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Abstract We study an extension of quasi-single field
model of inflation containing multiple semi-heavy isocur-
vaton fields using the Schwinger–Keldysh mechanism. We
calculate the amplitudes and the shapes of the bispectrum and
the trispectrum. We show that the diagrammatic approach
associated with the Schwinger–Keldysh mechanism simpli-
fies the analysis considerably compared to standard in-in for-
malism. This method is helpful to study the spectroscopy of
masses and couplings of light and semi-heavy fields during
inflation.

1 Introduction

Inflation theory is one of the pioneering models in describ-
ing the initial evolutions of the Universe. This model is able
to shed light on how large cosmic structures are formed. It
is also in accordance with cosmological observations. We
should draw attention to this point that the dynamics of infla-
tion theory and how it starts still remains a mystery [1–6].
After more than three decades of extensive investigations,
the inflationary paradigm is considered to be a corner stone
of the standard model of cosmology, in addition to solving
the flatness, the horizon and the relic problems [2,3,5,6]. In
addition, inflation is needed in order to predict the correct
behavior of primordial fluctuations and a Universe albeit
with an almost nearly scale-invariant density power spec-
trum [7–12], as well as with the correct quantity of tensor
perturbations [13–23]. One of the most important duties for
cosmologists is an introduction of various models for infla-
tion, then examining the validity of the predictions made and
adapting them with observational data. In fact there are two
main methods that one able to obtain the fulfillment of the
inflationary prototype. In one side, one can consider a mod-
ification of the geometrical sector leads to a modified gen-
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eral relativity behavior that allows for inflationary solutions
[24–28]. The most well known proposal in this method is
the Starobinsky inflation [3]. In the other procedure one can
introduce new forms of matter which is able to drive inflation
as well. In this approach one usually considers a canonical
scalar field, assuming it to take large values [29] or small
values [30,31], a phantom field [32–35], a tachyon field [36–
38], or other models including k-inflation [39,40] and ghost
inflation [41] etc. One can put the latter type of above mod-
els in a general set namely single-field inflation model. The
physics of single-field model is well investigated [42–80];
however, some results about inflationary predictions, origi-
nated from observational data, might not be accounted for
cosmic evolutions regarding only single-field models, there-
fore based on the following results multifield models are
afforded with priority. In other word, multifield models of
inflation are in a good agreement with the results originated
from Planck data [81,82]. In multifield models for instance
the inflation can be driven by two fields instead of one field.
In this scenario to investigate quantum fluctuations and the
effects of anisotropy of temperature observed in CMB only
a linear combination was sufficient. But, examining the pro-
duction of isocurvature perturbations and other cases in this
veins asks for non-linear combination. In this mode, you can
divide the field space into two directions, including infla-
tionary direction and isocurvature one. Similar to what that
has done in related literature, we are about to investigate
a model in which one direction is related to light field so-
called inflaton and other directions related to heavy masses
within masses around Hubble parameters. We call this model
in its resemblance to quasi-single field, quasi-single multi-
fields (QSMF) inflation. one can find relevant calculations
due to quasi-single field model in more details in references
[43–50,52–64,78,79]. Among the reasons that we can justify
the existence of multiple model, we can refer to high energy
(specifically on the ground of string theory) as well as non-
Gaussianity [43,83–86]. In fact, super gravity and string the-
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ory related to inflation, we can realize that the field acquires
the massive background within Hubble’s parameters. It is
therefore justifiable if one or several semi heavy fields simi-
lar to that light field so as to make inflation more plausible. On
the other hand, non-Gaussianity is one of the predictions has
made by inflation theory. Investigating the size and shape of
this quantity is to a great extend can help us in predicting the
models which generalize its ability to observe and is the major
task of inflation theory. Investigating bispectrum, especially
trispectrum based on in-in formulation is conducted com-
prehensively in recent works and articles about single-field
models. Furthermore, following this model, author in [52]
has conducted multifield that contains abstruse mathemat-
ics. Besides this conventional calculating methods, reference
author’s [78] used diagrammatic method and some meth-
ods based on Schwinger–Keldysh (SK) formalism [87–89]
which greatly reduces the amount of computation and gives
the same results for many different cases. In this veins, we
want to develop the mentioned items based on this new for-
mulation and divide it into multifields [52] and make a com-
parison with the aforementioned results. As can seen from
this type of interaction related to this action, in conventional
computing especially trispectrum is way beyond and some-
times it will be divergent for asymptotic states, therefore,
the diagrammatic method could be efficient and economical
for this model. So, with development of the aforementioned
models (perhaps), introducing quantitatively some new con-
cepts, specifically drawing new diagrams, we aim at inves-
tigating the size and shape of a non-Gaussianity in a QSMF
model.

This paper is organized as follows: In Sect. 2, we will rein-
troduce the main rules based on SK formalism and also the
diagrammatic and propagators will be expressed as well. In
Sect. 3 we shall try to explain how the diagrammatic method,
for QSMF, leads to tidy results for three-point and four-
point correlation functions of primordial scalar perturbations.
Sect. 3.2 can be considered as a good example to show the
increasing of amount of non-Gaussianity in QSMF inflation
comparing quasi-single one. For more investigation and also
to see the power of the diagrammatic method Sect. 4 will
express the trispectra for QSMF model. At last, Sect. 5 is
devoted to conclusion and discussions.

2 Diagrammatic rules and mixed propagator

Herewith, briefly, we supply the explanation for diagrams
and some rules due to them.

