
Eur. Phys. J. C (2019) 79:338
https://doi.org/10.1140/epjc/s10052-019-6831-3

Regular Article - Theoretical Physics

Dynamical evolution of non-minimally coupled scalar field in
spherically symmetric de Sitter spacetimes

R. D. B. Fontana1,a, Jeferson de Oliveira2,b, A. B. Pavan3,c

1 Universidade Federal da Fronteira Sul, Campus Chapecó, Chapecó, SC CEP 89802-112, Brazil
2 Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá, MT CEP 78060-900, Brazil
3 Instituto de Física e Química, Universidade Federal de Itajubá, Itajubá, MG CEP 37500-903, Brazil

Received: 4 December 2018 / Accepted: 29 March 2019 / Published online: 13 April 2019
© The Author(s) 2019

Abstract We investigate the dynamical behavior of a scalar
field non-minimally coupled to Einstein’s tensor and Ricci
scalar in geometries of asymptotically de Sitter spacetimes.
We show that the quasinormal modes remain unaffected if
the scalar field is massless and the black hole is electri-
cally chargeless. In the massive case, the coupling of both
parameters produces a region of instability in the space-
time determined by the geometry and field parameters. In
the Schwarzschild case, every solution for the equations of
motion with � > 0 has a range of values of the coupling
constant that produces unstable modes. The case � = 0 is the
most unstable one, with a threshold value for stability in the
coupling. For the charged black hole, the existence of a range
of instability in η is strongly related to geometry parameters
presenting a region of stability independent of the chosen
parameter.

1 Introduction

The evolution of probe fields in black hole backgrounds has
long been a very active field of research in theoretical physics
[1–3, and references therein]. Probe field profiles in the time
domain present a discrete set of complex frequencies called
quasinormal frequencies (QNFs) that can provide valuable
information about the structure of spacetime. Each of these
frequencies corresponds to a damped vibrational mode of
the field, the so-called quasinormal mode (QNM). The set
of QNM’s carry specific information about the signature of
the geometry (e.g. black hole solutions) and its interaction
with fields, since it depends on the parameters that define the
metric.
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The applications of quasinormal modes are manifold:
probing the linear stability of black holes and stars spacetimes
[4–9]; identification of astrophysical black holes through
gravitational waves signals [3], experimentally verified by
LIGO [10,11]; studying the role played by such oscilla-
tions in the context of gauge/gravity duality, especially in the
AdS/CFT [12–16] and dS/CFT correspondences [17–19].

The stability of black holes and stars has been discussed
in several works [20] since the 50’s with the original paper of
Regge and Wheeler analyzing the Schwarzschild singularity
[21]. The QNM’s of scalar, Abelian gauge, and fermionic
free probe fields evolving in the neighborhood of black holes
have also been used to obtain insights about the nature of
spacetime. In the case of asymptotically flat black holes these
QNM’s are, by the no-hair theorems, functions of only the
mass M , the electric charge Q, and the angular momentum
Lφ of the black hole [22]. However, more recently, these
theorems were circumvented in the asymptotically AdS black
holes and other configurations with non-minimally coupled
fields such that hairy black holes solutions have been found
[23–27]. In the latter cases, the QNM’s depend on other hairs
of the spacetime, and black hole phase transitions are present.

In AdS/CFT correspondence context, a robust interpre-
tation for the QNM spectra in the view of a quantum field
theory at finite temperature (defined at the AdS boundary)
is provided: the inverse of the imaginary part of the fun-
damental quasinormal frequency is understood as a relax-
ation time of the dual operator at the boundary [13]. Among
the applications of AdS/CFT correspondence to condensed
matter physics [28, and references therein], we mention
the phase transitions at the border theory giving rise to
the so-called holographic superconductors [29–34]: the phe-
nomena yields a specific bulk effect through the QNMs,
i.e, growing/decaying oscillations of a given probe field in
the bulk correspond to a conductive/superconducting phase
at the dual field theory [27]. The presence of instabilities

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-6831-3&domain=pdf
mailto:rodrigo.fontana@uffs.edu.br
mailto:jeferson@gravitacao.org
mailto:alan@unifei.edu.br


338 Page 2 of 16 Eur. Phys. J. C (2019) 79 :338

(growing modes) in the quasinormal spectrum therefore indi-
cates a phase transition at the border.

On the dS/CFT correspondence [35], the evolution of
probe fields on the gravity side is related to fundamental
quantities in the border field theory [17–19]: the poles of the
two-point correlator of the three-dimensional conformal field
theory at the boundary scale perfectly the QNMs spectrum
of a massive scalar field in the de Sitter spacetime.

Non-minimally coupled (NMC) curvature models were
firstly considered in the late 80’s [36], as an alternative grav-
itation theory. The presence of a scalar field coupled to cur-
vature terms in Einstein–Hilbert action allows for a suit-
able solution for the inflation exit, and in general has a de
Sitter spacetime as the attractor for later times, as should
be expected. Besides the traditional terms of NMC models,
a few years later, derivative terms were introduced in the
action [37], expanding the possibilities for the scalar field
potential, characterizing the non-minimally derivative cou-
pling (NMDC) models. From the possible derivative terms,
only two significant contributions are in general considered.
With a particular scale of the Lagrangian couplings and the
cosmological constant, the inflation scenario is generated, as
well as the de Sitter spacetime remnant from the curvature
equations [38,39].

The curvature equations coming from NMDC models are
of third or higher order, in general. For a particular choice of
couplings, however, it is still possible to achieve second order
equations: when the Lagrangian derivative terms are placed
as Einstein tensor coupled to scalar field components [40].
This choice turns the NMDC into a more suitable (simple)
form, as it makes unnecessary to fine tune the scalar field
potential.

Beyond the strategic elimination of the fine tuning prob-
lem, another possible purpose of the coupling is to perform
as a dark matter component, feasible in the form of ΛCDM
model [41]. The rate of the scalar field density and total den-
sity in the model is slightly different from that of a cold dark
matter model, but still in the observationally allowed range.
Once NMDC models could be used to describe dark energy
and dark matter, they would be instrumental to understand
how this coupling affects black holes: for instance, in the con-
text of scalar–tensor gravity exact hairy black hole solutions
have been found using NMDC models [24,25].

In the case of NMDC models, field propagation and quasi-
normal modes were investigated in a group of papers with
a different approach [42–44]. In [42,43] the QNMs were
obtained in spacetimes with charge, mass, dilaton fields and
other hairy geometries. In [44–46] the dynamical evolution
of scalar and vector fields are examined showing the presence
of dynamical instabilities associated with a critical value of
the NMDC coupling.

