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Abstract In this work, we propose unified picture of infla-
tion and dark matter in the Higgs–Starobinsky (HS) model.
As pointed out in the literature, Starobinsky R2 inflation is
induced by quantum correction effect from the large Higgs-
curvature (graviton) coupling. We start with non-minimal
coupling HS action in Jordan frame. We then transform the
Jordan frame action into the Einstein one using the confor-
mal transformation. The inflation potential is derived from
the gravitational action of non-minimal-Higgs coupling and
Starobinsky term in Einstein frame where the R2 term is dom-
inated in the inflationary phase of the universe. For model of
inflation, we compute the inflationary parameters and con-
front them with Planck 2015 data. We discover that the pre-
dictions of the model are in excellent agreement with the
Planck analysis. In addition, we find that the HS model is
equivalent to a scalar singlet dark matter (SSDM) or Higgs-
portal model. The renormalization group equations (RGEs)
of HS scenario with standard model at one-loop level is quali-
tatively analyzed. By using the solutions of parameter spaces
from RGE analysis, the coupling constants of the HS model
will be verified and can be used to constrain the SSDM using
dark matter relic abundance.

1 Introduction

An inflationary scenario is a well-established paradigm
describing an early universe and posts an indispensable ingre-
dient of modern cosmology. Regarding degrees of freedom
contained in the SM of particle physics or quantum general
relativity, Higgs inflation [1] and Starobinsky model [2,3]
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b e-mail: channuie@gmail.com

have received much attraction in the recent years. The preced-
ing scenario technically requires a large non-minimal cou-
pling (ξ) between a Higgs boson H and the Ricci scalar R, i.e.
ξH†HR which leads to successful inflation and produces the
spectrum of primordial fluctuations in good agreement with
the observational data. The formulation of the later model is
based on R2 gravity. It is worth noting that these two models
are minimalistic and nicely compatible with the latest Planck
data [4]. As pointed out in Ref. [5], both operators ξH†HR
and R2 are expected to be generated when the SM of particle
physics is coupled to general relativity. More importantly,
due to a large non-minimal coupling of the Higgs boson
and the Ricci scalar, Starobinky inflation can be generated
by quantum effects [5,6]. In this situation, the Higgs boson
need not to start at a high field value at inflation. In addition,
in the HS model, a Higgs potential can be stabilized. Notice
that the simplest modification of the Einstein-Hilbert action,
R2-gravity was able to explain the dark matter [7].

Note that the study of inflation and the generation of the
gravitational coupling in the context of induced gravity dated
back in 1982 [8]. The authors of Ref. [9] demonstrated how
a strongly coupled hidden sector could dynamically gen-
erate the Planck scale and, at the same time, result in a
phase of cosmic inflation. The model of inflation involves
the combined dynamics of a nonminimally coupled scalar
and the scalaron, which originates from the R2 term in the
effective action can be found in Ref. [9]. However, the true
nature of inflation is still unclear. Apart form inflation, the
nature of dark matter conveys one of the unsolved problems
in physics and also dark energy is still the greatest cosmic
mystery. There was a large number of models proposed so
far possible to account for DM candidates [10–12] and refer-
ences therein. It was found that the unification of dark energy
and dark matter model in generalized Galileon theories was
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proposed in Refs. [13,14] for an alternative picture. One of
the most interesting models of DM is a singlet scalar dark
matter (SSDM) or Higgs-portal model. The SSDM is the
simplest extension of SM by adding massive scalar field into
the gauge group of SM and it gives the singlet scalar filed
couple to the Higgs field [15–17]. We refer to Refs. [18,19]
for recent review and status of the SSDM. By introducing
auxiliary field in the action of HS model, one finds that the
HS model is equivalent to the SSDM and we will demonstrate
its transformation below. The aim of this work is to present
a unified description of inflation and dark matter in the con-
text of the HS model. Regrading the present investigation,
the feature is multi-fold:

• (i) There is no need of physics beyond the SM of parti-
cle physics since the operators here are expected to be
generated when general relativity is coupled to the SM
of particle physics.

• (ii) We propose a cosmological scenario that unifies
comic inflation and dark matter to a single framework.
The model is minimalistic.

• (ii) Regarding this two-field scenario, the model dose not
suffer from the unitarity problem as that of the Higgs
inflation.

This paper is organized as follows: In Sect. 2, we take
a short recap of the HS model. We also consider quantum
corrections and renormalization group equations. In Sect. 3,
we study inflationary implications of the HS model. Here we
first construct inflationary model, compute its inflationary
observables and then compare with the latest Planck data. In
Sect. 4, we present the HS as the SSDM model and make
qualitative discussion of the model. Discussions and conclu-
sions are given in the last section.