In this section following the method introduced in [78,79]
for quasi-single field inflation, but, regarding the QSMF infla-
tionary regime we want to review briefly the SK formalism
and propagators. The diagrammatic approach based on in-
in formalism is reviewed in [78,79] as well. Additionally,
it can be showed that the diagrammatic method presented
in [78,79] is very close to the usual Feynman rules in dia-
grammatic method, except that the space and the time are
treated the same, and that here the model contains two types
of propagators introduced by either + or −. Accordingly, as
it was mentioned in [79] we know the internal vertex in the
diagrams is associated to conserved three-momentum and
also an integration of time, and to consider the effects of
all interactions appearing in the Lagrangian one should sum
over diagrams for all vertices with all possible types of them.
To do this end, one has to transform the spatial directions
but not the temporal one, by virtue of Fourier transforma-
tion. Hence, the propagator for a general scalar field ϕ would
depends on the time variables of both ends, together with the
three-momentum it carries. To receive the propagator, we can
use the Fourier-decomposing to the scalar field ϕ based on
the related mode function u(τ, k), viz.

ϕ(τ, x) =
∫

d3k
(2π)3

[
u(τ, k)b(k) + u∗(τ, k)b†(−k)

]
eik·x,

(1)
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where τ is the conformal time, b and b† are annihilation and
creation operators respectively. Thence the evolution equa-
tion can be rewritten in terms of u(τ, k). Accordingly, for the
mode function u(τ, k) with mass m one has

u′′(τ, k) − 2

τ
u′(τ, k) +

(
k2 + m2

a(τ )2

)
u(τ, k) = 0, (2)

in which the scale factor is introduced as

a(τ ) � −1/(Hτ).

Considering the early Universe conditions, the solution of
the above equation can be worked out as

u(τ, k) = − i
√

π

2
eiπ(ν/2+1/4)H(−τ)3/2H(1)

ν (−kτ), (3)

where H(1)
ν (z) is the Hankel function of the first kind. When

the mass tends to zero, m = 0, the mode function could be
obtained as

u(τ, k) = H√
2k3

(1 + ikτ)e−ikτ . (4)

To determine the definitions of the tree level propagators we
can consider the following two-point functions, Γpn , [78,79],
namely

−iΓpn(τ1, x1; τ2, x2) = δ

ipδ Jp(τ1, x1)

δ

inδ Jn(τ2, x2)
Z0[Jp, Jn]

∣∣∣∣
Jpn=0

,

(5)

where pn refers to ±. Now by regarding different choices for
p, n indices, obviously there are four types of propagators.
For example, the pp-type propagator can be worked out as,

− iΓpp(τ1, x1; τ2, x2)

= δ

iδ Jp(τ1, x1)

δ

iδ Jp(τ2, x2)
Z0[Jp, Jn]

∣∣∣∣
Jpn=0

=
∫

DϕpDϕn ϕp(τ1, x1)ϕp

(τ2, x2)e
i
∫

dτd3x (L0[ϕp]−L0[ϕn ])

=
∑
α

〈Ω|Oα〉〈Oα|T{ϕ(τ1, x1)ϕ(τ2, x2)}|Ω〉

= 〈Ω|T{ϕ(τ1, x1)ϕ(τ2, x2)}|Ω〉. (6)

Now, to solve above equation and also to clarifying the con-
cept of interaction in the both quasi-single field and QSMF
let us introducing two types of Lagrangian as follows

Lcl[ϕ] = L0[ϕ] + Lint[ϕ], (7)

here L0 refers free part and Lint indicates the interaction
terms. According to above discussions, the term L0 contains
all quadratic terms in terms ofϕ and all remaining terms could

be put in Lint one. As it will be seen, this latter contains a
rich physics and leads to very important predictions about
non-Gaussianity as well. To complete this brief review, con-
sidering concepts risen from (effective) quantum field theory
and by following our main reference [79] we can define the
generating functional Z [Jp Jn] as

Z [Jp Jn] =
∫

DϕpDϕn exp

[
i
∫ τ f

τ0

dτd3x
(
Lcl[ϕp]

− Lcl[ϕn] + Jpϕp − Jnϕn

)]
. (8)

Beside, by taking functional derivative and considering gen-
eral amplitude

〈ϕa1(τ, x1) · · · ϕaN (τ, xN )〉(a1, . . . , aN = ±)

at last the four mentioned propagators could be obtained as
follows

Gpp(k; τ1, τ2) =G(k; τ1, τ2)Θ(τ1 − τ2)

+ Ḡ(k; τ1, τ2)Θ(τ2 − τ1), (9a)

Gpn(k; τ1, τ2) = Ḡ(k; τ1, τ2), (9b)

Gnp(k; τ1, τ2) =G(k; τ1, τ2), (9c)

Gnn(k; τ1, τ2) = Ḡ(k; τ1, τ2)Θ(τ1 − τ2)

+ G(k; τ1, τ2)Θ(τ2 − τ1), (9d)

here

G(k; τ1, τ2) ≡ u(τ1, k)u
∗(τ2, k), (10a)

