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Abstract We present the evaluation of the complete set
of NLO corrections to three-jet production at the LHC. To
this end we consider all contributions of O(αn

s α
m) with n +

m = 3 and n + m = 4. This includes in particular also
subleading Born contributions of electroweak origin, as well
as electroweak virtual and QED real-radiative corrections. As
an application we present results for the three- over two-jet
ratio R32. While the impact of non-QCD corrections on the
total cross section is rather small, they can exceed −10% for
high jet transverse momenta. The R32 observable turns out
to be very stable against electroweak corrections, receiving
absolute corrections below 5% even in the high-pT region.

1 Introduction

Jet-production processes make up the most abundant final
states in hadron–hadron collisions, as carried out at the Large
Hadron Collider (LHC). They are of great importance for the
determination of the strong-coupling constant and provide a
central ingredient to precise determinations of parton den-
sity functions (PDFs). At the same time pure-jet final states
constitute promising search grounds for physics beyond the
Standard Model, when looking for resonance peaks or an
excess of events in the tails of transverse-momentum-type
distributions.

Besides being of high phenomenological relevance, jet-
production processes serve as benchmark for various types
of perturbative calculations including fixed-order evalua-
tions, all-orders resummations and parton-shower simula-
tions. Already the two-jet production channel features quarks
and gluons in the initial and final states and correspondingly
various types of spin- and color-correlations. Beyond the
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leading order there arise infrared singularities both in the
virtual and real corrections that need to be properly treated.
Further, sensitivity to the actual jet criterion used to define the
cross section emerges. Beyond perturbation theory, there are
important corrections from the fragmentation of final-state
partons into hadrons and beam-remnant interactions such as
multi-parton scatterings.

For hadro-production the next-to-leading order (NLO)
QCD corrections are known to up to five-jet final states [1–5].
The computation of the QCD next-to-next-to leading order
(NNLO) corrections to dijet production has recently been
completed [6], resulting in significantly reduced scale uncer-
tainties in the predictions, paving the way to precision analy-
ses of LHC dijet data. Dedicated studies on the combination
of NLO QCD calculations with parton-shower simulations
for dijet production have been presented in [7,8].

To further improve the theoretical accuracy besides QCD
also electroweak (EW) corrections need to be considered. A
first evaluation of the leading weak corrections to dijet pro-
duction has been presented in [9]. These included the tree-
level contributions of O(αsα) and O(α2) and weak loop cor-
rections of O(α2

s α). Only recently the complete set of NLO
corrections, further including QED virtual and real contribu-
tions, was completed [10]. While these corrections are rather
small for total cross sections, they can reach 10–20% for jet
transverse momenta in the TeV range.

A first evaluation of the full set of NLO corrections, of
QCD and EW origin, for the three-jet inclusive cross section
has been quoted in [11]. In this paper we present results for
the fully differential calculation of three-jet production at
the LHC to NLO, including all contributions proportional to
αn
s α

m with n +m = 3 and n +m = 4. As a first application
we consider the observable R32, the ratio of the three-jet and
two-jet cross sections, differential in H (2)

T , i.e. the scalar sum
of the two leading-jets transverse momenta.
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Our paper in organised as follows, in Sect. 2 we present
our calculational methods and specify our input parameters.
In Sect. 3 we present our results for the full NLO calculation
of the three-jet process and the R32 observable in particular.
We give a summary of our findings in Sect. 4.

2 Setup

To obtain the results presented in Sect. 3 we use the Sherpa
Monte-Carlo event generator [12] and interface [13] it to
Recola1 [14,15]. Therein, the tree-level matrix elements,
infrared subtractions, process management and phase-space
integration are provided by Sherpa for all contributions to
all processes using its tree-level matrix-element generator
Amegic [16]. It also implements the infrared subtraction
[13,17–25] in the QCD+QED generalisation of the Catani–
Seymour scheme [26–29], including the appropriate initial
state mass factorisation counter terms. Recola, on the other
hand, using the Collier library [30] for the evaluation of its
scalar and tensor integrals, provides the renormalised virtual
corrections.