In this work we concern ourselves with the dynamical
evolution of a scalar field in different geometries with the

non-minimal derivative coupling introduced in the action as

S =
∫

d4x
√−g

(
F(Φ,R,RμνR

μν,RμνδσR
μνδσ )

+H(Φ, ∂σ Φ∂σ Φ,∇2Φ) + V (Φ)

)
, (1)

where the function F encodes all possible Lagrangian curva-
ture terms along with their couplings to a scalar field compo-
nent Φ, H gives a general coupling between curvature and the
scalar field kinetic term, and V (Φ) is the scalar field poten-
tial. This action is relevant, e. g., in the context of quantum
gravity [47], where additional terms in the curvature of most
second degree are added to the Einstein–Hilbert Lagrangian.
Although the correspondent gravity theory is not unitary, it
can be considered as the starting point of an effective theory
of gravity, since the description of it does not have to satisfy
all requirements imposed by the fundamental physics. As a
particular case of action (1), we consider the simplest NMDC
model with matter terms as follows:

S =
∫

d4x
√−g

(
Lbackground(R, Λ, Fμν) + Lperturbative(Φ)

)
,

(2)

where

Lbackground(R,Λ, Fμν) = R

16πG
− 6

L2 − FμνFμν

4
, (3)

with R standing for the Ricci scalar, L is the dS radius and
Fμν are the components of electromagnetic field strength
tensor. Also,

Lperturbative(Φ) = − 1
2 (gμν + ηGμν) ∂μΦ∂νΦ

− 1
2μ2Φ2 − Vint (Φ), (4)

where gμν and Gμν are, respectively, the components of met-
ric and Einstein tensors, Φ is the probe scalar field with mass
μ and η is the NMDC parameter.

Here we are interested in the effect produced on the scalar
field equation, given usual black hole geometries as a fixed
background. In this approach the probe fields are treated as
small perturbations, that are not expected to change the fixed
geometry and decay in time. In such case, the corrections of
the metric elements are of small order and can be consistently
set to zero [1], once the energy-momentum tensor for the
scalar field is quadratic.

The paper is organized as follows: in Sect. 2 we establish
a general equation of motion for the scalar field Φ for spher-
ically symmetric spacetimes. In Sects. 3 and 4 we analyze
the dynamical properties of the field in the spacetimes of de
Sitter, Schwarzschild–de Sitter, and Reissner–Nordström–de
Sitter. In Sect. 5 we present our conclusions and final remarks
relative to peculiar features of the coupling for all geometries
considered.
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2 Equation of motion

We first consider the four-dimensional spherically symmetric
black hole (or de Sitter) background solution, namely

ds2 = − f dt2 + 1

f
dr2 + r2 dΩ2, (5)

with dΩ2 = dθ2 + sin2 θdφ2 representing the 2-sphere line
element and f = f (r). The equation of motion for the scalar
field Φ derived from the action (2) is given by

1√−g
∂μ

( √−g hμν ∂νΦ
)

− dṼ

dΦ
= 0, (6)

where the potential of the scalar field is given by Ṽ =
1
2m

2Φ2, and we redefine the mass term as m2 → μ2 + ξR,
being the last term originated by Vint in (4). We also have

hμν = gμν + η Gμν, (7)

which acts as an induced metric for the scalar field equation,
through η. The convention of sign used for ηGμν along this
work is the same of that used in Ref. [40] (η → κ) and
contrary to [42,44], (η → −β). From the cosmological point
of view, both scenarios are explored in [40], η > 0 and η < 0.
We studied cases with η > 0 (correspondingly κ > 0) where
the Universe has a quasi-de Sitter behavior gracefully solving
the problem of exit of inflation era.

Applying the standard Ansatz to separate variables in
spherically symmetric spacetimes we write the field in radial–
temporal and angular parts,

Φ(t, r, θ, φ) =
∑
�,mφ

R(r, t) Y�,mφ (θ, φ), (8)

which, introduced into Eq. (6), yields

−∂2R

∂t2 + α
∂2R

∂r2 + α

(
2

r
+ dF

dr

)
∂R

∂r
− ϑ(r)R = 0, (9)

with the potential ϑ(r) being

ϑ(r) = β �(� + 1)

r2 + γm2, (10)

and the functions α, β, γ and F given by,

α = f 2, (11)

β = 1 + ηB

1 − ηA
f, (12)

γ = f

1 − ηA
, (13)

F = ln
(
(1 − ηA) f

)
. (14)

Functions A and B are specific of each geometry and defined
in the “Appendix”. In order to place (9) as a Schrödinger-like
equation, we perform a change in the radial coordinate to the

tortoise system,
dr∗
dr

= 1

f
resulting in

−∂2 R̃

∂t2 + ∂2 R̃

∂r2∗
+ V (r)R̃ = 0, (15)

where R = R̃(r, t)

r
√
k

and k = 1 −ηA. The tortoise coordinate

system has the advantage of avoiding singularities in the inte-
gration of the scalar field equation encapsulating it beyond
the event horizon. In this case, the above effective potential
is written as

V (r) = α

16

(
4η2A′2

(−1 + ηA)2 − 16 f ′

r f
+ 4ηA′ (4 f + r f ′)

r(1 − ηA) f

− 2ηA′ (−η f A′ + 2(1 − ηA) f ′)
(1 − ηA)2 f

+ 8ηA′′

1 − ηA

)
− ϑ(r),

(16)

which allows us to integrate and use different methods to
attain the scalar field profiles in the time domain as well as
the quasinormal spectra.

3 QNM’s for non-minimally coupled scalar fields
evolving in the pure de Sitter and Schwarzschild–de
Sitter spacetimes

In this section, we are going to explore the dynamics
of non-minimally coupled scalar field in de Sitter and
Schwarzschild–de Sitter spacetimes, through the computa-
tion of quasinormal frequencies spectrum and modes.

3.1 De Sitter spacetime

We firstly analyze the pure dS case, in which an analytical
expression for the scalar QNMs was found in [48], where the
probe scalar field is not coupled to the Einstein tensor [η = 0
in the Lagrangian (4)].

In (3 + 1) dimensions, the line element of dS spacetime
can be cast as

ds2 = −
(

1 − r2

L2

)
dt2 + 1(

1 − r2/L2
) dr2 + r2 dΩ2,

(17)
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where L stands for the dS radius, related to the cosmological
constant Λ by L2 = 3/Λ. Considering the evolution of a
probe scalar field with mass m in the pure dS geometry, the
corresponding effective potential reads as

V (r) = C1

L2 cosh2(r∗/L)
+ C2

L2 sinh2(r∗/L)
, (18)

with the radial tortoise coordinate r∗ = L arctanh (r/L),
C1 = −2 + m2L2, and C2 = �(� + 1).