Ḡ(k; τ1, τ2) ≡ u∗(τ1, k)u(τ2, k), (10b)

where Θ(z) is the step function. To calculate the required
three-point function of δφ with intermediate exchange of δσ

one would regard the propagators (9) and the mode functions
(3) or (4), and follow the diagrammatic rules as reviewed
in [78,79]. Based on diagrammatic rules were presented in
Chen et al. [78], the three-momentum related to the self inter-
acting cases could be summarized as bellow, Also from Fig. 1
it is realized that the external points are distinguished by little
squares, while the shaded dots in each vertex means that it is
related to two different types of propagators. The black cir-
cles refer to the plus propagators and the minus propagators
indicated by white circles, and one should sum over all possi-
ble states. Accordingly, Fig. 1 actually represents the sum of
16 different diagrams since we have 4 shaded circles. Albeit
one should keep in mind that each black circle is complex
conjugate of white one and vice versa. This fact dramatically
decreases the amount of calculations, the calculation can be
simplified by noting to the repetitive structure on the left-
hand side of Fig. 1, this approach completely explained in
[78,79].
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Fig. 1 In this diagram the solid
lines express the propagators of
massless field δφ while dashed
lines represent the propagator of
massive fields δσi , and i refers
the different components of
these fields

3 Application to QSMF inflation

In this section, we consider QSMF Inflation [52], by follow-
ing quasi-single field model [43,44,78,79], as an example
to show how the diagrammatic method leads to relatively
compact results compared to standard in-in formalism for
three-point and four-point correlation functions of primor-
dial scalar perturbations. As explained in aforementioned
sections, the QSMF Inflation in general refers to the inflation
scenarios with two or more spectator fields of mass around
Hubble scale which are coupled kinetically to the inflaton,
light field beside the internal interactions. To do so, we con-
sider the following action with a slightly curved inflation
trajectory described by three real scalar fields θ , σ1 and σ2,

S =
∫

d4x
√−g

×
[

− 1

2
(R̃ + σ1 + σ2)

2(∂μθ)2 − 1

2
(∂μσ1)

2

− 1

2
(∂μσ2)

2 − Vsr(θ) − V (c1σ1 + c2σ2)

]
, (11)

where Vsr(θ) is an arbitrary slow-roll potential, while V (σ )

is a potential such that σ obtains a classical constant back-
ground σ0. After expanding the fields around their classical
background θ0 and σ0, the Lagrangian for the fluctuation field
has the following form,

Lcl = L0 + L1 + L2, (12)

where

L0 =
[ a2

2

(
(δφ′)2 − (∂iδφ)2 + (δσ ′

1)
2(δσ ′

2)
2

−(∂iδσ1)
2 − (∂iδσ2)

2
)

− a4m2
1

2
δσ 2

1 − a4m2
2

2
δσ 2

2

]
,

L1 = a3λ21δσ1δφ
′ + a3λ22δσ2δφ

′ − a4
( λ31

6
δσ 3

1

+ λ32

6
δσ 3

2 + Λ31

6
δσ 2

1 δσ2 + Λ32

6
δσ 2

2 δσ1 +
)
,

and

L2 = −a4
( λ41

24
δσ 4

1 + λ42

24
δσ 4

2 + Λ41

24
δσ 3

1 δσ2

+ Λ42

24
δσ 3

2 δσ1 + Λ̃4 j

24
δσ 2

1 δσ 2
2 + · · ·

)

+a3φ̇0

R2

(
δσ 2

1 δφ′ + δσ 2
2 δφ′)

+a2

(
δσ j

R
+ δσ 2

j

2R2

) [
(δφ′)2 − (∂iδσ2)

2].

Where we have defined δφ = (R̃ + σ01 + σ02)δθ . The
first term of the above Lagrangian can be justified as free
part L0, with a massless scalar δφ and two massive scalar
fields δσ of mass functions m2

1 = V ′′(σ01) − θ̇2
0 , and

m2
2 = V ′′(σ02) − θ̇2

0 . In L1, we have interactions with two-
point derivative mixing between δφ and δσ , with coupling
strength λ2 j = 2θ̇0, as well as self-interactions of δσ , with

couplings λ3 j = V ′′′(σ0 j ), Λ31 ≡ 3 ∂
∂σ2

( ∂2

∂2σ1
V ) and Λ32 ≡

3 ∂
∂σ1

( ∂2

∂2σ2
V ). In a same procedure, for L2 we can write

λ4 j = V (4)(σ0 j ), Λ41 ≡ 4 ∂
∂σ2

( ∂3

∂3σ1
V ), Λ42 ≡ 4 ∂

∂σ1
( ∂3

∂3σ2
V )

and Λ̃4 j ≡ 6( ∂2

∂2σ1
( ∂2

∂2σ2
V ), In above equations V (4) = V ′′′′.

Our main mean to extend the Lcl up to 4th order is to
see the effects of extra massive fields on the behaviour of
bispectrum and especially trispectrum in QSMF proposal.
Additionally, we should exceed the primary orders in lead-
ing terms to see obviously the effects of SK diagrammatic
approach on decreasing the amount of calculations. But at
first let us warm up by computing the power spectrum and
then the corrections, due to the extra massive fields, will be
eye-catching. After that, we shall calculate both bispectram
and trispectrum as well, for more detail one can see [78,79].
Accordingly, before any computation of various correlation
functions we want to study the evaluation of a mixed propa-
gator for at hand QSMF model in more details next subsec-
tion.
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Fig. 2 The first diagram
expresses an equivalent for two
point function 〈δσ1δφ〉 the
dashed (blue) lines express the
propagators of massive field
δσ1. The latter diagram presents
an equivalent for two point
function 〈δσ2δφ〉. the dotted
dashed (red) lines express the
propagators of massive field δσ2

Fig. 3 In the left hand side of this diagram the blue slash filled circle indicates on both types of + and − propagators of massless field δφ in two
point function 〈δσ1δφ〉; this propagators are presented in the right hand side respectively by the blue filled and white empty circles

Fig. 4 In the left hand side of this diagram the red backslash filled circle indicates on both types of + and − propagators of massless field δφ for
two point function 〈δσ2δφ〉; they are presented in the right hand side respectively by the red filled and white empty circles

3.1 Mixed propagator in QSMF model

Whereas a special type of interacting terms appears in dif-
ferent places in our investigation so following [78,79] we
are going to introduce this special case as mixed propaga-
tor. In fact for the QSMF inflation model we shall calcu-
late the contribution of interaction of both massive fields
with inflaton and therefore the following objects can be
drawn.