All calculations are performed in the framework of the
Standard Model, assuming a diagonal CKM matrix, and
using the five-flavour scheme, i.e. treating the bottom quark
as massless. The complex mass scheme [31,32] is used to
consistently treat intermediate resonances in the contribut-
ing amplitudes. All electroweak Standard Model parameters
are defined in the Gμ-scheme, and virtual amplitudes are
renormalised correspondingly. Consequently, the following
set of input parameters is used throughout

Gμ = 1.16639 × 10−5 GeV−2

mW = 80.385 GeV ΓW = 2.085 GeV
mZ = 91.1876 GeV ΓZ = 2.4952 GeV
mh = 125.0 GeV Γh = 0.00407 GeV
mt = 173.21 GeV Γt = 1.3394 GeV.

All other masses and widths are set to zero. In the above,

α =
∣
∣
∣
∣
∣

√
2 Gμ μ2

W sin2 θw

π

∣
∣
∣
∣
∣
, (1)

defines the electromagnetic coupling. The complex mass of
particle i and the weak mixing angle are defined according
to

μ2
i = m2

i − imiΓi and sin2 θw = 1 − μ2
W

μ2
Z

, (2)

respectively.
For the parton density functions we use the NNPDF3.1

NLO PDF set [33] with αs(mZ ) = 0.118 and including QED

1 The public version 1.2 of Recola is used.

effects (at O(α), O(αsα) and O(α2)) in the parton evolution
employing the LUXqed scheme [34,35].2 They are interfaced
through Lhapdf [36]. The renormalisation and factorisation
scales are defined as

μR = μF = 1
2 ĤT. (3)

The variable ĤT is thereby given by the scalar sum of all
final-state particles’ transverse momenta without applying
any jet clustering. To estimate the uncertainty on our compu-
tation from uncalculated higher-order contributions, we vary
the renormalisation and factorisation scales independently
by the customary factor two, keeping 1

2 ≤ μR/μF ≤ 2. All
scale variations were calculated on-the-fly using the event-
reweighting algorithm detailed in [37].

3 Results

In this section numerical results for the production of a three-
jet final state at next-to-leading order accuracy in proton-
proton collisions at a centre-of-mass energy of 13 TeV are
presented. We generate the respective matrix elements at all
contributing orders for all partonic processes with massless
three (Born and virtual corrections) and four body final states
(real corrections). As final-state particles we consider five
quark flavours and gluons, as well as photons, leptons and
neutrinos. Jets are then defined through the anti-kt algorithm
[38] using FastJet [39], with R = 0.4 as radial parameter.
All massless particles of our calculation, except for the neu-
trinos, are considered as jet constituents. Jets with a net lepton
number3 and within |η| < 2.5 are removed from the list of
jets. The final state then has to contain at least three surviv-
ing jets with |η( j)| < 2.8, of which the leading jet, ordered
in transverse momentum, must have pT( j1) > 80 GeV and
all subleading jets pT( ji ) > 60 GeV (i > 1). This ensures
that a jet definition with inherent lepton rejection, which is
both infrared-safe at NLO and close to experimental analysis
strategies, is used. Nonetheless, it is worth pointing out that
lepton final states may survive this lepton-anti-tagged jet def-
inition if either a collinear lepton pair is contained in a single
jet (possibly coming from a collinear γ → �+�− splitting),
or the jet containing the lepton is outside the rapidity range
in which the lepton can be identified. To analyse our results
we use the Rivet package [40].

The full NLOn-jet production cross section can be decom-
posed into contributions of varying power of the strong and
electromagnetic coupling. In what follows we employ the
convention:

2 To be precise the NNPDF31_nlo_as_0118_luxqed PDF set is
used.
3 A jet with a lepton and an anti-lepton, if they are of the same lepton
flavour, has net lepton number zero.
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Fig. 1 Representative leading and subleading tree-level diagrams for
pp → 3 j production. The occurrence of QCD and electroweak interfer-
ences, internal electroweak bosons and external photons (wavy lines)

in the initial and final state are exemplified. While QCD vertices are
marked by a black dot, EW interactions are indicated in red

Fig. 2 Representative leading and subleading virtual correction dia-
grams for pp → 3 j production. The occurrence of interferences, QCD
and EW loops, gauge boson (wavy line), Higgs boson (dashed line) and

top quark (double line) exchange as well as external photons are exem-
plified. While QCD vertices are marked by a black dot, EW interactions
are indicated in red