We can generalize the results for the scalar QNFs found
in [48], ωI,I I , considering an NMDC term η �= 0:

ωI = − i

L

(
2n + � + h±

)
,

ωI I = − i

L

(
2n − (� + 1) + h±

)
, (19)

where,

h± = 3

2
±

√
9

4
− m2L4

L2 − 3η
. (20)

From these exact expressions it is clear that the behav-
ior of the coupling parameter η will affect the quasinormal
spectrum. If η is bounded by η < L2/3, the range of allowed
values for m in order to have QNFs with non-null real part is

m >
3

2L

√
1 − 3η

L2 , (21)

which constraints the field mass to be positive definite. Using
the expression (20) into the Eq. (19), the two sets of QNFs
can be cast in the form

ωI = ± 1

L

(
m2L4

L2 − 3η
− 9

4

)1/2

− i

L

(
2n + � + 3

2

)
, (22)

ωI I = ± 1

L

(
m2L4

L2 − 3η
− 9

4

)1/2

− i

L

(
2n − � + 1

2

)
. (23)

These expressions generalize the previous results found for
the scalar field trivially coupled to the geometry [48]. In
what follows, we show the existence of a region of parame-
ters in which purely imaginary and unstable QNMs arise in
the system, the origin of the instabilities is attributed to the
non-canonical coupling between the scalar field and the dS
geometry.

3.1.1 Purely imaginary frequencies and instabilities

Using the expressions for the frequencies found above, we
constraint the values of the NMDC parameter η and the scalar
field mass m in order to get purely imaginary QNMs and,

more interesting, a range of parameters allowing growing
modes, i.e., frequencies with positive imaginary part.

Purely imaginary frequencies have been found in the con-
text of black hole perturbations, and its applications to the
AdS/CFT correspondence are manifold. In [49] the authors
found a close relation between the Korteweng–de Vries
equation and the three dimensional Lifshitz black hole in
New Massive Gravity (NMG). They also showed that the
scalar QNMs in the hydrodynamic limit are purely imagi-
nary, which in the view of linear response theory corresponds
to a solitonic solution. Also in the context of NMG, purely
imaginary QNMs were found beyond the hydrodynamic limit
in [50]. Furthermore, purely imaginary spectra have been
found for a probe scalar field evolving on the geometry of
d-dimensional Lifshitz black hole [51] and for the Chern–
Simmons sector of d-dimensional Lovelock black holes [16].

An attempt to give an interpretation of QNMs in the
framework of the dS/CFT correspondence [35] was made in
[17,18], where the authors considered the exact QNM spec-
trum of scalar perturbations on a three-dimensional rotating
dS black hole and in [19] for a pure d−dimensional dS black
hole. In [17,18], it was found an exact relation between the
QNM spectrum and the spectrum of thermal excitations of
a Conformal Field Theory, which presents growing modes,
leading to regions of instability. Following the same pro-
cedure as in [17,18], it is possible to show that there are
growing modes and regions of instability in the case of the
4-dimensional dS spacetime with η �= 0.

If we take L = 1 and � = 0 in the first set of QNMs ωI

(22), the condition to obtain purely imaginary QNFs is that
η > 1/3, thus

ωI = i

(
±

(
m2

3η − 1
+ 9

4

)1/2

−
(

2n + 3

2

))
. (24)

Considering then the fundamental mode n = 0 for the posi-
tive branch of ωI and setting for simplicity η = 2/3, we find
that the fundamental QNF corresponds to a purely growing
mode for m2 > 0. For η → ∞, the QNFs of the posi-
tive branch is bounded by ω+

I = −2ni , while in the negative
branch ω−

I we have only decaying QNFs for positive masses,
bounded by ω−

I = −(3 + 2n)i .
The same analysis can be done for the second set of QNFs

(23), leading to

ωI I = i

(
±

(
m2

3η − 1
+ 9

4

)1/2

−
(

2n + 1

2

))
. (25)

For the positive branch, the fundamental QNF is a grow-
ing mode for m2 > 0 (setting η > 2/3) and for the neg-
ative branch there is only QNFs with negative imaginary
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part. When η → ∞, these frequencies are bounded by
ω−
I I = −(2n + 2)i and ω+

I I = −(2n − 1)i .
In short, growing purely imaginary QNMs in the positive

branch of the two sets of exact frequencies are present in the
spectra, featuring two regions of instability.

The result for the poles of the two-point correlation func-
tion in 4- dimensional dS spacetime found in [19] can be
easily generalized for the case of a non-vanishing parameter
η by means of the following rescaling of the scalar field mass,

m2 → m2L2

L2 − 3η
, (26)

in which case the poles are written as

ω = ± i

L
(h± + � + 2n) , (27)

where h± is given in (20). The above expression is equivalent
to the first set of QNMs (19), therefore, the positive branch
of the poles coincides with the region of instability discussed
in the preceding analysis. Such a result seems to be in agree-
ment with the dS/CFT correspondence, namely, the regions
of instability in the bulk QNM spectrum matches with those
obtained by the calculation of Hadamard two-point function.

3.2 Schwarzschild–de Sitter spacetime

The coupled-scalar field equation introduced in Sect. 2, can
also be studied in a Schwarzschild–de Sitter geometry (SdS),
being f (r) = 1 − (2M/r) − (r2/L2) the gtt element of the
metric. In such case, the extra functions in the Klein–Gordon
equation read

α = f 2, β = f, γ = f(
1 − 3η

L2

) ,

F = ln

((
1 + 3η

L2

)
f

)
, (28)

and the potential of Eq. (9) reads

ϑ(r) = f (r)

(
�(� + 1)

r2 + μ2L2 + 12ξ

L2 − 3η

)
. (29)

In the Schwarzschild–de Sitter case, the field transformation
as introduced in Sect. 2 is given by R → R̃

r
√
k

, and, as k

is constant, it may be ignored in the scalar field equation.
Then the wave equation is the same as (15) with the effective
potential given as

V (r) =
(

1 − 2M

r
− r2

L2

) (
�(� + 1)

r2 + m2L2

L2 − 3η
+ 2M

r3 − 2

L2

)
.

(30)

Here the m2 term was rescaled as the effective mass of the
scalar field, being a function of the ordinary mass μ and
of the Ricci-coupling introduced in the perturbed poten-
tial: m2 = (μ2 + 12ξ/L2). This term is essential in the
Schwarzschild case, without which there would be no influ-
ence coming from the NMDC term η on the equation of
motion for the scalar field (a different situation is seen in the
Reissner–Nordström geometry). In the expression (29), we
may still realize that the term m2L2

L2−3η
act again as the new

scalar field mass, becoming positive/negative depending on
the parameters of the geometry and field. This fact changes
the signal of the effective potential between horizons, what
can naturally produces instabilities for the field evolution.

Though in first principle, the instability of the spacetime to
the scalar field perturbation is not dependent on the multipole
number – in the sense that the presence of only one multipole
turns the field unstable – numerically, this is not the case. For
highly enough η and � > 0, the field turns out to be stable no
matter the geometry parameters. This is not the case however
for � = 0, as we may further discuss.

As discussed all along in the literature, the usual evolution
of the scalar field after a initial burst in a positive potential
is that of a damped oscillator, what characterizes the quasi-
normal modes. In the pure Schwarzschild–de Sitter case the
massive scalar field chooses one of the three different behav-
iors after the ringing phase: (1) decays exponentially (� > 0),
(2) goes to a constant value that scales the cosmological con-
stant (� = 0), (3) oscillates indefinitely as a function of the
scalar field mass.