Figures 2, 3 and 4 could be considered as an equiva-
lent for two point function 〈δσ jδφ〉, in which δφ refers
the values of scalar field perturbations in present era.
Now for massive and light fields we should use their
own propagators and therefore for example the propaga-
tor of δσ j can be denoted by Dj (k; τ1, τ2) and the prop-
agator of δφ by G(k; τ1, τ2) see Figs. 5 and 6. Accord-
ingly

G± j (k; τ) = iλ2 j

∫ 0

−∞
dτ ′

(−Hτ ′)3

[
Dj±+(k; τ, τ ′)∂τ ′G+(k; τ ′)

− Dj±−(k; τ, τ ′)∂τ ′G−(k; τ ′)
]

=
2∑
j=1

πλ2 j H

8k3 I± j (z), (13)

where z ≡ −kτ , and I±(z) are expressed by,

I± j (z) = e−π Im ν j z3/2
{

2 Im

[
H(1)

ν j
(z)

∫ ∞

0

dz′√
z′

H(2)
ν j

∗(z′)e−(i+ε)z′
]

+ iH(1)
ν j

(z)
∫ z

0

dz′√
z′

H(2)
ν j

∗(z′)e∓iz′

− iH(2)
ν j

∗(z)
∫ z

0

dz′√
z′

H(1)
ν j

(z′)e∓iz′
}
, (14)
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Fig. 5 In this diagram we present the leading order correction to the power spectrum from two-point function based on Eq. (13) for the massive
field δσ1

Fig. 6 In this diagram we show the leading order correction to the power spectrum from two-point function based on Eq. (13) for the massive field
δσ2

where ε is a small constant. After some algebra for the above
integral one obtains

I± j (z) = z3/2e−π Im ν j

{[
Cν j

+ (cot(πν j ) − i) f ±
ν j

(z)

− csc(πν j ) f
±−ν j

(z)
]
H(2)

ν j
∗(z)

+
[
C ∗

ν j
+ (cot(πν j

∗) + i) f ±
ν j

∗(z)

− csc(πν j
∗) f ±

−ν j
∗(z)

]
H(1)

ν j
(z)

}
, (15)

where f ±
ν j

(z) is defined by,

f ±
ν j

(z) = zν j+1/2

2ν j (ν j + 1/2)Γ (ν j + 1)
2F2

(
ν j + 1

2
,

ν j + 1

2
; ν j + 3

2
, 2ν j + 1;∓2iz

)
. (16)

In the z → +∞ limit of hypergeometric function, by virtue
of the asymptotic behavior

2F2(a, a; b1, b2; z) |z|→∞−−−−→ Γ (b1)Γ (b2)

Γ (a)2 ezz2a−b1−b2

+ Γ (b1)Γ (b2)

Γ (a)Γ (b1 − a)Γ (b2 − a)
(−z)−a

(ln(−z) − ψ(b1 − a) − ψ(b2 − a) − ψ(a) − 2γ ) , (17)

where

ψ(z) ≡ d ln Γ (z)

dz
, (18)

and Cν j is a z-independent coefficient, given by

Cν j = i
∫ ∞

0

dz√
z
H (1)

ν j
(z)e(i+ε)z

= √
2πeiπ(1/4−ν j /2) sec(πν j ), (19)

in which for ε → 0 limit the UV convergence will be resulted.

Using the diagrammatic rules, we can write down the cor-
responding expression immediately,

〈δφ(τ, k)δφ(τ,−k)〉′

= iλ2 j

∫ 0

−∞
dτ ′

(−Hτ ′)3

×
[
∂τ ′G+(k; τ ′)G+(k; τ ′) − ∂τ ′G−(k; τ ′)G−(k; τ ′)

]

= λ2
2 j

k3

2∑
j=1

P(ν j ), (20)

where P(ν j ) is the following integral and can be carried out
completely as was done in [46],

2∑
j=1

P(ν j ) ≡
2∑
j=1

−iπ

16

∫ ∞

0

dz

z2

[
e−iz I+ j (z)−e+iz I− j (z)

]

=
2∑
j=1

π2

4 cos2(πν j )
+ Ξ(ν j ) + Ξ(−ν j ), (21)

and here the function Ξ(ν j ) is defined to be,

Ξ(ν j ) ≡ Im

{
e−iπν j

16 sin(πν j )

[
ψ(1)

( 1

4

+ ν j

2

)
− ψ(1)

( 3

4
+ ν j

2

)]}
, (22)

and ψ(1)(z) ≡ d2 log Γ (z)/dz2 is well know PolyGamma
function.

From Figs. 7, 8 and 9 it is understood that the effects of
extra fields in QSMF inflation increase the amount of P(ν j )

comparing with quasi-single field model. Albeit we should
emphasise that our result has a good agreement, maybe triv-
ially, with the calculations in canonical in-in formalism were
done by [52].

