity (53) is very
close to zero.

Still, one should remember that in our model there is
flavour violation in the Yukawa interactions, and one obtains
different results from those in Figs. 2 and 3 for both the (1, 1)

and (2, 2) entries of both Nd and Nu . In fact, the deviations
from either type I- or type II-like behaviour for the first and
second generations are much more pronounced than what one
observes in Fig. 2. But, the corresponding Yukawa couplings
being much smaller, that has much less importance for the
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(a) (b)

Fig. 2 a |(Nd )33|
/
mb and b |(Nu)33|

/
mt versus tan β for the parameter space points (in blue) which survive all the theoretical and experimental

constraints. The green lines correspond to y = cot β and the red lines correspond to y = tan β, where y is |(Nd )33|
/
mb in (a) and |(Nu)33|

/
mt

in (b)

Fig. 3 -(Nu)33 (Nd )33
/

(mbmt ) versus (Nu)33 mb
/ [

(Nd )33 mt
]

Higgs-boson phenomenology than the third-generation cou-
plings that we have discussed in those figures.

4.3 Properties of the extra scalars

We now turn to the extra neutral scalars in the model, H
and A. The LHC Collaborations have been looking for neu-
tral scalars other than the 125 GeV boson by investigating the
production of W+W−, Z0Z0, and τ τ̄ , among other channels.
The non-observation thus far of meaningful excesses in the
cross sections, relatively to their SM expectations, imposes
bounds on the masses and couplings of new particles. In our
model, the imposition of the top- and meson-physics con-
straints should force the off-diagonal entries of the matrices
Nd and Nu to be smallish, hence we expect that, just as h, the

scalars H and A will have reduced flavour-changing interac-
tions. Therefore, our model is expected to behave very much
like the flavour-preserving 2HDMs in what concerns the pos-
sibility of evading the current experimental non-observation
bounds for the extra scalars. As we will now show, there
is a vast parameter space still allowed by the experimental
constraints.

We firstly consider the limits coming from the search for
resonant Z0Z0 pairs by both the ATLAS [19–23] and CMS
[24–26] Collaborations. This is a good channel to look for
the heavy CP-even scalar H , which may decay at tree level
as H → Z0Z0.12 In Fig. 4 we show the points which obey
all the constraints described in Sect. 4.1; the points in blue
correspond to the requirement that all the μX are within 20%
of 1, and the points in red have all the μX less than 10% away
from 1.

The yellow line is the upper 2σ bound from the observed
limit from Ref. [23]. We observe that most of the allowed
parameter space yields a pp → gg → H → Z0Z0 cross
section below the experimental upper bound; only a few low-
mH points exceed the bound, but even for those low values
of mH there are plenty of points which are still allowed. The
tighter constraint of 10% on the h production rates does not
qualitatively change the picture. There is a simple explana-
tion for why low values of the pp → gg → H → Z0Z0

event rate should be obtained, namely, in anyCP-conserving
2HDM (or, indeed, multi-Higgs-doublet model) there is the
sum rule

(
g2HDM
hZ Z

)2 +
(
g2HDM
HZ Z

)2 =
(
gSM
hZ Z

)2
(54)

12 Unlike the pseudoscalar A, which may decay to Z0Z0 only through
loops.

123



Eur. Phys. J. C (2019) 79 :552 Page 11 of 17 552

Fig. 4 Cross section of the process pp → gg → H → Z0Z0 at
13 TeV collision energy, as a function of the mass of the heavy CP-
even scalar H . All the points displayed obey the constraints for our
model described in Sect. 4.1. For the blue points, the 125 GeV scalar
h has all its production rates within 20% of their SM-expected values;
for the red points those production rates are all within 10% of their SM
values. The yellow line is the 2σ upper bound given in Ref. [23]

for the couplings of the CP-even neutral scalars to gauge-
boson pairs. Therefore, if the coupling of h to Z0 (and W±)
pairs is very close to its SM value, then the coupling of
H to such pairs will be suppressed. Equation (54) is nor-