2 Model set-up

2.1 Inducing Starobinsky, R2 term by non-minimal Higgs
coupling

In this section, the HS action will be considered and
constructed. As mentioned earlier, the HS mechanisms is
induced by quantum effect with the large coupling of Higgs-
curvature [5,6]. we start with the gravitational action of the
Higgs-curvature coupling with self-interacting Higgs field,
it reads

SJ =
∫

d4x
√−g

[
1

2
M2

P R + 1

2
ξ σ 2 R

+1

2
gμν∂μσ ∂νσ − λ

4
σ 4

]
, (1)

where the subscript SJ stands for the action in Jordan frame
and MP = 1/

√
8πG and ξ are Planck mass and non-

minimal Higgs coupling constant, respectively. The σ field
is scalar field with the conventional Higgs potential and its
self-interacting coupling strength λ. Note that inflation and
the generation of the gravitational coupling in the context of
induced gravity without the gravitational term can be found in
Ref. [8]. In the framework of quantum field theory in curved
spacetime, it is well known that one needs to introduce the
pure higher gravitational terms into the action for making
proper renormalization procedure [20,21]. Introducing the
higher gravitational correction terms, the gravitational action
in this work is written by [22,23],

SJ =
∫

d4x
√−g

[
−1

2
M2

P R − 1

2
ξ σ 2 R

+ 1

2
gμν∂μσ ∂νσ − λ

4
σ 4

]

+
∫

d4x
√−g

[
−c1 R2 − c2 Rμν Rμν

− c3 Rμνρσ R
μνρσ

]
(2)

=
∫

d4x
√−g

[
−1

2
M2

P R − 1

2
ξ σ 2 R

+1

2
gμν∂μσ ∂νσ − λ

4
σ 4 − α R2 − β C2 − γ G2

]
,

(3)

where the C2 andG2 terms are Wely tensor and Guass-Bonnet
term, respectively and they are defined by

C2 = 1

3
R2 − 2 Rμν Rμν + Rμνρσ R

μνρσ ,

G2 = R2 − 4 Rμν Rμν + Rμνρσ R
μνρσ . (4)

In addition, the couplings, α, β and γ are linear combinations
of the c1,2,3 as

α = c1 + 1

3
(c2 + c3) , β = 1

2
c2 + 2 c3

γ = −1

2
c2 − c3. (5)

We note that the parameters α, β and γ vanish at the clas-
sical level. As mentioned, the higher order curvature terms
of these parameters are introduced for cancelling the diver-
gence in the energy-momentum tensor when the perturba-
tive expansions of the loop diagrams are taken into account
[20,21]. Since we work in a flat FLRW universe, it is worth
noting that the Weyl tensor vanishes in the flat FLRW metric
and the Guass–Bonnet term is topological invariant in four-
dimensional spacetime which is also vanished. Only the rel-
evant higher order curvature term of the action in this work
is R2. Then, the gravitational action of HS model in Jordan
frame reads,
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SJ =
∫

d4x
√−g

[
−1

2
M2

P R − 1

2
ξ σ 2 R − 1

4
α R2

+1

2
gμν∂μσ ∂νσ − λ

4
σ 4

]
. (6)

Moreover, the R2 will contribute to improve the effective
potential at one-loop level and we will discuss about its quan-
tum effect and RGEs latter. For more detail about quantum
effects of the R2 term in the curved spacetime, we recom-
mend the readers to Refs. [20–23]. In this work, the HS mech-
anisms is introduced in Refs. [5,6] where the non-minimal
Higgs-curvature coupling is a trigger of inflation with large
value of the non-minimal coupling constant. This mecha-
nism generates the Starobinsky inflation. With the HS model,
one does not need to set the Higgs field values in the early
universe to be large. Then, according to the observed val-
ues of the standard model Higgs vacuum, we achieve the
corresponding stability of the electroweark vacuum with the
experiments [5]. This model dose not suffer from the uni-
tarity problem of the Higgs inflation also. In this work, we
will study the inflation by using this picture. The HS model
has been studied in Refs. [24–36] and most of the works in
the literatures focused in the multi-field inflation framework.
With the small value of the Higgs field and in the slow-roll
regime during inflation, i.e., suppressing kinetic term of the
Higgs field, one can integrate out the non-minimal Higgs cou-
pling term, ξ σ 2 R via the equation of motion which gives
σ 2
c = −6 ξ R/λ. This has been shown in Ref. [32] that the

action in Eq. (6) becomes,

SJ =
∫

d4x
√−g

[
−1

2
M2

P R − M2
P

12 M2 R2

]
, (7)

M2 = M2
P

12
(
α + 3 ξ2/(2 λ)

) . (8)

The above action is usual Starobinsky inflation action. In the
Einstein frame, one defines the scalaron mass of the Starobin-
sky inflaton field as

M2
α = M2

P

12 α
, (9)

and the scalaron (inflation) mass is modified by the following
relation [32]

M2 = M2
α

1 + 18 (ξ2/λ) M2
α/M2

P

. (10)

According to the observational constraints of the amplitudes
of the curvature perturbation, one finds M ≈ 1.3 × 10−5MP

[37]. By using the fixing M parameter, we obtain the relation
between three parameters ξ , α and λ and we will employ
action in Eq. (7) to work out relevant inflation parameters and
fix the parameters from the HS model with the observational
data in the next section.