In a more general case, however, a different behavior arises
when the potential is not entirely positive between horizons:
unstable modes can emerge and the geometry is then expected
to change. This is the case for the NMDC η in Schwarzschild–
de Sitter geometry we study here: the potential is partly or
entirely negative (depending on the coupling and geometry
parameters). In this section, we evolve the field for different
L , η and �. All studied cases take L2 > 27M2, which is the
causal structure condition for the presence of an encapsu-
lated singularity (by the event horizon) and a cosmological
horizon.

In Fig. 1 (right and left panels) we see typical quasinormal
mode evolutions for the scalar field for different values of �

and L: the higher the multipole number/dS radius, the smaller
the frequency of oscillation. The imaginary part of ω varies
very slowly with l, which is typical for the Schwarzschild–
dS geometry also in the absence of couplings, but is majorly
affected for the variation of L , diminishing as we increase the
cosmological radius. The interesting feature is the emergence
of an oscillatory evolution, introduced by the NMDC η for
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the � = 0 mode: there is a quasinormal ringing phase (left
panel of Fig. 1) which does not exist in the Schwarzschild–
dS case [52], associated now entirely with the renormalized
mass of the scalar field.

The effect of the cosmological constant is similar in the
Schwarzschild–dS case: the higher the Λ, the smaller the
real part of ω. The behavior for ωI is more complicated,
oscillating in a given scope of L and becoming arbitrarily
small as Λ increases. This can be seen in Fig. 1 (left panel),
and in Table 1, which lists quasi-frequencies for different
values of � and L . In the same table we can also see different
ω for a range of η: the asymptotic values of the coupling
are the same as for the massless scalar field propagation in
Schwarzschild–dS case.

In the left panel of Fig. 2 we see the transition between
stable/unstable dynamics as a function of η for the special
case � = 0. Stable evolution takes place from η = 0 until
η < L2/3 = 27, exhibiting the expected decay in time (the
potential being only positive). For η > L2/3, on the other
hand, the dynamics is always unstable: even for asymptotic

η, where the potential is partly positive, there is no stable
evolution (see right panel of Fig. 2).

The instability comes as no surprise since the effective
potential term in such case allows the presence of a negative
square mass term: whenever η > L2/3, the field becomes
unstable.

Although in the Schwarzschild geometry the instability
for η > Λ−1 is easily verifiable, the situation changes sig-
nificantly for � > 0, as it can be seen in the same figure,
right panel (� = 1), in which the field evolves unstably for
27 < η < 31.8, for the chosen parameters, M = � = L/9 =
2m = 1, but decays in time for η > 31.9 and the same
parameters. Although the fundamental mode destabilizes the
geometry from the critical point η = L2/3 on, for the excited
modes, there is a second critical value present from which
the excited modes are stable. The existence of a point for
η from which the field evolves stably is the same found in
the charged black hole as we may, see, but differently in the
Reissner–Nordström black hole, this fact happens also for
� = 0, thus decreasing the region of instability.

Fig. 1 Time evolution of the scalar field with different values of � and L . The parameters of the geometry are M = m/0.3 = η = 1 and L/6 = 1
(right) � = 0 (left)

Table 1 Fundamental
quasinormal modes for
non-minimally coupled scalar
field evolving in
Schwarzschild–dS black holes

M = η = L/6 = m/0.3 = 1 M = � = m/0.5 = η/2 = 1 M = � = L/9 = m/0.5 = 1

� ω L ω η ω

0 9.695 − 0.04775i 5.2 0.01590 − 0.003730i 0 0.1982 − 0.04479i

1 4.909 − 0.04658i 5.25 0.05927 − 0.01367i 5 0.2352 − 0.04397i

2 1.977 − 0.04787i 5.3 0.08177 − 0.01876i 10 0.5381 − 0.04349i

3 0.5339 − 0.04797i 5.4 0.1131 − 0.02565i 11 0.3907 − 0.04344i

4 0.4386 − 0.04792i 6 0.2092 − 0.04446i 50 0.1966 − 0.05852i

5 0.3440 − 0.04781i 10 0.3659 − 0.05512i 55 0.1301 − 0.05125i

20 0.2506 − 0.04757i 30 0.4469 − 0.02382i 56 0.1105 − 0.5731i

50 0.1608 − 0.04688i 50 0.4588 − 0.01281i 500 0.1100 − 0.05751i

100 0.08713 − 0.04506i 100 0.4694 − 0.004889i 5000 0.1318 − 0.05088i
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Fig. 2 Time evolution of the scalar field for different values of � and η. Geometry parameters read M = � = m/0.5 = L/9 = 1 (right panel) and
M = L/9 = m/0.5 = 1, � = 0 (left panel)

The very special case in which η = Λ−1 has no solution
different from the trivial one, for the massive Klein–Gordon
equation, being identically satisfied in the massless case.

Regarding the transition from stable to unstable evolu-
tions, and further again to stable, this transitional behavior is
observed also in the Reissner–Nordström geometry, namely,
the existence of a region of instability for η. We explore the
subject in the next section.

Quasi-extremal regime

The quasinormal modes for a massive scalar field minimally
coupled evolving in Schwarzschild-dS black holes in the
quasi-extremal limit (defined by δ = rc−rh

rh
	 1) have been

exactly and numerically calculated by Molina [53], Cardoso
and Lemos [54]. We follow their approach and extend the
calculation for the NMDC case. The effective potential can
be written in terms of the tortoise coordinate r∗ as

V (r∗) = V0

cosh2(κ+r∗)
(31)

where κ+ = 1
2
d f
dr |r=rh is the surface gravity at the event

horizon r+ and V0 is the saddle point of V (r) given by

V0 =
(

�(� + 1)

r2
h

+ m2L2

L2 − 3η

)
(rc − rh)κ+

2
. (32)

The effective potential (31) is similar to the Pöschl–Teller
potential for which the QNM’s can be exactly obtained with
appropriated boundary conditions [53,54], which in our case
yields

ω

κ+
=

√√√√
(

�(� + 1)

r2
h

+ m2L2

L2 − 3η

)
rc − rh

2κ+
− 1

4
−i

(
n + 1

2

)
.