3.2 Bispectrum

To calculate bispectrum and trispectrum, now we look at
the higher order interactions [77]. Following [52,78] and
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Fig. 7 This figure shows the behavior of function of power spectrum
P(ν j ) introduced in Eq. (21). In this frame we consider same quantities
for parameters ν1 and ν2

Fig. 8 In this diagram we want to examine the effects of changing the
quantity of parameters ν j on the behaviour of power spectrum. We saw
that if one consider different ranges for ν1 and ν2 it causes to increase
the amount of power spectrum

by virtue of the Eqs. (23) and (24) and this fact that R can
be considered as a cutoff it could be realized that the lead-
ing portions to the three-point function are of order λ3

2λ3
and λ2

2 jλ2lΛ3 j,l . To see how this suitable method actually
does work, we can consider the discussion brought in Sect.
2. Accordingly, by means of the rules have indicated in
[61,78,79] and also considering the mixed propagator orig-

Fig. 9 In this diagram the solid line expresses the amount of Ξ(ν1)

in Eq. (22) based on parameter ν1. It will be realized if ν1 ≈ 0.49 then
Ξ(ν1) tends to zero and for greater quantities than ν1 ≈ 0.49 it enters
the positive area

inating from the Lagrangian 12 we have the diagrams 10,
11, 12 and 13. From these Figs., i.e. 10, 11, 12 and 13, it is
realized that diagrammatic in–in formalism has more advan-
tages compared to the ordinary in–in formalism. One of this
advantages is that the amount of calculations and integrations
are dramatically reduced. In fact, each one of the the above
diagrams itself contains 16 diagrams which by virtue of the
conjugation rules one only needs to consider these general
cases and then sum over all possible states. Another differ-
ence between QSMF model and quasi-single field, beside
self interaction terms, is the appearance of the interaction
terms associated with the massive fields. These extra effects
enhances non-Gaussianity so it can be used observationally
to distinguish between QSMF and quasi-single field scenar-
ios. We have

〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)〉′λ3 j

=
2∑
j=1

2λ3 j Im ×
∫ 0

−∞
dτ

(−Hτ)4

× G+ j (k1; τ)G+ j (k2; τ)G+ j (k3; τ)

=
2∑
j=1

π3λ3
2 jλ3 j

256Hk3
2k

3
3

Im
∫ ∞

0

dz

z4 I+ j (z)I+ j

×
(
k2

k1
z

)
I+ j

(
k3

k1
z

)
, (23)

and

〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)〉′Λ3 j,l

=
2∑
j=1

1∑
l=2

2Λ3 j,l Im

×
∫ 0

−∞
dτ

(−Hτ)4G+ j (k1; τ)G+ j (k2; τ)G+l(k3; τ)
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Fig. 10 In this diagram based
on Eq. (23) we present the
leading orders in expectation
value
〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)〉′λ31
for δσ1

Fig. 11 In this diagram based
on Eq. (23) we present the
leading orders in expectation
value
〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)〉′λ32
for δσ2

Fig. 12 In this diagram based
on Eq. (24) we present the
leading orders in expectation
value
〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)〉′Λ3 j,l

Fig. 13 In this diagram based
on Eq. (24) we present the
leading orders in expectation
value
〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)〉′Λ3 j,l
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=
2∑
j=1

1∑
l=2

π3λ2
2 jλ2lΛ3 j,l

256Hk3
2k

3
3

Im

×
∫ ∞

0

dz

z4 I+ j (z)I+ j

(
k2

k1
z

)
I+l

(
k3

k1
z

)
, (24)

where j, l = 1 or 2 and it should be kept in mind when
j = 1(2) then l = 2(1). To calculate the integrals in (23)
and (24) instead of a four-layer integral in the canonical in-
in formalism of propagators one needs to calculate only an
one-layer integral [78,79] . To do so one can introduce the
dimensionless shape function S(k1, k2, k3) as

〈ζ(k1)ζ(k2)ζ(k3)〉′ ≡ (2π)4S(k1, k2, k3)
1

(k1k2k3)2 P
2
ζ .

(25)

Here ζ refers the curvature perturbation, which can be
expressed as ζ = −Hδφ/φ̇0, and Pζ = H2/(8π2M2

Plε)

is the well-known power spectrum related to the curvature
perturbation. Following [78], to isolate the clock signal from
the bispectrum we rewrite the expansion of (23) and (24) in
k3/k1 → 0 limit and then by virtue of (25) one obtains

Spure(k1, k2, k3) → P−1/2
ζ

2∑
j=1

(
λ2 j

H

)3 (
λ3 j

H

)

× Im

[
s+(̃ν j )

( k3

k1

)1/2+ĩν j + s−(̃ν j )
( k3

k1

)1/2−ĩν j
]
,

(26)

and

Smixed(k1, k2, k3) → P−1/2
ζ

2∑
j=1

1∑
l=2

(
λ2

2 jλ2l

H3

)(
Λ3 j,l

H

)

×Im

[
s+(̃ν j,l)

( k3

k1

)1/2+ĩν j,l + s−(̃ν j,l)
( k3

k1

)1/2−ĩν j,l
]
,

(27)

where we would redefine ν j = iν̃ j . It is realized that if one
considers m > 3H/2 limit, then ν̃ j could be treated as a
real part of equation. Accordingly, for the case at hand the
coefficients s±(ν̃ j) are expressed as

s+ (̃ν j ) =
2∑
j=1

−2−ĩν j π5/2

256Γ (1 + ĩν j ) sinh(πν̃ j )
[

sinh(πν̃ j/2) + i cosh(πν̃ j/2)
]