σnj = σLO
nj + σΔNLO

nj ,

σLO
nj =

n
∑

i=0

σ
LOi
n j , O

(

σ
LOi
n j

)

= αn−i
s αi ,

σΔNLO
nj =

n+1
∑

i=0

σ
ΔNLOi
n j , O

(

σ
ΔNLOi
n j

)

= αn+1−i
s αi , (4)

such that ΔNLOi accounts for the virtual and real QCD cor-
rections while ΔNLOi+1 accounts for the virtual and real
electroweak corrections to LOi . Representative diagrams for
the various tree-level and virtual contributions can be found in
Figs. 1 and 2, respectively. It is worth noting that our full NLO
calculation in the five-flavour scheme is indeed sensitive to
the full Standard Model spectrum, including the top-quark,
the Higgs boson and all lepton and neutrino flavours.

Based on the above decomposition we can furthermore
define the pure QCD LO and NLO cross sections as

σ
LO QCD
nj = σ

LO0
nj ,

σ
NLO QCD
nj = σ

LO0
nj + σ

ΔNLO0
nj ,

(5)

respectively. The pure NLO EW corrections and their addi-
tive and multiplicative combination with the QCD process
are defined as

σNLO EW
nj = σ

LO0
nj + σ

ΔNLO1
nj ,

σ
NLO QCD+EW
nj = σ

LO0
nj + σ

ΔNLO0
nj + σ

ΔNLO1
nj ,

σ
NLO QCD×EW
nj = σ

LO0
nj

(

1 + σ
ΔNLO0
nj

σ
LO0
nj

)(

1 + σ
ΔNLO1
nj

σ
LO0
nj

)

.

(6)
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Table 1 Full NLO fiducial cross section for two- and three-jet production in the phase space detailed in the text, i.e. pT( j1) > 80 GeV and
pT( ji ) > 60 GeV (i > 1). Besides the total cross section the relative contributions for the terms specified in Eq. (4) are given

NLO [nb] LO0
NLO [%] LO1

NLO [%] LO2
NLO [%] LO3

NLO [%] ΔNLO0
NLO [%] ΔNLO1

NLO [%] ΔNLO2
NLO [%] ΔNLO3

NLO [%] ΔNLO4
NLO [%]

σ2 j 3385(3) 67.34(6) 0.0713(1) 0.03915(4) – 32.59(8) − 0.118(7) 0.0759(3) 0.00022(1) –

σ3 j 169(1) 148(1) 0.293(2) 0.196(2) 0.00217(2) − 48.4(8) − 0.74(1) 0.344(7) − 0.00433(6) 0.0135(2)

Table 2 As Table 1 but with the additional requirement of pT( j1) > 2 TeV

NLO [fb] LO0
NLO [%] LO1

NLO [%] LO2
NLO [%] LO3

NLO [%] ΔNLO0
NLO [%] ΔNLO1

NLO [%] ΔNLO2
NLO [%] ΔNLO3

NLO [%] ΔNLO4
NLO [%]

σ2 j 51.9(6) 60(1) 7.07(8) 1.82(2) – 36.9(8) − 4.5(1) − 1.02(2) − 0.552(7) –

σ3 j 40.0(4) 99(1) 8.6(1) 2.05(4) 0.061(1) − 0.9(9) − 9.8(4) 1.09(7) 0.057(4) 0.314(5)

Table 3 Fiducial cross sections for two- and three-jet production and their corresponding scale uncertainties for a leading-jet selection of pT( j1) >

80 GeV. The respective cross section definitions are given in Eqs. (5) and (6)

NLO [nb] LO QCD [nb] NLO QCD [nb] NLO EW [nb] NLO QCD + EW [nb]

σ2 j 3385(3)+334
−338 2279.4(6)+553.7

−404.4 3383(3)+335
−338 2275.4(6)+552.4

−403.5 3379(3)+333
−338

σ3 j 169(1)+16
−73 249.86(6)+102.28

−67.89 168(1)+16
−73 248.62(6)+101.62

−67.46 167(1)+17
−73

Table 4 As Table 3 but with the
additional requirement of
pT( j1) > 2 TeV

NLO [fb] LO QCD [fb] NLO QCD [fb] NLO EW [fb] NLO QCD + EW [fb]