(33)

The critical behavior of the modes in relation to the non-
minimally coupled constant is qualitatively identical to the
non-extremal case, having η = Λ−1 as maximum value for
stable field evolution when � = 0. We underline two specific
points in η,

ηI = L2

3
− L2m2r2

h δ+
3n(1 + n)r2

h + 3�(� + 1)δ+
with

δ+ = rc − rh
2κ+

for (n �= 0, � �= 0) (34)

and

ηII = L2

3
+ 4L2m2r2

h δ+
3
(
r2
h − 4�(� + 1)δ+

) . (35)

Transitions between different regimes of stability can be
demonstrated. For 0 < η < Λ−1 the system is in a stable
regime since the imaginary part of the QNM’s is negative and
constant and the frequencies of oscillation increase rapidly
near to ηcritical ∼ Λ−1. For Λ−1 < η < ηI the system
becomes unstable with a positive purely imaginary QNM
which decreases and goes to zero at ηI. When ηI < η < ηII

the system returns to a stable regime with an exponential
decay. Beyond ηII the system is still stable but now with an
oscillatory exponential decay for late times. In this case, the
imaginary part of the QNM’s is constant and the frequencies
of oscillation tend to a constant.
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In the high coupling limit (η → ∞) the QNM’s are given
by

ω∞
κ+

=
√

�(� + 1) − 1

4
− i

(
n + 1

2

)
, (36)

becoming independent of the mass m. In this limit, for � = 0
the modes become purely imaginary ω∞

κ+ = −in, and the
fundamental mode (n = 0) vanishes.

4 QNM’s for non-minimally coupled scalar field
evolving in Reissner–Nordström–de Sitter spacetime

In a Reissner–Nordström–de Sitter spacetime (RNdS), the
line-element has exactly the same form of (5), with

f (r) = 1 − 2M

r
+ Q2

r2 − r2

L2 . (37)

The functions related to the Klein–Gordon equation as found
in (9) can be written as

α = f 2, β = f

(
1 + 2Q2

r4

η

k

)
, γ = f

k
, F = ln (k f ) ,

(38)

where

k = k(r, Q, L , η) = 1 − ηA = 1 − 3η

L2 − ηQ2

r4 . (39)

In order to separate variables and eliminate the radial first
derivative from the wave equation, we must choose the non-
trivial field transformation introduced in Sect. 2, namely

R → R̃
r
√
k

. Together with the tortoise coordinate system,
this transformation sets the Klein–Gordon equation in the
same simple form of (15). As a drawback, it introduces a
discontinuity in the field at the point k(r)|r=rd = 0, which
poses numerical difficulties. We will then only consider cases
where rd is encapsulated by a horizon and is, therefore, of
no consequence.

From the four roots of f (r), at least one is negative, if two
or more real roots exist. We restrict ourselves to the study
of a geometry with 3 different horizons, namely, Cauchy ry ,
event rh and cosmological horizon rc, with ry < rh < rc. As
in the Schwarzschild case, the evolution of the scalar field
takes place in a region X defined by X : rh < r < rc.
Taking a ≡ Q

M > 0, there are two possible conditions with
3 different positive solutions for f (r) = 0,

(i)
1

L2 <
p+(a)

32M2 and a < 1;

(ii)
p−(a)

32M2 <
1

L2 <
p+(a)

32M2 and 1 < a <
√

9/8,

where p±(a) = (−27 + 36a2 − 8a4 ± (9 − 8a2)3/2
)
/a6.

The condition (i) recovers the Schwarzschild limit fora → 0,
as stated in [52], with 2 different horizons. The condition (ii)
appears as a limit situation in [55].

4.1 Effective potential

Given the field transformation introduced in Sect. 2. as well
as the metric functions defined above, the effective potential
for the scalar field reads

V (r) = f

(
2rkk′′ + 4kk′ − rk′2

4rk2 f + 2k + rk′

2rk
f ′

+
(

1 + 2Q2η

r4k

)
�(� + 1)

r2 + μ2 + ξR

k

)

= f

k

(
2ηQ2(9ηr4 + ηL2Q2 − 3L2r4)

r6(−3ηr4 − ηL2Q2 + L2r4)

×
(

1 − 2M

r
+ Q2

r2 − r2

L2

)

+
(

ηQ2 + r4 − 3ηr4/L2

r5

)(
2M

r2 − 2Q2

r3 − 2r

L2

)

+
(

1 − 3η

L2 + ηQ2

r4

)
�(� + 1)

r2 + m2
)

. (40)

Again, the Ricci term in V (r) plays no special role in the
coupling with the scalar field and is rescaled as previously
announced, thus, being not directly related to the presence or
absence of unstable modes of the scalar field.

In the limit Q = 0, the coupled-Schwarzschild potential
is recovered. We will not concern ourselves with the point of
discontinuity,

r = rd
∣∣
k(r)=0 =

(
ηQ2

1 − 3η/L2

)1/4

, (41)

since it originates from our choice of field transformation; we
restrain ourselves to one of the ranges: rd < rh or rc < rd ,
such that rd is either encapsulated by the event horizon or
outside the cosmological horizon.

Let us consider as an example the massless scalar field,
with parameters M = 5Q/3 = (L/5.4)2 = �/2 = 1. In this
situation, the potential in X can be divided, according to its
signal, in the five different regions as described in Table 2. A
different situation arises, however, when the charge exceeds a
critical value Qc. For M = �/2 = (L/6)2 = 1, and m2 = 0,
for instance, if Q > Qc ∼ 0.852, even for high η values,
region (v) does not occur. For Q = 0.86, the potential can
be divided in the regions shown in Table 3. Plots for under-
and super-critical behaviors are shown in Fig. 3.

123



Eur. Phys. J. C (2019) 79 :338 Page 9 of 16 338

Table 2 Different regions for the potential in RNdS, with M =
5Q/3 = (L/5.4)2 = �/2 = 1

Case η-range Signal of VX rd

(i) η � 8.46 VX > 0 rd < rh

(ii) 8.46 � η � 9.56 VX ≷ 0 rh < rd < rc

(iii) 9.56 � η � 9.88 VX < 0 rc < rd

(iv) 9.88 � η � 11.52 VX ≷ 0 rc < rd

(v) 11.52 � η VX > 0 rc < rd

Table 3 Different regions for the potential in RNdS, for Q = 0.86 >

Qc (and M = �/2 = (L/6)2 = 1; m2 = 0)

Case η-range Signal of VX Place of rd

(i) η � 5.84 VX > 0 rd < rh

(ii) 5.84 � η � 11.78 VX ≷ 0 rh < rd < rc

(iii) 11.78 � η � 12.23 VX < 0 rc < rd

(iv) 12.23 � η VX ≷ 0 rc < rd

The existence of a critical value Qc is robust against
changes in m and �: for every pair (�,m) when Q < Qc

we can always find a sufficient high ηk such that for any
η > ηk we have VX > 0; on the other hand, for Q > Qc the
potential is strictly negative in X.

Considering the different character of the potential for
the cases (i)–(v), we can investigate the field evolution by
obtaining the system’s quasinormal modes and determining
whether unstable evolutions are present, or investigate the
late time behavior [56] (after the quasinormal ringing). For
this reason, we choose to use the characteristic integration
over null coordinates to obtain the field profiles together with
prony method for the quasi-frequencies. For strictly positive
gaussian-like potentials, we compare the frequencies to those

obtained with WKB method, with good agreement between
the results.