×
∫ ∞

0
dz I 2+(z)z−5/2+ĩν j , (28)

s− (̃ν j ) =
2∑
j=1

−2+iν̃ j π5/2

256Γ (1 − iν̃ j) sinh(πν̃ j)
[

sinh(πν̃ j /2) − i cosh(πν̃ j /2)
]

×
∫ ∞

0
dz I 2+(z)z−5/2−iν̃ j , (29)

Fig. 14 This diagram shows the behavior of shape function expressed
in Eq. (32) for the case ν = o. Here P2 = k2

k1
and P3 = k3

k1

s+ (̃ν j,l ) =
2∑
j=1

1∑
l=2

−2−iν̃ j π5/2

256Γ (1 + iν̃ j ) sinh(πν̃ j )
[

sinh(πν̃ j /2) + i cosh(πν̃ j /2)
]

×
∫ ∞

0
dz I 2+(z)z−5/2+ĩνl , (30)

s− (̃ν j,l ) =
2∑
j=1

1∑
l=2

−2+iν̃ j π5/2

256Γ (1 − iν̃ j ) sinh(πν̃ j )
[

sinh(πν̃ j /2) − i cosh(πν̃ j /2)
]

×
∫ ∞

0
dz I 2+(z)z−5/2−ĩνl . (31)

In the squeezed limit to show the periodic behaviour of
S(k1, k2, k3), we can rewrite it in the following form [78]

Spure(k1, k2, k3) =P−1/2
ζ

(
λ2

H

)3 (
λ3

H

)( k3

k1

)1/2

×
2∑
j=1

{
s1(ν̃ j ) sin

[
ν̃ j log

(
k3

k1

)]

+s2(ν̃ j ) cos

[
ν̃ j log

(
k3

k1

)]}
, (32)

where

s1(ν̃ j ) = Re (s+ν j − s−ν j ), s2(ν̃ j ) = Im (s+ν j + s−ν j ).

(33)

Here we wrote only the pure interacting parts and for mixed
propagators one can repeat a same procedure as well. The
Figs. 14, 15, 16 and 17 are related to the shape function
appeared in Eq. (32). In these shapes we consider P2 = k2

k1

and P3 = k3
k1

. From these figures different limits based on
different values of ν can be worked out.
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Fig. 15 This diagram expresses the behavior of shape function pre-
sented in Eq. (32) for the case ν = o.5

Fig. 16 This diagram indicates the behavior of shape function pre-
sented in Eq. (32) for the case ν = o.9

Fig. 17 This diagram expresses the behavior of shape function pre-
sented in Eq. (32) for the case ν = 1.7

4 Trispectrua

The main purpose of this section is to calculate the leading
four point function of the massless field in QSMF inflation. In
other words the main idea for this calculation returns to cal-
culating the trispectrum in multifid models and viewing the
effects of such extra terms on amount of non-Gausianities. As
we saw in bispectrum and powerspectrum modifications we
expect that the mentioned extra effects should be appeared
for trispectrum explicitly. Following [79], we can use, instead
of δφ, the curvature perturbation ζ = −Hδφ/φ̇0 modes to
parameterize the expectation values and receive the follow-
ing relation for the shape function T (k1, k2, k3, k4) as

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉′

= (2π)6P3
ζ

K 3

(k1k2k3k4)3 T (k1, k2, k3, k4), (34)

where K = k1 + k2 + k3 + k4. To consider the leading
portions of four-point function we have to consider both the
self interactions and the interaction between different types
of semi-massive fields. In the following we want to calcu-
late explicitly the trispectrum for QSMF inflation by virtue
of diagrammatic version of SK formalism. In fact we are
going to find a suitable expression for the shape function
[79]. We should emphasise here that, two types of diagrams
related to four-point function instead of one, comparing to
the three-point function, must be considered. By virtue of
the Lagrangian expansion in Eq. (12), obviously seen that
we have terms for leading four-point function diagrams. But
this is not all the story and we should take care about portions
of mixed interacting terms in different channels of four-point
function. In other words, in QSMF inflation beside the self
interacting terms the effects of interacting between quasi-
massive fields have so important role. To show what we mean
one can take look into the diagrams appeared in Figs. 18, 19,
20, 21, 22, 23, 24, 25 and 26. Let’s explain in a bit more the
details of these figures. In Figs. 18, 19, 23 and 24 we only see
the pure self interacting portion of interactions of δσ j . And
the other remnant figures, i.e. Figs. 20, 21, 22, 25, 26 and 27,
refer to the mixed interacting parts related to δσ1 and δσ2. So
immediately one can realize that when we speak about the
advantages of diagrammatic SK formulation against the nor-
mal complicated integration method what we mean!. One
can use only one diagram and so one integration process-
ing instead of 16 ones. Following aforementioned sections,
another interesting part of our investigation considering the
trispectrum goes back to different channels of these diagrams
namely u, t and s channels [78,79].