mally expressed through g2HDM
hZ Z = sβ−α gSM

hZ Z and g2HDM
HZ Z =

cβ−α gSM
hZ Z ; SM-like behaviour of h means sβ−α � 1, which

implies cβ−α � 0.
In Fig. 5a we show the gluon–gluon production cross sec-

tion for a pseudoscalar A, multiplied by its branching ratio
to a t t̄ pair, at LHC. (Similar results were obtained for H
instead of A, but the obtained values of σ × BR were about
one order of magnitude lower than those of A). There are
some LHC results for searches in the t t̄ channel [27,28]; we
have used the results of Ref. [28], although the analysis in that
paper does not deal with the 2HDM. In Fig. 5a, the yellow
line is the upper 2σ bound in figure 11 of Ref. [28].13 The
published results only extend down to mA � 500 GeV, but it
is clear that no exclusion will occur even for A masses lower
than that. As before, the red (blue) points indicate a cut of
10% (20%) on the μX ratios for the Higgs boson h, meant to
ensure its SM-like behaviour and compliance with the LHC
results. The green points in the same plot are the subset of
the red ones for which the width of A is larger than 10% of
its mass: �A

/
mA > 0.1. We have thus far been assuming the

validity of the narrow-width approximation and neglecting
eventual interferences between backgrounds and signal; by

13 That figure concerns the possibility of a spin-2 Kaluza–Klein gravi-
tation excitation, and it is the one for which the lowest values of σ ×BR
are achieved, as well as the production channel where the initial state
includes two gluons; we have chosen it as a conservative option.

marking these large-width points in green, we want to draw
attention to the only regions where that approximation might
fail.14 The conclusion to draw from Fig. 5a is that the current
exclusion bounds from the t t̄ resonance searches are easily
evaded by our model.

In Fig. 5b we investigate the possibility of the heavy
CP-even scalar H being observed through its decay to two
125 GeV scalars h. This hh channel is being thoroughly stud-
ied at the LHC, considering several possible decay channels
for both h particles [29–37]; the yellow line in Fig. 5b is the
2σ upper bound of figure 6 of Ref. [29]. The blue and red
points are the same as before; the green points are the subset
of the red ones for which �H

/
mH ≥ 0.1. (Therefore, the

green points in Fig. 5b do not coincide with the green points
in Fig. 5a). Unlike in Fig. 5a, the green points, correspond-
ing to scalars H with a large width,15 correspond to smaller
values of σ × BR. Just as in the previous figures, we see that
virtually all of our parameter space, except a few low-mass
points, complies with the existing experimental bounds.

Since the model that we are studying differs from usual
versions of the 2HDM through the existence of FCNC, we
have considered the possibility of single-top decays of the
heavy (pseudo)scalars H and A. Indeed, the non-diagonal
Yukawa interactions lead to the possibility of decays like
H → t ū and A → ct̄ , which might be observed as top-quark
+ jet events at the LHC; such events should be quite challeng-
ing to study in an hadronic machine such as the LHC, but the
recent progress in charmed-jet identification algorithms may
be a significant contribution for a future analysis.16.

In Fig. 6 we present the expected cross section times
branching ratio for both (a) the H and (b) the A. In Fig. 6
we have grouped together all the FCNC decays of the scalars
with a single top in the final state, viz. the decays to t ū, t̄u,
t c̄, and t̄ c. The top- and meson-physics constraints described
in subsection 4.1 usually produce Nu matrices with smallish
off-diagonal elements, and this yields very small branching
ratios for FCNC decays of both H and A – the maximum
values that we have obtained were smaller than 5 × 10−4,
but usual values were much smaller than that. Therefore, the
model predicts values for σ × BR usually orders of magni-
tude below the fentobarn. It is difficult to find experimental
bounds on such a search channel, but the search for a W ′
decaying to a single top quark plus a bottom quark [39] can
at least give a rough idea of the current sensitivity of the LHC
for a top + jet resonance analysis. Though the mass range is
different (the analysis of Ref. [39] starts at 1 TeV), the bounds
shown in that paper for the cross section times the branch-