2.2 Quantum corrections and renomalization group
equations

In this subsection, we will briefly review and discuss the non-
minimal Higgs coupling induced the Starobinsky R2 term.
After that we will close this subsection with the renormal-
ization group equations at one-loop of the standard model
parameters in the presence of curved spacetime [21,22]. The
non-minimal Higgs coupling induced R2 has been shown in
Refs. [5,6]. In this work, we follow the HS mechanism and
briefly review that how the R2 term is induced as shown in
[5,23].

2.2.1 Pure gravitational terms and Higgs field

We start with the action in Eq. (2). By using the dimensional
regularization scheme via heat kernel technique, the one-
loop effective potential (with absorbtion of the wave function
renormalization constant) of the Eq. (2) is given by [22,23],

Veff(σ ) = −ξ

2
R σ 2 + λ

4
σ 4 − M2

P R

−c1 R2 − c2 Rμν Rμν − c3 Rμνρτ R
μνρτ

+ 1

64π2

(
3 λ σ 2 −

(
ξ + 1

6

)
R

)2

×
[

log

(∣∣3 λ σ 2 − (
ξ + 1

6

)
R
∣∣

μ2

)
− 3

2

]

+ 1

64π2

(
Rμνρτ Rμνρτ − Rμν Rμν

)
90

×
[

log

(∣∣3 λ σ 2 − (
ξ + 1

6

)
R
∣∣

μ2

)]
, (11)

where μ is renormalization (subtraction) scale. In this sub-
section, we note that the couplings appear in above potential
are represented for running couplings due to the quantum
correction effects as,

c1,2,3 = c1,2,3(σ ), ξ = ξ(σ ), λ = λ(σ). (12)

For the classical couplings, they are written by the following
forms,

c(0)
1,2,3 = c1,2,3(σ = 0), ξ (0) = ξ(σ = 0),

λ(0) = λ(σ = 0). (13)

We refer Refs. [22,23] for detail calculation of the effec-
tive potential in Eq. (11) and general concepts and tech-
niques in quantum field in curved spacetime see textbooks
[20,21]. Applying one-loop effective potential in Eq. (11)
to the Callan–Symanzik equation, one obtains relevant beta
functions of the couplings c1,2,3 as [22,23],

βc1 = − 1

16π2

1

2

(
ξ + 1

6

)2

, βc2 = − 1

16π2

(
1

180

)
,
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βc3 = 1

16π2

(
1

180

)
, (14)

where the beta function βF is defined by,

βF = dF

dt
, t = ln μ. (15)

The solutions of the beta functions in Eq. (14) are given by
[23],

c1 = c(0)
1 − 1

16π2

(
1

2

) (
ξ + 1

6

)2

ln

(
σ

μ

)
,

c2 = c(0)
2 − 1

16π2

(
1

180

)
ln

(
σ

μ

)
,

c3 = c(0)
3 + 1

16π2

(
1

180

)
ln

(
σ

μ

)
. (16)

Then, we can re-write the gravitational action in Eq. (6) in
terms of the running couplings (with quantum corrections at
one-loop level) as,

SJ =
∫

d4x
√−g

[
−1

2
M2

P R − 1

2
ξ(σ ) σ 2 R − 1

4
α(σ) R2

+1

2
gμν∂μσ ∂νσ − λ(σ)

4
σ 4

]
. (17)

Note that the coupling α(σ) is linear combinations of the
c1,2,3(σ ) and it reads,

α(σ) = c1(σ ) + 1

3
(c2(σ ) + c3(σ )) = α(0)

+ 1

16π2

(
ξ + 1

6

)2

ln

(√
μ

σ

)
. (18)

Next we will consider the α(σ) parameter in case of α(0) = 0
(at tree level of quantum loop expansion). In the case of
setting the renormalization scale at Planck mass μ ≈ MP

and at sub-Planckian field σ � MP , one finds,

α(σ) = 1

16π2

(
ξ + 1

6

)2

ln

(√
σ

μ

)
. (19)

This result shows that the α coupling of the R2 term is gen-
erated by the non-minimal Higgs coupling, ξ at the one-
loop level [5,23]. At fixed and small Higgs field regime
σ 2

0 � M2
P/ξ , on one hand, the ξ σ 2

0 R in the action (17)
is suppressed. On the other hand, the α R2 dominates the
action. It is worth noting here that, for |ξ | � 1, the quan-
tum correction to α given in Eq. (19) and in the last term in
Eq. (18) is still smaller than the effective classical correction
to α ∼ ξ2/λ that follows from Eq. (8). We finally achieve
the usual Starobinsky inflation. As was shown in Eq. (19),
in addition, the α coupling is written in terms of the non-
minimal coupling parameter. One can tune or fit the ξ rather
than α and we will constrain the value of the ξ with inflation
from observational data in the latter.