σ2 j 51.9(6)+5.9
−6.7 31.2(5)+11.4

−7.9 50.4(6)+7.1
−7.3 28.9(5)+9.6

−6.7 48.1(6)+5.2
−6.1

σ3 j 40.0(4)+0.4
−6.9 39.4(2)+19.0

−12.1 39.0(4)+0.0
−5.0 35.5(2)+15.7

−10.2 35.1(4)+0.9
−8.2

The difference between the additive and multiplicative com-
bination provides an estimate of uncalculated mixed QCD-
EW NNLO corrections of O(αsα), wrt. LO QCD.

We start our discussion of results by listing the inclusive
two- and three-jet cross sections for leading-jet selections of
pT( j1) > 80 GeV and pT( j1) > 2 TeV in Tables 1 and 2,
respectively. We quote results at full NLO accuracy in the
Standard Model and list their decomposition into all con-
tributing orders. The numbers quoted in parentheses indicate
the statistical error estimate on the last digit given. For a lead-
ing jet requirement of pT( j1) > 80 GeV corrections of EW
origin are generally rather small, reaching for the three-jet
case at most a relative contribution to the full NLO result of
−0.7% for ΔNLO1. The dominant corrections are of QCD
nature and account for +33% and −48% for two- and three-
jet production, respectively.

Requiring pT( j1) > 2 TeV changes the picture. While
for the two-jet process the QCD NLO corrections are still
dominating, amounting to +37%, QCD-EW mixed Born and
EW one-loop contributions clearly become sizeable, though
they largely cancel. For three-jet production in this selection
and scale choice the NLO QCD corrections are, accidentally,
miniscule, below −1%. However, the Born contributions of
EW origin reach a total of +11% but largely get cancelled

by the ΔNLO1 terms that contribute −10% to the total NLO
result.

In Tables 3 and 4 we quote two- and three-jet cross sec-
tions at full NLO, LO QCD, NLO QCD, NLO EW and
NLO QCD + EW for the leading-jet selections of pT( j1) >

80 GeV and pT( j1) > 2 TeV, respectively. Besides the nom-
inal cross sections we give their scale uncertainty estimates
obtained from 7-point variations around the central scale
choice μR = μF = 1

2 ĤT. A significant reduction in par-
ticular of the upward variations wrt. LO QCD is observed for
predictions including the ΔNLO0 terms. Adding the ΔNLO1

corrections, however, has no sizeable effect on the scale
uncertainties. Furthermore, no systematic reduction of the
scale uncertainties of the full NLO results in comparison to
the NLO QCD + EW predictions is observed.

In principle, the addition of a pT > 2 TeV require-
ment on the leading jet, while leaving the subleading jets
at pT > 60 GeV only, introduces a large scale hierarchy to
cross section results presented in Tables 2 and 4. In principle,
this mandates the inclusion of a resummation of the corre-
sponding potentially large logarithms. However, no pertur-
bative instabilities were encountered in this region and we,
thus, consider the results reliable. Similar considerations, of
course, also apply to the tails of the distributions shown in
the following.
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Fig. 3 Leading jet transverse momentum in three-jet production. Left: Theoretical uncertainties at LO, NLO QCD, NLO QCD+EW and full NLO.
Right: Decomposition of the full NLO result in its contributions defined in Eq. (4)

Fig. 4 Subleading jet transverse momentum in three-jet production. Left: Theoretical uncertainties at LO, NLO QCD, NLO QCD+EW and full
NLO. Right: Decomposition of the full NLO result in its contributions defined in Eq. (4)

Figures 3, 4 and 5 show the three-jet cross section differ-
ential in the transverse momentum of the leading, subleading
and third hardest jet, respectively. The left hand side panel
details the scale uncertainties and relative magnitudes of the

LO QCD, the NLO QCD+EW, the NLO QCD×EW and the
complete NLO (full NLO) result in comparison to the NLO
QCD prediction. Similarly, the right hand side panel details
the relative contributions from the various LO and NLO con-
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Fig. 5 Third jet transverse momentum in three-jet production. Left: Theoretical uncertainties at LO, NLO QCD, NLO QCD+EW and full NLO.
Right: Decomposition of the full NLO result in its contributions defined in Eq. (4)

Fig. 6 The H (2)
T distribution in two- and three-jet production at the LHC shown in the left and right panel, respectively. Besides the full NLO

prediction the central results and scale uncertainty bands for LO and NLO QCD, NLO QCD + EW and NLO QCD + EW are shown

tributions to the full NLO result for the central scale choice.
Note, while positive sub-contributions are represented by a
solid line, negative parts are indicated by a dashed line and
their corresponding absolute value is displayed here.