14 Notice, though, that the width of A is never larger than 29.2% of its
mass for the points obtained in our fit.
15 But, for all the points analyzed the width of H was never larger than
35% of its mass.
16 We thank Nikolaos Rompotis for this comment. See also Ref. [38]
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(a) (b)

Fig. 5 a The gluon–gluon production and decay to t t̄ of the pseu-
doscalar A versus its mass. The yellow line is the upper 2σ bound in
figure 11 of Ref. [28]. b The gluon–gluon production and decay to hh
of the scalar H versus its mass. All the points displayed obey the con-
straints described in Sect. 4. For the blue points, h has production rates

within 20% of its SM-expected values; for the red points those produc-
tion rates are within 10% of the SM value. The green points are a subset
of the red ones, for which the width of the scalar in each plot is larger
than 10% its mass. The yellow line is the 2σ upper bound in figure 6 of
Ref. [29]

(a) (b)

Fig. 6 a The gluon–gluon production and the decay to tq of a the pseudoscalar A and b the heavy CP-even scalar H versus their respective
masses. The colour code is the same as in the previous figures

ing ratio are of order 0.1 pb, and therefore much above the
predicted σ × BR shown for our model in Fig. 6.

5 Conclusions

In this paper we have presented a two-Higgs-doublet model
that attempts a partial solution of the strong CP problem by
relegating a possible generation of a nonzero θ to the two-
loop level. Our model achieves this by postulating a soft CP
violation that transfers itself just to the CKM matrix, with no
CP violation anywhere else in the model, especially no CP
violation in scalar–pseudoscalar mixing.

We do not claim that our model achieves a full solution
of the strong CP problem, because the θ generated at two-
loop level might still be too large. However, since in our
model CP violation exists only in the CKM matrix, one may
expect θ to be proportional to J ∼ 10−5, the only CP-
violating invariant quantity in that matrix. Adding in a two-
loop factor

(
16π2

)−2 ∼ 10−4 and [40] probable suppression
factors mq/mW , where mq is a generic second-generation
quark mass, one might well reach a sufficiently small θ .

Of course, a 2HDM where CP violation only occurs in
the CKM matrix eschews one of the motivations for multi-
Higgs-doublet models, namely, obtaining extra sources of
CP violation in order to reach a sufficiently large baryon
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number of the Universe. We have nothing to say about this
insufficiency.

We have investigated the compatibility of our model with
the outstanding experimental constraints, in particular on
the flavour-changing neutral currents. Our model can easily
evade them, at the price of cancelations that might be quali-
fied as fine-tuning. We find that the new scalars in our model
may in some cases be little heavier than the observed Higgs
particle of mass 125 GeV. That will not necessarily make
them easy to discover, though, as we have seen in Sect. 4.

Acknowledgements PF thanks Miguel Nebot for several enlighten-
ing discussions concerning the fit to the meson sector, and Nuno Cas-
tro and Nikolaos Rompotis for information concerning LHC exper-
imental constraints. PF is supported in part by the CERN fund
grant CERN/FIS-PAR/0002/2017, by the HARMONIA project under
contract UMO-2015/18/M/ST2/00518 and by the CFTC-UL strate-
gic project UID/FIS/00618/2019. The work of LL is supported by
the Portuguese Fundação para a Ciência e a Tecnologia through
the projects PTDC/FIS-PAR/29436/2017, CERN/FIS-PAR/0004/2017,
and UID/FIS/00777/2019; those projects are partly funded by POCTI
(FEDER), COMPETE, QREN, and the European Union.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental date was listed.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

A The decay B̄ → Xsγ

The decays of a bottom-flavoured meson to a strange-
flavoured meson and a photon proceed via the quark tran-
sition b → sγ . Those decays constitute one of the most
relevant constraints on the parameter space of a multi-Higgs-
doublet model, because they receive important contributions
from loops with charged scalars. This is because the inter-
actions of a charged scalar with down-type quarks may be
substantially enhanced by ratios of VEVs. Consequently, in
a 2HDM the constraints from b → sγ typically eliminate
substantial regions of the mH+–tan β plane.