2.2.2 One-loop renormalization group equations for
standard model

The Starobinki inflation generated from non-minimal Higgs
coupling term has been discussed and demonstrated in the
previous subsection. More completely, we will extend our
study to the renormalization group equations for the stan-
dard model of particle physics in the presence of the curved
spacetime. Results in this section discussing below will be
very useful for the study of dark matter in the HS model.

Our goal in this subsection is to obtain the running cou-
pling constants of the standard model parameters with the
presence of the gravitational couplings, α and ξ . We fol-
low the main results from Refs. [22,38]. By using heat ker-
nel technique and dimensional regularization scheme, the
Callan–Symanzik equation of the effective potential at one-
loop for the standard model with the Starobinsky R2 term
leads to the renormalization group equations given below
[22]. For gravitational part, the beta-functions are given by
[22]

βξ = 1

16π2

(
ξ + 1

6

) (
12 λ + 2 Y2 − 3

2

(
g′)2 − 9

2
g2

)
,

(20)

βα = 1

16π2

(
1

3

)(
ξ + 1

6

)2

, (21)

We note that the RGE of the α coupling is modified by the
presence of standard model with coefficient 1

3 instead of 1
2 in

the pure gravitational part. The beta-functions of the matters
and fields are given by [22]

βyt = 1

16π2 yt

(
3

2

(
y2
t − y2

b

)

+Y2 − 1

12

(
17(g′)2 + 27g2 + 96g3

3

))
(22)

βyb = 1

16π2 yb

(
3

2

(
y2
b − y2

t

)

+Y2 − 1

12

(
5(g′)2 + 27g2 + 96g3

3

))
(23)

βyl = 1

16π2 yl

(
3

2
y2
l + Y2 − 1

12

(
45(g′)2 + 27g2

))
(24)

βλ = 1

16π2 λ
(

24λ2 − 3λ
(
(g′)2 + 3g2

)

+3

8

(
(g′)4 + 2(g′)2g2 + 3g4

)
+ 4λY2 − 2Y4

)
(25)

βm2 = 1

16π2 m2
(

12λ − 3

2
(g′)2 − 9

2
g2 + 2Y2

)
(26)

βg′ = 1

16π2

(
41

6

)
(g′)3, βg = 1

16π2

(
−19

6

)
g3,

βg3 = 1

16π2 (−7) g4
3, (27)
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where

Y2 = 3
(
y2
u + y2

c + y2
t

)

+3
(
y2
d + y2

s + y2
b

)
+

(
y2
e + y2

μ + y2
τ

)
, (28)

Y4 = 3
(
y4
u + y4

c + y4
t

)

+3
(
y4
d + y4

s + y4
b

)
+

(
y4
e + y4

μ + y4
τ

)
. (29)

We use yu,d,s,c,t,b for Yukawa coupling of theu, d, s, c, t, b
quarks and yl=e,μ,τ is Yukawa coupling of electron, muon
and tau. Them and λ are mass and self-interaction coupling of
the Higgs. The parameters, g′, g and g3 stand for U(1), SU(2)
and SU(3) guage couplings. More detail and discussion of the
one-loop effective potential and other related quantities, we
refer to Refs. [22,38]. We will solve relevant beta-functions
given in this subsection for using to study the relic abun-
dances of psuedoscalar Higgs sector as candidate of the dark
matter with standard model in the latter section. Notice that
first works where the effective potential for arbitrary gauge
theory in curved spacetime was found at one-loop level in
Refs. [39,40].

3 Inflationary implication from the HS model

In this section, we will study of the inflation in the Higgs–
Starobinsky model. In the inflation phase of the universe, we
have shown in the previous section that the Starobinsky R2

term dominates the action in Eq. (6). Then, we will use the
Starobinsky inflation model in this section. Moreover, the
Einstein frame is used as the physical frame in this work.
By using an usual conformal transformation, the action in
Eq. (7) is written in the Einstein frame in the following form,

SE =
∫

d4x
√−g̃

[
−1

2
M2

P R̃ + 1

2
g̃μν ∂μϕ ∂νϕ − V (ϕ)

]
,

(30)

where all quantities with “˜” are represented quantities in
the Einstein frame. The conformal factor, �2 plays important
role on transformation of the gravitational action from Jordan
frame to Einstein frame. The relation between metric tensors
of Jordan and Einstein frames reads,

gμν = �2 g̃μν. (31)

The corresponding conformal factor of Eq. (6) is given by

�2 = 2

M2
P

∂

∂R

(
1

2
M2

P R + M2
P

12 M2 R2

)
= 1 + R

3 M2 ,

(32)

where the definition of the effective mass M is given in
Eq. (10). The Ricci scalar in Jordan frame is written in terms
of quantities in Einstein frame as

R = �2
(
R̃ + 3 g̃μν∂μ∂ν ln �2 − 3

2
g̃μν∂μ ln �2 ∂ν ln �2

)
.