4.2 Evolution of scalar field: instabilities and QNM’s

The typical evolution of a scalar field coming from the Klein–
Gordon equation can be seen in the upper-left panel of Fig. 4
for r = 2rh and different values of Q. For the chosen param-
eters, VX > 0 and, as anticipated, there are no instabilities:
all profiles decay exponentially in time. Higher values of the
black hole charge, however, lead to VX partly positive/partly
negative, allowing for unstable modes to arise.

With the acquired quasinormal signal and the prony
method [57] we obtain the fundamental quasinormal frequen-
cies up to the critical value of charge Qc ∼ 0.85, as listed in
the Table 4.

The obtained frequencies, listed in Table 4 are signifi-
cantly different from the case with no couplings for increas-
ing charge: the η-coupling is more effective the higher the
charge of the black hole, diminishing the rate of increase of
Re(ω) and increasing this rate for the imaginary part.

In Fig. 4 we find two field profiles nearby Q ∼ Qc (upper-
right panel) and the instabilities found for high values of Q
(lower panels). We can see in the same figure (right-bottom
panel) the instability of the near extremal black hole to the
scalar field for the overcharged black hole (Q > M). This is
an expected result, given the shape of the potential (very sim-
ilar to the nearly overcharged black hole, Q ∼ 0.99M) but is
not always the case for every η: in certain ranges the potential
is strictly positive, generating only stable field profiles (e.g.
M = L/6 = �/2 = η = 1).

The existence of negative regions in the potential does not
ensure the presence of instabilities; otherwise, the negativity
on VX is related to the presence of an exponential decay in

Fig. 3 Potential of the Klein–Gordon field in the RNdS geometry
with non-minimally coupling. Left panel: Potential for the regions (i)
(η = 1) to (v) (η = 15) of Table 2. The horizons are located at

rh/2.204 = rc/3.825 = 1. Right panel: Potential for regions (i)–(iv)
of Table 3. The two last η lie on region (iv). The horizon locations are
rh/1.703 = rc/4.669 ∼ 1
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Fig. 4 Scalar field propagation in a RNdS black hole with non-minimal
coupling with parameters M = L2/36 = �/2 = η/50 = 1, m2 = 0,
resulting in VX > 0 when Q < Qc ∼ 0.85. The instabilities in the field
arise as a result of the mixed potentials (negative and positive) for large

enough Q’s and the transition from stable to unstable evolution occurs
at some particular charge of the black hole [here Q ∼ 0.908, in region
(iv)]. The extremal black hole have Q = √

9/8 ∼ 1.0156

Table 4 Fundamental quasinormal modes for non-minimally coupled
scalar field evolving in RNdS black holes with different values of Q.
The spacetime parameters read M = L/6 = �/2 = η/50 = 1 and

m2 = 0.The superscript values indicate the deviation of the QNM’s
from the RNdS case, ωRN−ωη

ωRN

Q Re (ω) Im (ω) Q Re (ω) Im (ω)

0.05 0.2338−0.0428% − 0.049050.0204% 0.50 0.2581−6.55% − 0.056671.64%

0.10 0.2346−0.213% − 0.049270.0406% 0.55 0.2624−8.35% − 0.058492.36%

0.15 0.2360−0.466% − 0.049630.0605% 0.60 0.2667−10.5% − 0.060643.36%

0.20 0.2379−0.841% − 0.050150.140% 0.65 0.2710−13.1% − 0.063184.75%

0.25 0.2402−1.37% − 0.050810.216% 0.70 0.2751−16.3% − 0.066276.68%

0.30 0.2431−2.02% − 0.051630.349% 0.75 0.2792−20.0% − 0.070039.25%

0.35 0.2463−2.84% − 0.052610.532% 0.80 0.2833−24.3% − 0.0744812.7%

0.40 0.2500−3.84% − 0.053770.800% 0.85 0.2824−29.1% − 0.0790216.6%
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the long-time profile domain. Before Qc, the field oscillates
for very long times (right panel in Fig. 4, Q = 0.85), and
beyond this critical charge an exponential decay is shaped as
seen in many dS-like geometries [53,54] (upper-right panel
in Fig. 4). The exponential decay takes place from Q = Qc to
another high value of Q, namely Q ∼ 0.907 for the assigned
parameters (lower panels). For Q � 0.907, the field growth
is unlimited (Fig. 4 bottom-left pannel). In this case we may
not assume the geometry preserves its original shape: it may
evolve to a distinct form. In the right panel on the bottom
we see the unstable field evolutions for M > Q to a near-
extreme (overcharged) black hole with η: in every case, the
field grows indefinitely showing an unstable behavior.

The presence of a transitional behavior seems to occur
also for the variation of η: by taking fixed M, Q and L we
investigate the presence of quasinormal modes and instabil-
ities in regions (i)–(v). In Fig. 5 we see different profiles for
a large range of η.

In the upper-left panel of Fig. 5 we see the field propaga-
tion, with η-parameter in the region (i), until η(1) ∼ 13.29:
the signal damped-oscillates as a never-ending evolution.
There are no unstable profiles in this region. From η ∼ 13.29
to η ∼ 16.27 the potential is not continuous (region (ii)).
Region (iii), however, is the most critical for the scalar field
(since VX < 0 there) and presents the most unstable region.
On the upper-right panel we see two profiles with η ∼ 16.3
and η ∼ 16.35, both unstable. The rapidly exponential
growth comes from the fact that VX < 0 for almost every
r ∈ X. The fourth region begins at η(2) ∼ 16.3985 going to a
maximum value η(3) ∼ 21.17: we can see different field pro-
files in the upper-right and lower-left panels stable/unstable,
depending on the parameter. The transition from stable to
unstable profiles takes place nearby η ∼ 17.6, still in region
four: both kinds of signal occur, depending on how negative
the potential is. After η ∼ 21.17 (lower left-panel) we see
the last two quasinormal modes (region (v)), as never-ending
damping oscillating signals. In the high η regime, the field

Fig. 5 Field profile with parameters M = � = 2Q = L2/49 = 1
and m2 = 0. From upper-left to lower-right, we see the emergence of
unstable fields in an intermediate region ((iii), (iv)) of the η parameter.

The critical charge related to the formation of region (v) for the chosen
parameters is Qc ∼ 0.777. In the lower-right panel we see the massive
field profile with coupling
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Table 5 Fundamental quasinormal modes for non-minimally coupled
scalar field evolving in RNdS black holes with varying η. The spacetime
parameters read M = L/7 = � = 2Q = 1 and m2 = 0

η Re (ω) Im (ω) η Re(ω) Im (ω)

0 0.2034 − 0.07374 13.29 0.4258 − 0.03163

3 0.2067 − 0.07308 13.2935 0.4389 − 0.01148

7 0.2159 − 0.07213 19 0.1407 − 0.08782

10 0.2328 − 0.07074 21 0.1524 − 0.08197

11 0.2449 − 0.07008 60 0.1835 − 0.07739

13 0.3287 − 0.06457 5000 0.1884 − 0.07569

13.15 0.3553 − 0.06061 109 0.1884 − 0.07568

13.28 0.4115 − 0.04171

profile approaches the absent coupling case and oscillates
following closely the Reissner–Nordström–de Sitter record.