In the model under discussion in this paper, the occurrence
of tree-level FCNC means that the neutral scalars also con-
tribute tob → sγ , unlike what happens in flavour-conserving
2HDMs. We follow the general analysis of Ref. [41] to take
into account both the charged and the neutral scalars’ con-
tributions. We write the Yukawa interactions of our model in
the notation

Lphysical

= · · ·+
∑

S=h,H,A

S
∑

k, j=d,s,b

k̄
(
LS
k j PL+RS

k j PR

)
j (55a)

+
⎡

⎣H+ ∑

α=u,c,t

ᾱ
∑

j=b,s,d

(
LC

α j PL+RC
α j PR

)
j+H.c.

⎤

⎦ ,

(55b)

with coefficients defined as17

Lh
k j =

sβ−αmkδk j − cβ−α

(
N∗
d

)
jk

v
, (56a)

Rh
k j = sβ−αmkδk j − cβ−α (Nd)k j

v
, (56b)

LH
kj =

cβ−αmkδk j + sβ−α

(
N∗
d

)
jk

v
, (56c)

RH
kj = cβ−αmkδk j + sβ−α (Nd)k j

v
, (56d)

L A
kj =

i
(
N∗
d

)
jk

v
, (56e)

RA
kj = −i (Nd)k j

v
, (56f)

LC
α j =

√
2

v

∑

β=u,c,t

(
N∗
u

)
βα

Vβ j , (56g)

RC
α j = −

√
2

v

∑

l=d,s,b

Vαl (Nd)l j . (56h)

The Wilson coefficients required for the computation of b →
sγ are [41]

C ′
7 (μ) = g − e

3
, (57a)

�C7 (μ) = g′ − e′

3
, (57b)

C ′
8 (μ) = f + e, (57c)

�C8 (μ) = f ′ + e′, (57d)

where

f = − v2

4V ∗
tsVtbm

2
H+

∑

α=u,c,t

RC
αs

∗

×
[
RC

αb I3

(
m2

α

m2
H+

)
+ LC

αb
mα

mb
I4

(
m2

α

m2
H+

)]
, (58a)

g = − v2

4V ∗
tsVtbm

2
H+

∑

α=u,c,t

RC
αs

∗

17 In our model the matrices Nu and Nd are real, still we write the
coefficients in the general form that follows from Eq. (15), viz. allowing
for complex Nu and Nd .
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×
[
RC

αb I5

(
m2

α

m2
H+

)
+ LC

αb
mα

mb
I6

(
m2

α

m2
H+

)]
, (58b)

e = − v2

4V ∗
tsVtb

∑

S=h,H,A

1

m2
S

∑

k=d,s,b

RS
ks

∗

×
[
RS
kb I3

(
m2

k

m2
S

)
+ LS

kb
mk

mb
I4

(
m2

k

m2
S

)]
, (58c)

and

f ′ = f (RC ↔ LC ), (59a)

g′ = g(RC ↔ LC ), (59b)

e′ = e(RS ↔ LS) for S = h, H, A. (59c)

The functions I3,4,5,6 are given in equations (40)–(43) of Ref.
[41].

To compute the overall branching ratio of b → sγ we fol-
low refs. [42,43]. We use the effective operators described
above, defined as being at the Fermi scale μ = mW , and
include NLO QCD corrections by choosing mb as the renor-
malization scale. Let η = αS (mW )

/
αS (mb) = 0.5651 [42]

be the ratio of the running strong coupling constant between
scales mW and mb. We compute

�C (mb) = η16/23 �C7 (mW )

+8

3

(
η14/23 − η16/23

)
�C8 (mW ) , (60a)

C ′ (mb) = η16/23 C ′
7 (mW )

+8

3

(
η14/23 − η16/23

)
C ′

8 (mW ) , (60b)

and then [44]

BR (b → sγ ) = BR (b → sγ )SM (61a)

+
(

2.47 × 10−3
) {

|�C (mb)|2 + ∣∣C ′ (mb)
∣∣2

−0.706 Re[�C (mb)]} , (61b)

where BR (b → sγ )SM = 3.15 × 10−4. We consider our
model to be in compliance with the b → sγ data if it yields a
branching ratio within twice the experimental error bar, viz.
we require 2.4406 × 10−4 < BR (b → sγ ) < 3.8594 ×
10−4.