The expression for this diagram is very simple, and it is
similar to the case in bispectrum (23). Now we are able to cal-
culate the necessary steps to obtain the shape function for the
quartic coupling. To do so we can write down the expectation

123
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Fig. 18 This diagram shows
the self interaction for
quasi-massive field δσ1. The
order of interacting for such a
diagram is expressed as
λ3

2 jλ
1
2lΛ4 j,l

Fig. 19 This diagram expresses
the self interaction for
quasi-massive field δσ2. The
order of interaction for such a
diagram is λ4

22λ42

Fig. 20 This diagram shows
the mixed self interaction for
both quasi-massive fields δσ j
but when they have same
portion in interaction. The order
of interaction originated from
terms with coefficient
Λ̃4 j ≡ 6( ∂2

∂2σ1
( ∂2

∂2σ2
V ))

Fig. 21 This diagram indicates
the mixed self interacting for
both quasi-massive fields δσ j .
The order of interacting
originated from terms with

coefficient Λ41 ≡ 4 ∂
∂σ2

( ∂3

∂3σ1
V )

123
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Fig. 22 This diagram shows
the mixed self interaction for
both quasi-massive fields δσ j .
The order of interaction
originated from terms with

coefficient Λ42 ≡ 4 ∂
∂σ1

( ∂3

∂3σ2
V )

Fig. 23 This diagram shows
the self interaction for
quasi-massive field δσ1 but
based on two cube portions. The
order of interaction originated
from terms with coefficient
λ3

2 jλ
1
2lΛ4 j,l

Fig. 24 This diagram expresses
the mixed self interaction for
quasi-massive field δσ2 but for
the case with two cube portions.
The order of interaction
originated from terms with
coefficient λ3

2 jλ
1
2lΛ4 j,l

Fig. 25 This diagram indicates
the mixed self interaction for
quasi-massive field δσ2 but
based on same two cube portion.
The order of interaction risen
from terms with coefficient
λ2

2 jλ
2
2lΛ̃4 j,l

Fig. 26 This diagram shows
the mixed self interacting for
both quasi-massive fields δσ j
but based on two cube portions.
The order of interaction
expressed by terms with
coefficient λ3

2 jλ
1
2lΛ

2
3 j,l
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Fig. 27 It is same as Fig. 26
but δσ2 is dominant field

values as

〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)δφ(τ, k4)〉′λ4

= 2
2∑
j=1

λ4 j Im
∫ 0

−∞
dτ

(−Hτ)4

× G+ j (k1; τ)G+ j (k2; τ)G+ j (k3; τ)G+ j (k4; τ)

=
2∑
j=1

π4λ4
2 jλ4 j

2048k3
1k

3
2k

3
3

Im
∫ ∞

0

dz

z4 I+ j

×
(
k1

k4
z

)
I+ j

(
k2

k4
z

)
I+ j

(
k3

k4
z

)
I+ j (z). (35)

On the other hand, the s-channel diagram with two cubic-
vertices can be written down as follows,

〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)δφ(τ, k4)〉′
λ2

3,s

= −
2∑
j=1

λ4
2 j

∑
p,n=±

∫ 0

−∞
dτ1dτ2

(H2τ1τ2)4 G+ j (k1; τ1)

× G+ j (k2; τ1)G− j (k3; τ2)G− j (k4; τ2)D± j (ks , τ1, τ2)

=
2∑
j=1

π5λ4
2 jλ

2
3 j

8192H2
k3
s

(k1k2k3k4)3 e
−π Im ν Re

×
[ ∫ ∞

0
dz

∫ z

0
dz′

(
J+−

12s (z)J++
34s (z′) + J+−

34s (z)J++
12s (z′)

)

−
∫ ∞

0
dz

∫ ∞
0

dz′ J+−
34s (z)J−+

12s (z′)
]
. (36)

where ks ≡ |k1 + k2|. Additionally, we have defined,

J±+
εζη (z) =

2∑
j=1

z−5/2 I± j

( kε

kη

z
)
I± j

( kζ

kη

z
)

H(1)
ν j

(z),

J±−
εζη (z) = z−5/2 I± j

( kε

kη

z
)
I± j

( kζ

kη

z
)

H(2)

ν∗
j
(z). (37)

Now by substitution (2 ↔ 3, s → t) and (2 ↔ 4, s → u),
respectively, the expressions for t and u-channels could be
attained. From the above results, we can find the shape func-

tion T defined in (34) as,

Tpure =
2∑
j=1

π3

215Pζ

(κ1

H

)4
[

4λ4

π
tcj

+
(λ3

H

)2(
ts j + tt j + tu j

)]
, (38)

where tcj and ts j are,

tcj = Im
2∑
j=1

∫ ∞

0

dz

z4 I+ j

(k1

K
z
)
I+ j

×
(k2

K
z
)
I+ j

(k3

K
z
)
I+ j

(k4

K
z
)
, (39)

ts j =
2∑
j=1

e−π Im ν j
( ks
K

)3
Re

[ ∫ ∞

0
dz

×
∫ z

0
dz′

(
J+−

12s (z)J++
34s (z′) + J+−

34s (z)J++
12s (z′)

)

−
∫ ∞

0
dz

∫ ∞

0
dz′ J+−

34s (z)J−+
12s (z′)

]
, (40)

and by virtue of the permutations rules we can write down
tt and tu as well [78]. Now to calculate the contribu-
tion of mixed propagators, and therefore related trispectum,
one should repeat this procedure for coefficients of order
Λ41 ≡ 4 ∂

∂σ2
( ∂3

∂3σ1
V ), Λ42 ≡ 4 ∂

∂σ1
( ∂3

∂3σ2
V ) and Λ̃4 j ≡

6( ∂2

∂2σ1
( ∂2

∂2σ2
V )). Beside this we have to consider the results

of mixed interacting portions related to the bispectrum sec-
tion [56,59]. For example we present here some of mixed
integrals as follows

〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)δφ(τ, k4)〉′Λ4 j,l

= 2
2∑
j=1

1∑
l=2

Λ4 j,l Im

×
∫ 0

−∞
dτ

(−Hτ)4 G+ j (k1; τ)G+ j (k2; τ)G+ j (k3; τ)G+l (k4; τ)
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=
2∑
j=1