In all three distributions we confirm the substantial shape
correction and improvement on the scale uncertainty through
the NLO QCD corrections observed in earlier calculations
of these quantities [3]. The NLO EW corrections themselves
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Fig. 7 Scalar sum of leading and subleading jet transverse momen-
tum, H (2)

T , in two (top panel) and three (bottom panel) jet pro-
duction, decomposed into contributions from several ranges of

η = |η1 − η2|/2. Shown are the NLO QCD, NLO QCD + EW and
full NLO result as well as the subleading Born contributions LO1 and
LO2

lead to the well-known negative corrections of EW Sudakov-
type in the high-transverse momentum regime, reaching
−10% for the leading, −15% for the second and −15% for
the third hardest jet at pT = 2 TeV. The very good agreement
of the additive and multiplicative combination of QCD and
electroweak corrections indicates a negligible size of the rel-
ative O(αsα) corrections. The remaining subleading LO and
NLO contributions, however, cancel the effect of the next-to-
leading order electroweak corrections almost completely. In
fact, at pT > 2.5 TeV they grow larger and increase the full
NLO result beyond the NLO QCD one. The driving ingredi-
ents here are the O(α3

s α) ΔNLO1 terms, the tree-level inter-

ference O(α2
s α) (LO1) contributions, followed by the inter-

ference at O(αsα
2) (LO2) and their respective EW and QCD

corrections at O(α2
s α

2) (ΔNLO2). All other contributions to
the full NLO result remain marginal. It has to be stressed that
this cancellation is accidental and highly observable depen-
dent and cannot be inferred to hold for any other observable,
or indeed for the same observable in a different fiducial phase
space. Lastly we note, that by the inclusion of NLO EW cor-
rections the uncertainty estimates obtained by QCD scale
variations increases wrt. the NLO QCD result, however, still
being significantly smaller than for the LO QCD prediction.
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Figure 6 now displays the results for the scalar sum of
the leading and subleading jet transverse momenta, H (2)

T ,
in two- and three-jet events. While the latter represents a
novel result from our full NLO three-jet calculation, the first
is obtained from a dijet computation with identical parame-
ter settings, scale choices and PDFs. Qualitatively, the H (2)

T
distributions exhibit the same features as the leading and
subleading jet transverse momentum distributions presented
before. While the scale uncertainties are shrunk going from
LO to NLO QCD, the electroweak corrections show the
expected Sudakov behaviour. The relative electroweak cor-
rections are of nearly the same magnitude for both the two-
and the three-jet case. This can be understood from the fact
that with H (2)

T in the TeV region, where the electroweak cor-
rections become sizeable, the additional third jet in the three-
jet case is predominantly soft and near the jet threshold. In
this limit, higher order QCD and EW corrections should fac-
torise. Further, we note that for both distributions the addi-
tive and multiplicative combination of NLO QCD and EW
corrections give compatible results. As has been observed
before in the jet transverse momenta, including electroweak
contributions somewhat increases the uncertainty wrt. NLO
QCD.

Upon inclusion of the additional subleading LO and NLO
contributions NLO EW effects get cancelled and the full NLO
result gets very close to the NLO QCD prediction. Interest-
ingly, this is true both for the two- and three-jet case. How-
ever, this cancellation is accidental and highly dependent on
the observable and the phase space considered. To illustrate
this observation, Fig. 7 shows the same observable, H (2)

T , in
different regions of absolute pseudorapidity of the leading
two-jet system, i.e. η = |η1 − η2|/2. In the central region,
which dominates the inclusive result, the subleading contri-
butions, dominated by LO1 in both the two- and three-jet
case, have a large positive effect on the cross section. The
more forward H (2)

T is considered, however, the smaller espe-
cially the LO1 terms become and the closer the full NLO
result is to the NLO QCD + EW one. This was already
observed in [9]. In this region, also qualitative differences
between the two- and three-jet case are apparent. While the
further subleading contributions are negative wrt. the NLO
QCD + EW result in the dijet case, they are positive wrt. the
NLO QCD + EW result in the three-jet case.