B The neutral meson–antimeson observables

The FCNC induced by the off-diagonal entries of Nd and Nu

lead to tree-level contributions to flavour observables such as
CP violation through the parameter εK and the mass differ-
ences in the K 0, B0

d , B0
s , and D0 meson–antimeson systems.

These are sensitive observables and new-physics contribu-
tions to them may easily be overwhelming. Thus, we must
make sure that the contributions to them from the scalar sec-

tor of our model conform to the current data. We use the
numbers listed in Ref. [11].

B.1 K 0–K̄ 0 observables

Two K 0 meson observables are sensitive to the tree-level
FCNC contributions from the scalar sector: theCP-violating
parameter εK and the mass difference between KS and KL .
Both observables arise from the matrix element effecting the
trasition K̄ 0 → K 0, called M21. This receives contributions
from the SM, via box diagrams, and from new physics (NP),
through FCNC in the scalar sector: M21 = MSM

21 +MNP
21 . We

use the results presented in Ref. [45]. The SM contribution
originates in a box diagram and is given by

MSM
21 = −G2

Fm
2
W f 2

KmK BK

12π2 [η1 λ2
c S0(xc) + η2 λ2

t S0(xt )

+2η3 λcλt S0(xc, xt )], (62)

where GF is the Fermi constant, mW is the W -boson mass,
fK = 0.1555 GeV is the K -meson decay constant, mK =
0.497611 GeV is the K -meson mass, and BK = 0.723
parameterizes the error in the vacuum-insertion approxima-
tion for the relevant matrix element. The xq = (

mq/mW
)2

and λq = V ∗
qdVqs for q = c, t . The functions S0 are given in

equations (B.15) and (B.16) of Ref. [45]. Finally, the param-
eters η1 = 1.38, η2 = 0.57, and η3 = 0.47 account for QCD
corrections.

The new-physics contribution originates in the tree-level
exchange of h, H , and A. One has, by using the vacuum-
insertion approximation for the matrix elements of the oper-
ators,18

MNP
21 = f 2

KmK

96v2

{[(
N∗
d

)2
ds + (Nd)

2
sd

]

× 10m2
K

(ms + md)
2

(
1

m2
A

− c2
β−α

m2
h

− s2
β−α

m2
H

)
(63a)

+ 4
(
N∗
d

)
ds (Nd)sd

[
1 + 6m2

K

(ms + md)
2

]

×
(

1

m2
A

+ c2
β−α

m2
h

+ s2
β−α

m2
H

)}
. (63b)

Notice that MNP
21 in our model is real.

The KS–KL mass difference is given by �mK = 2 |M21|.
Unfortunately, the SM contribution to �mK is affected by
considerable uncertainties, stemming from long-distance,
difficult to compute contributions to MSM

21 , and also from
imprecisions in the value of BK . Therefore, we just require
that the new-physics term does not give a contribution to
�mK larger than the experimental value, i.e. while fitting

18 See refs. [45] and [8] for a detailed derivation of Eq. (63).
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the parameters of the model we demand that 2
∣∣MNP

21

∣∣ <

3.484 × 10−15 GeV.
It is expected that the uncertainties which trouble the cal-

culation of �mK do not affect the computation of εK , given
by

εK = 2.228 × 10−3 = − Im(M21λ
∗
u

2)√
2 �mK |λu |2

. (64)

In Eq. (64), we use in the numerator M21 = MSM
21 + MNP

21 ,
while for �mK in the denominator we use the experimental
value. We accept fit results which give εK within a 10%
deviation from the central value.