(33)

More importantly, the scalaron field, ϕ of the Starobinsky
inflation is introduced via

ϕ = MP

√
3

2
ln �2. (34)

Using the definition of the scalaron field, one can write the
effective potential of the scalaron in Einstein frame as

V (ϕ) = 3

4
M2

P M2
(

1 − e
−

√
2
3

ϕ
MP

)2

. (35)

This is usual Starobinsky scalaron potential in Einstein frame
and we will employ this potential in the analysis of infla-
tion below. According to Higgs–Starobinsky mechanism as
shown in Eq. (18), the condition ϕ < MP is kept throughout
this analysis.

3.1 Slow-roll approximation

We are ready to study inflation in this subsection. A flat homo-
geneous and isotropic FLRW metric is used as the back-
ground of the universe and it is written by

ds2 = dt2 − a(t)2
(
d2x + d2y + d2z

)
, (36)

where t in this subsection is cosmic time and a(t) is the scale
factor of the universe. The corresponding Friedman equation,
its cosmic time derivative and the Klein–Gordon equation of
the scalaron from above metric and the action in Eq. (30) are

H2 = 1

3 M2
P

(
1

2
ϕ̇2 + V (φ)

)
, (37)

Ḣ = − 1

3 M2
P

(
1

2
ϕ̇2

)
, (38)

ϕ̈ = −3 H ϕ̇ − ∂ϕ V (ϕ), (39)

where H ≡ ȧ/a and ȧ ≡ da/dt . In the slow-roll regime, the
kinetic term of the scalaron (inflaton) is varying very slow
with respect to the cosmic time and it is suppressed. The
Friedman equation can be re-written as

H2 ≈ 1

3 M2
P

V (φ) = 1

4
M2

(
1 − e

−
√

2
3

ϕ
MP

)2

. (40)

Next we recall the definitions of the slow roll parameters and
they read

ε = M2
P

2

(
1

V (ϕ)

dV (ϕ)

dϕ

)2

,

η = M2
P

(
1

V (ϕ)

d2V (ϕ)

dϕ2

)
,
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ζ = M2
P

(
1

V (ϕ)

dV (ϕ)

dϕ

d3V (ϕ)

dϕ3

)
,

N = 1

M2
P

∫ ϕN

ϕend

V (ϕ)

dV (ϕ)/dϕ
dϕ. (41)

Applying the scalaron potential in Eq. (35) to the slow roll
parameters (41), we obtain

ε = 4

3

[
e

√
2
3

ϕ
MP − 1

]2 , η = −
4

[
e

√
2
3

ϕ
MP − 2

]

3

[
e

√
2
3

ϕ
MP − 1

]2 ,

ζ =
16

[
e

√
2
3

ϕ
MP − 4

]

9

[
e

√
2
3

ϕ
MP − 1

]3 . (42)

At inflation end i.e., εend = 1, we find ϕend = 0.764 MP .
The number of e-folding number from ϕend to ϕN is given by

N = 3

4

[
e

√
2
3

ϕN
MP − e

√
2
3

ϕend
MP −

√
6

4 MP
(ϕN − ϕend)

]

≈ 3

4
e

√
2
3

ϕN
MP , (43)

where we have used the field values ϕN � ϕend. We approx-
imately find ϕN ∼ √

3/2MP ln(4N/3). With N = 60, we
obtain ϕN ≈ 5.37 MP .

3.2 Contact with observational constraints

Next we constrain our scalaron potential with the COBE nor-
malization condition for fixing parameters in the HS model.
We use reads,

V (ϕ)

ε
	 (0.0276 MP )4. (44)

Using the potential in (35), we get,

ξ 	 2.3 × 10−3
√

λ
√

1.8475 × 1010N 2 − 128648.α/, .

(45)

In order for ξ to satisfy the usual Higgs inflation, i.e. ξ ∼
10000, we discover

λ ∼ − 1.5 × 108

1.α − 5.16993 × 108 , (46)

where we have used N = 60. Using typical values of λ, a
parameter α can be fixed by the CMB constraint:

α ∼ −2.5 × 109 for λ = 0.05, (47)

α ∼ −1.45 × 1010 for λ = 0.01. (48)

Notice that a successful prediction of the density perturbation
requires α to be large similar to those found in, e.g., Refs.
[5,43]. The spectral index of curvature perturbation ns and

the tensor-to-scalar ratio r are given to the leading order of
the slow-roll approximation as:

ns := 1 − 6ε + 2η 	 1 − 2

N
, (49)

r := 16ε 	 12

N 2 . (50)

Notice that the predictions of our present model are in
agreement with those of Ref. [41] where ns 	 0.966 and
r = 0.0033 for N = 60. Remarkably, our inflationary pre-
dictions given in Eqs. (49,50) nicely coincide with those
of the universal alpha-attractors scenarios [44–53] in case
α → 1. It is worth adding here that the quantitatively correct
predictions for the scalar power spectrum Pζ and the tensor-
to-scalar ratio r in the pure R+ R2 model were first obtained
in Ref. [54].