In Table 5 it is make clear the influence of varying-η in
the scalar field propagation: for the first region of the poten-
tial, the higher the η, the higher the quality factor of the
black hole.1 We must be attentive still, of the high vari-
ation when getting closer to the frontier of (i) in η: from
η = 13.29 to η = 13.2935 we have a Δη → 0.026% vari-
ation whereas ΔωR → 3.1% and ΔωI → 64%. This type
of change characterizes a variation similar to that occurred
in the near extremal regime (when the accretion of small
amounts of charge in the black hole induces huge variations
in the spectra of the oscillation).

Another interesting picture in the quasinormal spectrum
with NMDC is the existence of an asymptotic value of ω for
high η: in the table we can see, to the 4 figure, the QNM is
the same for η = 5000 and η = 109, both cases in region
(v). The last feature we emphasize, is the highest values of
Im(ω) and the smallest for Re(ω) both in region (iv). This is
an expected feature in relation to the imaginary part, as long
as regions (ii), (iii) and (iv) are the unstable ones.

Considering the field evolution of � > 0 profiles for dif-
ferent η, the general behavior in the potential is the raising of
its maxima/minima points, which does not relate to the for-
mation of stable asymptotic regions (region (v)). Otherwise,
this fact is related to the range at which we have unstable
modes: the higher the multipole number, the less stable the
scalar field tends to perform. Still, the range of stability in η

diminishes for increasing �: in Table 6 we list critical values
for the coupling for which the field evolves stably; whenever
η < 13.2935 or η > ηc, the field is stable.

From the same table, we realize that ηc increases for
increasing �. Possibly the values of ηc approach a finite
asymptote when we take � → ∞, given the growing of the

1 Re(ω) increases and Im(ω) decreases.

� x ηc curve, what is not possible to be investigated numeri-
cally.2

As in the de Sitter geometries with black holes [52] the
scalar field multipole � = 0 is a special case. Although not
conclusive, for late times, the field tends to increase very
slowly to a constant value (for very late times). For instance,
taking M = Q/2 = η/500 = L/7 = 1, the evolution seems
to evolve very slowly to an asymptotic value (R̃ ∼ −0.03),
for late times.

In general, for all multipole number, we demonstrate the
presence of a gap of instability in η-range for the scalar field:
when η < 13.2935 or for η > ηc the field evolves stably,
being unstable if η < ηc, in regions (iii) and (iv) (as stated
before, it is not possible to obtain numerical integration in
region (ii)).

In the regime of high cosmological radius, we can see
the formation of region (iii) and (iv) in the potential when
η > L2

3 , but no region (v) as a general feature. Even for
small values of charge, we have no region (v), but the gap for
existence of region (iii) is very small in η. As an example,
let us assume a geometry with M = 100Q = � = 1, m = 0
and L = 6 × 105. The region (iii) for negative potential
almost vanishes: it endures a range of Δη ∼ 10−10, after the
critical η → Λ−1 (for Q = 1/2 and the same parameters,
Δη ∼ 10−6). The region after that, region (iv) appears for
every η. Region (v) will only emerge in cases with very small
black hole charges (Q < Qc ∼ 10−5), for example nearby
η ∼ 4Λ−1. The general behavior remains, however: at some
point for each geometry, we will have the critical value of η

from which the field evolves stably.
The situation changes drastically, though, if we add a small

scalar field mass to the last scenario. Taking m ∼ 0.1, as an
example, we have a range Δη ∼ 109 of unstable fields after
the point η(2) ∼ 1.2 × 109. In Fig. 5 in lower-right panel
we see the coupling of η and the scalar field: in general, the
higher the scalar field mass, the higher the value of η for the
formation of a stable region of oscillations in the potential.

In the specific case when η = L2

3 , the field equation may
be evolved with a simpler potential than Eq. 40,

V (r) = f

[
f ′

r
+ �(� + 1)

r2 − 2 f

r2

]
(42)

The proper field transformation for this coupling is given
by R → R̃ 1

r
√
k

→ R̃r and when we apply it to the scalar
equation with the tortoise coordinate, it brings (42) as a result.

The potential implies unstable scalar evolution, what can
be seen by analyzing the extra term, 2 f/r2: it is always posi-

2 The higher the �, the higher the time (in the field) to which we must
integrate in order to obtain the exponential growth/decay of the field.
This represents a geometrical growth in time of computation versus an
arithmetic growth in �.
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Table 6 Critical values of η (the field evolves stably after η > ηc)

M = 2Q = L/7 = 1 and m2 = 0

� 0 1 2 3 4 5 10 20

ηc 16.25±0.05 17.55±0.05 18.25±0.05 18.75±0.05 19.05±0.05 19.35±0.05 20.05±0.05 20.35±0.05

tive in the region of field propagation. In such case, the wave
equation is the same as that for the scalar field in Reissner–
Nordström–de Sitter geometry, with a negative term inside
the brackets. Even though this term varies with r , the fact that
it is always negative is sufficient to assure the unstable evolu-
tion of the scalar field whenever � = 0: the field propagating
in RNdS geometry with negative square mass (even of very
small masses) is unstable (the same result being true in our
case). This result is very similar to that of the Schwarzschild
section: the instability for η > L2/3, comes as a result of the
effective mass being negative in that limit.

The numerical data obtained by evolving the scalar filed
in the potential (42) turns out unstable in all tested param-
eters, for M = 1, � = 0, L = 7 and L = 50, and
Q = 0.01, 0.1, 1.001 (as expected).

Quasi-extremal regime

The quasi-extremal regime in a RNdS black hole has two
possible horizon coalescence, ry = rh (high Q) or rc = rh
(high Λ). In the first case, given the high values of charges,
region (v) never exists. In this case, all the tested profiles of
region (iii) and (iv) for � come out stable whenever � > 0.
On the other hand, taking for example, M = L/6 = 1 and
δ ≡ Qext−Q

Qext
∼ 10−9, for asymptotic η, the scalar field turns

out unstable. The potential forms region (iii) for 11.7 < η <

12.3, but, as long as all field profiles evolve unstably in region
(v), η > 11.7 represents an unstable range of parameter.
This was tested for multiple η and � = 1, but can be also
take as granted for other � > 1 as long as the deep of the
potential grows in those cases. Again we have most probably
a stable evolution for � = 0, qualitatively similar to the one
discussed in the previous subsection for the non-extremal
case. In that way we can still assure the presence of region (i)
in the potential when η < 2.22, and the field evolves stably
as a quasi-oscillation or an exponential decay after the initial
burst.