With full NLO calculations for two- and three-jet produc-
tion at hand we turn to the central observable of this letter, the
three-jet-over-two-jet ratio, R32. This particular observable
has attracted interest, as large parts of the experimental and
theoretical uncertainties in the inclusive three- and two-jet
cross sections cancel in the ratio, allowing for a competitive
measurement of the strong coupling αs [41,42]. Here we con-
sider R32 differential in H (2)

T , the scalar sum of the leading-
and subleading-jet transverse momenta presented above, i.e.

Fig. 8 The R32 observable differential in H (2)
T . Upper panel: Predic-

tions at LO and NLO QCD, NLO QCD+EW, NLO QCD×EW and full
NLO in the Standard Model. Lower panel: Related relative corrections
w.r.t. the central NLO QCD result

R32(H
(2)
T ) = dσ3 j/dH (2)

T

dσ2 j/dH (2)
T

. (7)

The scale uncertainties are computed by synchronous vari-
ations of numerator and denominator. Our results are pre-
sented in Fig. 8.

We find that as the individual input distributions receive
only minute EW corrections, resulting in the NLO QCD pre-
dictions to agree with the full NLO, also their ratio is very
stable. However, as emphasised before, accidental cancella-
tions of individually much larger terms is in action for this
observable. Therefore, we present in Fig. 9 results differen-
tial in various pseudorapidity regions, with η = |η1 − η2|/2.
As before, the inclusive result is dominated by the most cen-
tral pseudorapidity slices, and they exhibit the same char-
acteristics. In the slightly more forward regions, between
0.5 ≤ η ≤ 2, the input distributions of Fig. 7 do not exhibit
this almost complete cancellation of corrections any longer.

For the cross-section ratio R32 the net effect is nonethe-
less the same and the residual corrections of electroweak and
subleading origin are very small. Their contributions largely
factorise in the numerator and denominator and, thus, cancel
in the ratio. Hence, the full NLO result is in very good agree-
ment with the NLO QCD prediction for this observable. This
very much confirms the particular usefulness of R32 for the
determination of the strong coupling.

123



Eur. Phys. J. C (2019) 79 :321 Page 9 of 10 321

Fig. 9 The R32 observable at NLO QCD + EW and full NLO differential in H (2)
T for different pseudo-rapidity selections and in comparison to the

corresponding NLO QCD result

4 Conclusions

In this letter we have presented the evaluation of the full
set of Standard Model NLO corrections to three-jet produc-
tion at the LHC. Besides the dominating QCD corrections
of O(α4

s ) this comprises all (mixed) electroweak tree-level
contributions up toO(α3) as well as all (mixed) one-loop and
real-corrections up to O(α4). As jet constituents we consider
besides quarks and gluons also photons and charged leptons.
However, for the considered event selections contributions
from final states containing leptons are practically irrele-
vant. All calculations have been performed in an automated
manner within the Sherpa event generation framework, with
Recola providing the renormalised virtual corrections.

For the jet transverse momentum distributions and the
related H (2)

T variable we observe a compensation of the elec-
troweak Sudakov-type suppression of high-pT events when
including subleading electroweak tree-level and one-loop
contributions. In fact, for leading jet transverse momenta
above 2.5 TeV a resulting positive correction of 10 − 15%
wrt. the NLO QCD prediction is observed. However, the men-
tioned compensation is specific for the fiducial phase-space
region considered. In particular for jet production away from
central rapidity we observe sizeable effects upon inclusion of
the full set of (mixed) electroweak corrections. This nicely
illustrates the importance of considering the complete set
of NLO Standard Model corrections in predictions for the
three-jet production process at the LHC.

As a first application of our calculation we have consid-
ered the ratio of three- over two-jet production differential

in H (2)
T . This variable proves to be very stable against elec-

troweak corrections, confirming its particular usefulness in
the determination of the strong coupling constant αs .
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