4 Dark matter from the HS model

In this section, we solve the renormalization group equations
for demonstrating residual effect of the inflation to dark mat-
ter in the HS model. In addition, we will demonstrate how the
HS is equivalent to the SSDM. The results of the SSDM from
thermal relic abundance constraints are discussed in terms of
the couplings of the HS framework.

4.1 The HS model as the SSDM

We start with the the gravitation action of the HS model in
Jordan frame and follow a framework proposed in Ref. [30].
Let us introduce an auxiliary field χ so that the action in
Eq. (6) is rewritten as.

SJ =
∫

d4x
√−g

[
− 1

2
M2

P R − 1

2
ξ σ 2 R − 1

2
α χ2 R

− 1

2
gμν∂μσ ∂νσ − 1

2
mσ σ 2 − λ

4
σ 4 − α

4
χ4 + LSM

]
.

(51)

Note that the variation with respect to χ gives χ2 = R.
We restore the original action (17) after substituting it to
Eq. (51). The field χ corresponds to a spin-zero mode of the
graviton that is dynamical due to the presence of the Ricci
scalar squared term so called a scalaron [32]. It is worth
mentioning here that the word “scalaron” was first introduced
by Starobinsky in Refs. [2,3]. Here if we generalize the model
and include one-loop contributions of massive quantum fields
then scalarons will decay into pairs of massive particles (see
[2,3] for more details). Instead of Eq. (51), we here introduce
the coupling between the fields χ and σ , and consider the
following action:
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SJ =
∫

d4x
√−g

[
− 1

2
M2

P R − 1

2
ξ̃ σ 2 R − 1

2
α̃ χ2 R

+ 1

2
gμν∂μσ ∂νσ − 1

2
mσ σ 2 − λ̃

4
σ 4

− c̃

4
χ4 − κ̃

2
χ2 σ 2 − LSM

]
. (52)

More importantly, the couplings ξ , α and λ in Eq. (6) are
linear combinations of the new coupling constants, ξ̃ , α̃, c̃,
κ̃ and λ̃ as,

ξ = ξ̃ − α̃ κ̃

c̃
, α = α̃2

c̃
, λ = λ̃ − κ̃2

c̃
. (53)

Using Eq. (53), the action (52) reproduces the original action
of the HS model in Eq. (6) after integrating out the scalaron
χ [30]. We note that there is no kinetic term for the field
χ in Eq. (52). According to the principle of effective field
theory, the reason is that the χ is not a dynamical field and
is freezed above the Electroweak scale, �EW . The kinetic
term 1

2 Zχ∂μχ∂μχ emerges due to renormalization effect and
Zχ is the wave-function renormalization constant. At high
energy scales μ → �EW , we require that Zχ = 0. After
symmetry breaking or below the Electroweak scale, the χ

plays the role as the dynamical field in this energy regime
and the χ field starts to propagate and the kinetic term of the
χ is generated, Zχ → 1. Taking the Electroweak symmetry
breaking of the Higgs filed, i.e., σ → σ + v and emergence
of the dynamical field, χ into account, one rewrites the action
in Eq. (52) as,

SJ ∈
∫

d4x
√−g

[
− 1

2
M2

P R − 1

2
ξ̃ σ 2 R − 1

2
α̃ χ2 R

+ 1

2
gμν∂μσ ∂νσ − 1

2
mσ σ 2 + 1

2
gμν∂μχ ∂νχ

− 1

2
mχ χ2 − λ̃

4
σ 4 − c̃

4
χ4 − κ̃

2
χ2 σ 2 − κ̃

2
χ2 v σ + LSM

]
.

(54)

It is worth to mention that the χ field couples to Higgs via
three-point and four-point interaction terms with the same
coupling constant, κ̃ . This coupling will is the connection
between HS and SM of particle physics. It has been also
demonstrated in Ref. [30] that there is dual description to
choose the choices of the invariant under shift and re-scaling
transformation of the auxiliary field χ2. In addition, the χ

field is a scalar mode of the graviton which is called scalaron
[55,56]. We come to the crucial result of this work and
it is important to note that the action in Eq. (54) has the
same structure of that given by the singlet scalar dark mat-
ter (SSDM) model [15–17]. The SSDM model has been
demonstrated to be the unification of inflation and dark matter
[57,58] or Higgs-portal paradigms [60] as well as the com-
posite NJL model of inflation and dark matter [41]. More-
over, the coupling between scalaron χ and Higgs σ naturally

emerges with the choice of re-define auxilaiary field and new
parameters in (53), respectively. In order to see the behavior
of the couplings in different energy scales, the renormaliza-
tion group analysis is required. This subsection is to study the
HS model as candidate of the dark matter. The new scalaron
χ plays the role as SSDM via thermal relic abandance as we
will discuss in the next subsection. We impose the energy
scale in this study is the Elecetroweak scale at the given
values of the top quark mass mt = 173 GeV and vacuum
expectation value v = 246 GeV. The beta functions of the
standard model coupling parameters are given in Eqs. (22),
(23), (24), (27) except for Eqs. (25), (26) need to modified
due to our new tilde parameters λ̃ and α̃. The beta functions
of the parameters in Eq. (53) are given by [57,58]