When the cosmological constant is high, we have a more
interesting frame. If we take, for instance, M = 5Q/3 = 1
and L = 4.8587 (Λ = 0.999998Λext ), regions (ii) and (iv)
happen for very small intervals in η of order of 10−4. In such
case, the evidence of a gap of instability is very pronounced.
For η < 7.49 or η > 8.29, the field evolves stably for every
�.3

3 Regions (ii) and (iv) form around (7.4895, 7.4921) and
(8.285, 8.289), respectively.

Repeating the same procedure declared in the previ-
ous section we calculated the QNM’s for massive NMDC
scalar field in quasi-extremal limit (rc ∼ rh) in terms of
(�,m, η) and the characteristic parameters of the black holes
(rh, rc, κ+) as follows

ω

κ+
=

√√√√
(

�(� + 1)

r2
h

[
L2(r2

h + η) − 6r2
hη

L2(r2
h − η)

]
+ m2r2

h

r2
h − η

)
rc − rh

2κ+
− 1

4

−i

(
n + 1

2

)
. (43)

Now the range of critical values of η is more intricate. Differ-
ently from Schwarzschild–de Sitter case, here we can have

unstable modes even if m = 0 when η >
L2r2

h
6r2

h−L2 . By taking

� = 0 (the most interesting case), we have

ω

κ+
=

√√√√
(

m2r2
h

r2
h − η

)
rc − rh

2κ+
− 1

4
− i

(
n + 1

2

)
. (44)

Inspecting the Eq. (44) one can see that the critical value is
η = r2

h and now the two specific points are

ηI = r2
h

(
1 − 4μ2δ+

)
, (45)

and

ηI I = r2
h

(
1 + μ2δ+

n(n + 1)

)
. (46)

The stability condition of these quasinormal modes are the
same of presented for Schwarzschild–de Sitter. In the high
coupling limit (η → ∞) the QNM’s are given by

ω∞
κ+

=
√√√√−

(
�(� + 1)

r2
h

[
1 − 6r2

h

L2

])
rc − rh

2κ+
− 1

4
− i

(
n + 1

2

)
,

(47)

becoming independent of the massm. In this limit, differently
of Schwarzschild–de Sitter, unstable modes will be present
if Λ−1 > 2r2

h .
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5 Final remarks

In the present work we discussed the effect of a non-
minimally derivative coupling on the dynamics of a scalar
field propagating in asymptotically dS spacetimes. Three dif-
ferent cases were studied: the de Sitter, Schwarzschild–de
Sitter, and Reissner–Nordström–de Sitter metrics.

Considering the evolution of a scalar probe field in a four-
dimensional dS spacetime, we computed the quasinormal
spectrum when the NMDC term η is present. We found grow-
ing quasinormal modes in the positive branch of frequencies
leading to regions of instability. In the context of dS/CFT
correspondence, we generalize the result for the two-point
Hadammad function, showing that its poles match with the
regions of instability in the quasinormal spectrum.

In the case of Schwarzschild–de Sitter geometry, the pres-
ence of an η-term in the field equation also introduces insta-
bilities in the quasinormal spectra for a given range of η.
The effect of the coupling is to modify the square mass of
the scalar field turning it negative in certain ranges of val-
ues, presenting expected instabilities for the field evolution
(� = 0).

The cases with low values of � are the most unstable,
numerically. In particular for η > Λ−1 the field becomes
unstable (� = 0). For different angular momentum, though
� > 0, the profile turns out stable after a transitional value
ηT ,

ηT ∼ L2

3

(
1 + m2L2

�(� + 3)

)
(48)

for small Λ. The expression above is very similar to (34) for
n = 0 and L ∼ rh , in the quasi-extremal regime.

Surprisingly, the massless scalar field equation is not
affected by the coupling. The spectra of frequencies is stable,
as expressed by the usual Schwarzschild–de Sitter quasinor-
mal modes. This was shown to be the case also in the de Sitter
spacetime.

The same is not true for the Reissner–Nordström black
hole in a dS geometry, where even the massless scalar field
is affected for the non-minimally coupling constant. The
potential is significantly more complicated, compared to the
chargeless case, possessing five qualitative different regions
according to its sign. In regions (iii) and (iv) we have two
critical constants, η(2) and η(3), determined by the spacetime
parameters, such that for η(2) < η < η(3) unstable modes are
present. The range of η for which unstable modes are present
grows as we increase the charge of the black hole.

A range of instability for η occurs for every � (differently
from [45,46]). The frequencies are sensitive to the variation
of the η-parameter, being the quasinormal spectrum particu-
larly affected by its presence.

For every η it is always possible to find a range of charges
of the black hole for which unstable modes are present, sug-
gesting η might be an appropriate order parameter for study-
ing critical phenomena in these systems.

In the quasi-extremal limit for Schwarzschild–de Sitter
and Reissner–Nordström–de Sitter, the quasinormal spectra
was obtained exactly, following the approach of [53,54], and
the observed behavior is similar to that of the non-quasi-
extremal case.

The investigation of the presence of instabilities is a fruit-
ful field of research. In this work, the peculiar evolution of a
probe scalar field in a number of geometries revealed criti-
cal phenomena which may be related to second order phase
transitions present in the corresponding CFT side of the-
ory. Non-minimally coupled models enable a vast amount of
dynamical field analysis, with parameter ranges over which
the spacetime is unstable being a particularly important fea-
ture.
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Appendix: Einstein’s tensor components and Ricci scalar
for a four-dimensional spherically symmetric spacetime

The Einstein tensor Gμν has only the diagonal components
that can be written in terms of the components of the met-
ric and functions A(r) and B(r). The non-vanishing compo-
nents of the Einstein tensor for a spherically symmetric static
spacetime can be put in a general form

Gtt = A

f
= 1

f

(
(1 − f )

r2 − f ′

r

)
(A.1)

Grr = −A f = − f

(
(1 − f )

r2 − f ′

r

)
(A.2)

Gθθ = B

r2 = 1

r2

(
f ′

r
+ f ′′

2

)
= sin2 θGφφ, (A.3)
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and the Ricci scalar is given by

R = −
(
f ′′ + 4 f ′

r
+ 2( f − 1)

r2

)
. (A.4)

5.1 RNdS

In this case, the Einstein tensor in a covariant-form is
expressed as

Gμν = Gμν
Λ + Gμν

EM = − 3

L2

⎡
⎢⎢⎢⎣

− 1
f (r) 0 0 0
0 f (r) 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 θ

⎤
⎥⎥⎥⎦

+Q2

r4

⎡
⎢⎢⎢⎣

1
f (r) 0 0 0
0 − f (r) 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 θ

⎤
⎥⎥⎥⎦

and the remaining relations for A and B are A = 3
L2 + Q2

r4

and B = − 3
L2 + Q2

r4 . In the Schwarzschild case, we can easily
obtain the same relations by taking Q = 0, (then A = −B).

In four dimensions the Ricci scalar for the RNdS space-
time has the same value as for the SdS spacetime,

R = 12

L2 . (A.5)
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