1∑
l=2

π4λ3
2 jλ

1
2lΛ4 j,l

2048k3
1k

3
2k

3
3

Im

×
∫ ∞

0

dz

z4 I+ j

(
k1

k4
z

)
I+ j

(
k2

k4
z

)
I+ j

(
k3

k4
z

)
I+l (z) ,

(41)

〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)δφ(τ, k4)〉′
Λ̃4 j,l

= 2
2∑
j=1

1∑
l=2

Λ̃4 j,l Im

×
∫ 0

−∞
dτ

(−Hτ)4 G+ j (k1; τ)G+ j (k2; τ)G+l (k3; τ)G+l (k4; τ)

=
2∑
j=1

1∑
l=2

π4λ2
2 jλ

2
2lΛ̃4 j,l

2048k3
1k

3
2k

3
3

Im

×
∫ ∞

0

dz

z4 I+ j

(
k1

k4
z

)
I+ j

(
k2

k4
z

)
I+l

(
k3

k4
z

)
I+l (z) ,

(42)

and

〈δφ(τ, k1)δφ(τ, k2)δφ(τ, k3)δφ(τ, k4)〉′s

= −
2∑
j=1

1∑
l=2

∑
p,n=±

λ3
2 jλ

1
2lΛ

2
3 j,l ×

∫ 0

−∞
dτ1dτ2

(H2τ1τ2)4

× G+ j (k1; τ1)G+ j (k2; τ1)G− j (k3; τ2)G− j (k4; τ2)D± j (ks , τ1, τ2).

(43)

In the squeezed and collapsed limits the oscillatory signals
again, like in the bispectrum section can begenerated. For
instance when we consider the k1/K → 0 for triangle limit
in self interactions the Eq. 38 reduces to

Tpure =
2∑
j=1

π3c3
φ

215Pζ

(κ1

H

)4( k1

K

)3/2[
tR sin

(̃
ν j log

k1

K

)

+tI cos
(̃
ν j log

k1

K

)
+ · · ·

]
, (44)

and tR = Re(t+ + t−) and tI = Im(t− − t+). Where

t± = 21∓ν j sin(π
4 ± πν j

2 )Cν

Γ (1 ± ν j ) sin(±πν j )

[
− 4iλ4

π
I±

c

+
(λ3

H

)2(
I±

s + I±
t + I±

u

)]
, (45)

these integrals based on different channels are expressed as
follows

I±
c =

2∑
j=1

∫ ∞

0
dz I+ j

(k2

K
z
)
I+ j

(k3

K
z
)
I+ j

(k4

K
z
)
z−5/2±ν j

(46)

I±
s =

2∑
j=1

( k2

K

)3/2∓ν j
e−π Im ν j

∫ ∞

0
dz

∫ z

0
dz′

×
[
z−1±ν j J++

342 (z′)I+ j (z)H
(2)

ν∗
j
(z)

+ z′−1±ν j J+−
342 (z)I+ j (z

′)H(1)
ν j

(z′)
]

−
∫ ∞

0
dz

∫ ∞

0
z′−1±ν j J+−

342 (z)I− j (z
′)H(1)

ν j
(z′). (47)

To calculate Eq. (44) we should consider ν j purely imaginary
quantity [79]. For the mixed interaction, we can repeat the
same procedure.

5 Conclusions

The aim of this study was to calculate the leading order of
bispectrum and trispectrum in an extended version of the
quasi-single field model of inflation namely QSMF inflation.
One expects that observable non-Gaussianity can be gener-
ated in multiple field models which can be tested observation-
ally. Probing non-Gaussianity can bring models of multiple
fields inflation in contact to observation. Following [52] and
[78,79] we explicitly have calculated different expectation
values for QSMF model namely power spectrum , bispec-
trum and trispectrum. In point of fact, our results showed
that the SK diagrammatic formalism has some advantages
compared to the usual in-in formalism. For instance, it dra-
matically reduces the number of calculations and compli-
cation of working out the results. The more interesting but
complicated part of this calculation, in comparison to the
quasi-single filed, was appearing some extra terms beside
the self-interaction parts, because of introducing an extra
quasi-massive field. In fact, in the quasi-single field infla-
tion most important terms are whose that merely deal with
self-interaction and other remnant terms can be eliminated. In
QSMF the story is completely different; what we mean goes
back to the appearance of some extra mixed interacting terms
due to the interaction between both quasi-massive fields and
they played an important role in our calculations. As a conse-
quence, it was expected that the amount of non-Gaussianity
should show an increase in amount. So by virtue of SK dia-
grammatic rules, we tried out to check the accuracy of this
claim in more details. To do so, at first we had to add some
new diagrammatic rules to recognize the difference between
interacting terms due to different presented fields. By look-
ing at Figs. 7, 8 and 9 it will be realized that the amount
of power spectrum in QSMF explicitly showed an increase.
Additionally, if one makes a comparison between QSMF
and quasi-single field models immediately observes that the
non-Gaussianities have undergone countable changes. For
instance, if one considers the equations of shape function in
[78,79] and comparing with the corresponding equations in
this work one finds out that the amounts of non-Gaussianity
have a precious increasing in modules. Besides this, the pre-
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diction of quantum clocks could be concluded again. Con-
sequently, we emphasize again that diagrammatic method
dramatically decreased the amounts of perplexing calcula-
tions in term of calculation of the bispectrum and espe-
cially trispectrum. And finally, it was obviously seen that
our results have good agreement with previous literature [52]
and [78,79].
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