βα̃ = 1

16π2

[
(3 + cσ ) κ̃

(
ξ̃ + 1

6

)
+ 6 cχ

(
α̃ + 1

6

) ]
, (55)

β̃ξ = 1

16π2

[ (
(6 + cσ ) λ̃ + 6 y2

t

−3

2

(
3 g2 + (g′)2

))(
ξ̃ + 1

6

)
+ cχ

(
α̃ + 1

6

) ]
, (56)

βc̃ = 1

16π2

[
1

2
(c2

σ + 3)̃κ + 18 cχ c̃2
]
, (57)

βκ̃ = 1

16π2

[
4 cσ cχ + 6 (c2

σ + 1)̃c κ̃
3

2
(3g2 + (g′)2 )̃κ

+6 y2
t κ̃ + 6 cσ c̃κ̃

]
, (58)

β̃λ = 1

16π2

[
18 (c2

σ + 6)̃λ2 − 6 y2
t + 3

8

(
2 g2 + (g + (g′))2

)

+
(

12 y2
t − 9 g2 − 3 (g′)2

)
λ̃ + 1

2
c2
χ κ̃2

]
, (59)

where cσ and cχ are the suppression factor for the Higgs
(σ ) and the scalaron (χ ) and we will set them to 1 in the
discussion below (see Refs. [41,57,58] for definitions and
detail descriptions). Here we consider the real part of the χ

field only. By solving the beta functions for βξ̃ and βα̃ in
Eqs. (56 ) and (55) respectively, it has been demonstrated in
Ref. [41] (in the framework of the composite NJL model but
it has the same field configurations) that the renormalization
group running analysis of the ξ̃ and α̃ confirms the dominance
of the χ field inflation over the Higgs field with the relation,

ξ̃ ≈ 0.019 α̃. (60)

Before closing this subsection, we turn to discuss about the
Electroweak vacuum stability and its perturbative properties
of the HS model in the form of action (53). According to Ref.
[58], we find the constraints,

c̃ > 0, λ̃ > 0, κ̃ > 0, or κ̃2 < c̃ λ̃. (61)
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Together with the perturbative conditions up to the Planck
scale, one obtains [58],

c̃ <
2 π

3
, λ̃ <

2 π

3
, κ̃ < 4 π, (62)

which are helped to constrain the couplings in SSDM of the
HS model.

In general, one may expect that scalaron and Higgs boson
are unstable and decay quickly. This implies that the scalaron
may not work as dark matter candidate for our proposal in this
model. However, in any case, there are other possibilities to
overcome this problem. For instance, Ref. [7], here the author
has introduced new mode of the scalaron from higher order
gravity (i.e., R2 term) and the new scalar mode oscillates
around the minimum of its potential. Then, the oscillations
might correspond to non-zero-momentum condensate and be
able to associate with standard non-relativistic matter. This
process is a so-called “vacuum misalignment” mechanism
which mimics a famous mechanism of the axion produc-
tion as a cold DM candidate [62–64]. For the details about
the mechanism of the scalaron stability and its main decay
channels and how the scalaron can work as DM we refer to
Ref. [7]. In addition, similar approaches for the scalaron of
the higher order gravity as DM candidate have been investi-
gated in the literature [65–67].

4.2 Relic abundance

By using the action in Eq. (54), it has been shown that the
observed mass of dark matter is reproduced by the thermal
relic abundance of the χ field [41,57,58]. We closely follow
an analysis and employ the relevant values and results of
the parameters for relic abundance in Ref. [41]. The current
observed mass of the dark matter is given by [59],

�DM h2 = 0.1199 ± 0.0027, (63)

where h ≈ 0.7. The crucial parameter for estimating the
mass of dark matter is κ̃ as shown in [41,57,58]. According
to the analysis of [41], the mass formula of dark matter mass
is given by

M2
DM = m2

χ + κ̃ v2/2, (64)

In case of a light DM mass, we can constrain a lower bound
of a mass MDM . Here we use the best-fit value of a physical
mass MDM located around κ̃ = 6.5 × 10−4, MDM = 62.51
GeV [18] and find mχ ≈ 62.35 GeV. In case of a heavy
DM mass, we consider for instance κ̃ = 0.5, MDM = 410
GeV [41] and find mχ ≈ 391 GeV. Notice that in the region
above mσ /2, the authors of Ref. [42] show that the relic den-
sity constrains the coupling as a function of the DM mass
which can be approximately describe by the dependence
log10 κ̃ > −3.36 + 1.04 log10(MDM/GeV). We stress here
that thorough analysis of the present work can be done by

following Ref. [41]. To see the values of the couplings of the
original action of the HS model, we employ the values of the
relevant input parameters in the action (52) which have been
estimated by [58] i.e., c̃ = 0.025 or c̃ = 0.2. Moreover, the
solutions of the beta-functions in terms of ξ̃ and α̃ have been
done by Ref. [41] and given by