B.2 BH–BL mass differences

The mass differences in the meson–antimeson B0
d–B̄0

d and
B0
s –B̄0

s systems are well measured and their theoretical cal-
culation, unlike that of �mK , is reliable. We use, for the
B̄0
d → B0

d transition,

MSM
21 = − G2

Fm
2
W f 2

Bd
mBd BBd

12π2 ηBd

(
VtbV

∗
td

)2
S0 (xt ) ,

(65)

with fBd = 0.1902 GeV, mBd = 5.280 GeV, BBd = 1.219,
and ηBd = 0.55. Note that in Eq. (65) one uses only the box
diagram with top-quark internal lines. The NP contribution
is given by an expression analogous to Eq. (63), with the
obvious substitutions fK → fBd , mK → mBd , and ms →
mb. We accept the result of the fit if 2

∣∣MSM
21 + MNP

21

∣∣ is within
10% of the experimental value �mBd = 3.333×10−13 GeV.

For the B̄0
s → B0

s transition we have Eq. (65) with all
indices d → s and fBs = 0.228 GeV, mBs = 5.367 GeV,
BBs = 1.28, and ηBs = 0.55. The NP contribution is given
by an expression analogous to Eq. (63), with the obvious
substitutions fK → fBs , mK → mBs , and md → mb. We
accept the result of the fit if 2

∣∣MSM
21 + MNP

21

∣∣ is within 10%
of the experimental value �mBs = 1.17 × 10−11 GeV.

B.3 The mass difference in the D0–D̄0 system

There are also contributions to the mass difference in the
meson system D0–D̄0. As in the K 0–K̄ 0 system, there are
considerable uncertainties in the calculation of MSM

21 . There-
fore, once again, we resort to requiring only the New Physics
contribution not to be too large. We have

MNP
21 = f 2

DmD

96v2

{
[(N∗

u )2
uc + (Nu)

2
cu]

× 10m2
D

(mc + mu)
2

(
1

m2
A

− c2
β−α

m2
h

− s2
β−α

m2
H

)
(66a)

+ 4
(
N∗
u

)
cu (Nu)uc

[
1 + 6m2

D

(mc + mu)
2

]

×
(

1

m2
A

+ c2
β−α

m2
h

+ s2
β−α

m2
H

)}
, (66b)

with fD = 0.212 GeV and mD = 1.865 GeV. Conserva-
tively, we require 2

∣∣MNP
21

∣∣ to be smaller than the measured
mass difference 6.253 × 10−15 GeV.

C Z → bb̄ constraints

A potentially very important constraint to two-Higgs-doublet
models (2HDMs) stems from the measurement of the decay
Z → bb̄. We follow the treatment of that decay in refs. [46–
48]. The Lagrangian for the Zbb̄ vertex is written as

LZbb̄ = − eZμ

sW cW
b̄ γ μ(ḡLb PL + ḡR

b PR)b, (67)

where the coefficients ḡL ,R
b are, at tree level in the SM,

ḡLb = −1/2 + s2
W /3 and ḡR

b = s2
W /3. In both the SM and in

extensions thereof, these coefficients get one-loop contribu-
tions. To wit, in the 2HDM the contributions of loops with
charged scalars to ḡLb and ḡR

b are given by

δḡLb =
√

2GF

16π2 |(N †
u V )33|2 f1

(
m2

t

m2
H+

)
, (68a)

δḡR
b = −

√
2GF

16π2 |(V Nd)33|2 f1
(

m2
t

m2
H+

)
, (68b)

where

f1 (x) = x

x − 1

(
1 − ln x

x − 1

)
. (69)

The contributions of loops with neutral scalars are expected
to be small, both for 2HDMs with flavour conservation [46–
48] or without it [49]; we neglect them. In order to take into
account the current experimental results on the observable
quantities Rb and Ab (see refs. [11,46]), we have required
that the charged-scalar contribution added to the SM one,
viz. ḡLb = −0.42112 + δḡLb and ḡR

b = 0.07744 + δḡR
b , does

not deviate from the SM prediction by more than 2σ , viz.