ξ̃ = κ̃M α̃0

18 c̃0

[
1 −

(
1 − 9 c̃0

8 π2 t

)1/3
]

, (65)

α̃ = α̃0

(
1 − 9 c̃0

8 π2 t

)−1/3

(66)

where we have used t ≡ ln μ/mt and κ̃M , α̃0 and c̃0 are an
average of κ̃ and initial values of α̃ and c̃, respectively. We
will use above relations to rewrite a parameter ξ̃ in terms of α̃

and we will estimate the values of the ξ , α and λ parameters
by using the definitions in Eq. (53).

At given renormalization scale of the top quark mass, μ =
mt → t = 0 in Eqs. (65) and (66), one finds ξ̃ = 0 and
α̃ = α̃0 where the value of α̃0 is of the order of ≈ 105,
for example Ref. [58] obtained α̃0 = 2.5 × 105 with c̃0 =
c̃(mt ) = 0.2 and κ̃(mt ) = κ̃0 = 0.1. Although the value of
α̃ is rather large, this term is suppressed by the Planck mass.
Then the non-minimal coupling α̃ χ2 R does not affect to
dark matter-Higgs coupling, κ̃ χ2 σ 2. The relevant parameter
for study the relic abundance in the original action of the HS
is Higgs self-interacting coupling, λ. To achieve the require
dark matter relic abundance, we present the possibilities of
the λ coupling with the given values of the c̃, κ̃ and λ̃ as

λ = λ̃ − κ̃2

c̃
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ̃ − 2 × 10−6; for κ̃ = 6.25 × 10−4, Ref. [18],
λ̃ − 490; for κ̃ = 9.9, Ref. [18],
λ̃ − 0.15; for κ̃ = 0.1, Ref. [42],
λ̃ − 1.05; for κ̃ = 0.5, Ref. [42],

(67)

where we fixed the couplings c̃ = 0.2 as done in Ref. [58].
This value is constrained by solving the renormalized group
equations. We have employed the results of the dark matter
mass from SSDM with GAMBIT collaboration [18] and the
composite NJL model [41]. According to above results, we
can have both light DM mass and the heavy one in the HS
model. For the lighter one, we find MDM = mσ /2 GeV with
κ̃ = 6.25 × 10−4. This ensures to reproduce the reasonable
and closer value of the Higg self-interacting coupling, λ =
m2

σ /2 v2 ≈ 0.1 for mσ = 125 GeV and v = 246 GeV.
In the heavy DM mass, we can obtain the same mass value
MDM = 410 GeV with κ̃ = 0.5 as that of Ref. [41]. In this
later case, we find λ = λ̃ − 1.05.

5 Conclusion

In this work, we presented a unified description of infla-
tion and dark matter in the context of the HS model. The
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salient feature of this work is to demonstrate that the HS
scenario can simultaneously describe inflation and dark mat-
ter without introducing new physics beyond standard model.
We considered the original action describing the HS model.
We started with non-minimal coupling HS action in Jordan
frame and transformed it to the Einstein frame using the con-
formal transformation. We also derived the inflation potential
from the gravitational action of non-minimal-Higgs coupling
and Starobinsky term in Einstein frame where the R2 term
is dominated in the inflationary phase of the universe. For
model of inflation, we computed the inflationary parameters
and confronted them with Planck 2015 data. We discovered
that the predictions of the model are in excellent agreement
with the Planck analysis.

In addition, we considered the HS model as a candidate for
dark matter. We analyzed the renormalization group equa-
tions (RGEs) of HS scenario with the standard model at
one-loop level. More importantly, we discovered that the HS
model is equivalent to the SSDM. We made qualitative dis-
cussions to identify the coupling constants from dark matter
relic abundance constraints. Employing results of the SSDM
with GAMBIT collaboration and composite NJL model, the
DM mass in the HS model flavors the light mass around
MDM = mσ /2 in order to reproduce the reasonable values
of the Higgs self-interaction coupling.

However, there are some limitations in the present work
- for example, one should complete the RGEs for all scales
and solve them numerically. Moreover, regarding this single
framework, another crucial issue for successful models of
inflation is the (pre)reheating mechanism. We plan to inves-
tigate this mechanism, within our framework, by following
a composite inflationary scenario [61]. As mentioned in the
previous section, the stable properties of the scalaron DM
are worth investigating. As a result, the cosmological con-
sequences of the present work can be further considered.
These also include, e.g., preheating and reheating processes.
In addition, cosmic history of chameleon mechanism of the
DM is also interesting to be investigated, see for example
[65]. We hope to address these issues with future investiga-
tions.
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