2
(
ḡLb
)2 + 2

(
ḡR
b

)2 = 0.36782 ± 0.00143.

D A benchmark point

To illustrate the model, we provide a specific point, which is
meant to serve only as an example. The input in the scalar
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sector is

v =
√

v2
1 + v2

2 = 246 GeV, v1 = 145.48 GeV,

β − α = 289.46◦, (70a)

mh = 125 GeV, mH = 688.46 GeV,

mA = 364.01 GeV, mH+ = 712.00 GeV. (70b)

To this input correspond the following (approximate) values
for the parameters of the scalar potential:

μ1 = 89682.55 GeV2, μ2 = 31942.59 GeV2,

μ3 = 63188.85 GeV2, (71a)

λ1 = 9.9708, λ2 = 3.7121, λ3 = 6.8336,

λ4 = −12.3750. (71b)

It is easy to confirm that the values (71) fulfil all the condi-
tions (23, 24, 25). Notice in Eq. (70b) that the masses of all
four scalars are neither too close nor too far away from each
other.

The Yukawa-coupling matrices are as in Eq. (26), with

b1 = 1.0761 × 10−3, d1 = 1.9555 × 10−4,

f1 = 5.1710 × 10−5, (72a)

b2 = −9.3709 × 10−4, d2 = −3.0026 × 10−2,

f2 = 0, (72b)

p1 = 6.9338 × 10−2, q1 = −3.0282 × 10−4,

r1 = −1.3664 × 10−2, (72c)

p2 = −1.2295, q2 = 0, r2 = −9.2531 × 10−3. (72d)

We also inputℵ1 = 0, ℵ2 = 1.33 rad. One thus obtains quark
masses and a CKM matrix in agreement with Eqs. (44, 45).
The matrices that parameterize the FCNC are

Nd =
⎛

⎝
7.4 × 10−3 2.7 × 10−2 4.2 × 10−2

−1.8 × 10−5 0.15 −5.0 × 10−3

5.3 × 10−5 −3.9 × 10−7 −3.09

⎞

⎠ ,

(73a)

Nu =
⎛

⎝
1.2 × 10−2 −0.29 −1.61
6.4 × 10−2 −0.93 −14.9

−2.7 × 10−3 1.3 × 10−4 −126

⎞

⎠ . (73b)

One sees that some off-diagonal matrix elements of Nd are
not very small, and some off-diagonal matrix elements of
Nu – which is almost a triangular matrix – are pretty large.
There is a cancelation of about one part in 47 between the
contributions to the neutral-D-meson mass difference of the
neutral scalars h and H on the one hand and of the pseu-
doscalar A on the other hand; there are analogous, yet milder,
cancelations among the contributions to the other neutral-
meson mass differences. In general, we have found that the
D-meson mass difference constraint requires quite strongly
fine-tuned cancelations when the neutral scalars have low
masses, while the constraints from all other neutral-meson

systems are much easier to satisfy and mostly require no
fine-tuning. Still, notice that this benchmark point has one
particle (the pseudoscalar A) with relatively low mass.

With this benchmark point, the coupling modifiers defined
in Eqs. (46) and (48) are

κV = 0.9993, κt=0.9721, κb = 0.9720, κτ = 1.0502,

(74)

and some of the phenomenological quantities computed in
Sect. 4 are found to be:

BR
(
h → qq̄ ′) = 6.89 × 10−11, (75a)

σ (gg → h) = 38.98 pb, (75b)

σ
(
gg → H → Z0Z0

)
= 0.75 fb, (75c)

σ (gg → A → t q̄u) = 0.03 fb, (75d)

where (1) qq̄ ′ refers to a sum over all possible FCNC decays
of h, (2) the cross sections are for a LHC center-of-mass
collision of 13 TeV, (3) the FCNC decays of A involve qu = u
and qu = c, and (4) we have grouped together all the FCNC
decays of the scalars with a single top in the final state.
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