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Abstract Considering de Rham–Gabadadze–Tolley theory
of massive gravity coupled with (ghost free) higher curva-
ture terms arisen from the Lovelock Lagrangian, we obtain
charged-AdS black hole solutions in diverse dimensions. We
compute thermodynamic quantities in the extended phase
space by considering the variations of the negative cosmo-
logical constant, Lovelock coefficients (αi ) and massive cou-
plings (ci ). We also prove that such variations are neces-
sary in order to satisfy the extended first law of thermody-
namics as well as associated Smarr formula. In addition, by
performing a comprehensive thermal stability analysis for
the topological black hole solutions, we show that in which
regions thermally stable phases exist. Calculations show the
results are radically different from those in the Einstein grav-
ity. We find that the phase structure and critical behavior of
topological AdS black holes are drastically restricted by the
geometry of the event horizon. We also show that the phase
structure of AdS black holes with non-compact (hyperbolic)
horizon could give birth to three critical points corresponds to
a reverse van der Waals behavior for phase transition which
is accompanied with two distinct van der Waals phase tran-
sitions. For black holes with the spherical horizon, the van
der Waals, reentrant and analogue of solid/liquid/gas phase
transitions are observed.

1 Introduction

Einstein’s General Relativity (GR, also known as Einstein
gravity) has been astonishingly regarded as the most success-
ful description of gravitation and a well supported by numer-
ous experiments since it was proposed [1–3] (see also these
reviews [4,5]). Theoretically, inconsistency appears when
GR is supposed to be reconciled with the laws of quantum
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physics for producing the theory of quantum gravity. From
the experimental side, Einstein gravity has a problem with
the accelerated expansion of the universe in the large scale
structure since it needs an unknown source of energy (the
so-called dark energy) captured by the cosmological con-
stant [6–9]. In this regard, various attempts have been made
to find an alternative such that it modifies Einstein gravity in
the large scales (IR limit). Massive gravity is one of the alter-
natives that modifies Einstein gravity by giving the graviton
a mass and provides a possible explanation for the acceler-
ated expansion of the universe without the requirement of
dark energy component [10–12]. Assuming that gravitons
are dispersed in vacuum like massive particles, gravitational
waves’ observation of the coalescence for a pair of stellar-
mass black holes (GW170104) has bounded the graviton
mass to mg ≤ 7.7 × 10−23 eV/c2 [13]. On the other hand,
depending on the exact model of massive gravity, the gravi-
ton mass is typically bounded to be a few times the Hubble
parameter today, i.e., mg ≤ 10−30 − 10−33 eV/c2, in which
for graviton mass region mg � 10−33 eV/c2 , its observ-
able effects would be undetectable [14] (for more details on
different mass bounds see [15]). Massive gravitons, if they
exist, are yet to be found; but, according to the recent data
of LIGO, such an assumption is experimentally logical and
therefore deserves to be explored theoretically [10–15].

Depending on what features of GR is accepted unchanged,
various theories of gravity have been created. Modification
of GR is characterized by a deformation parameter such as
Lovelock coefficients αi ’s in Lovelock gravity (which deter-
mines the strength of higher curvature terms) or graviton
mass parameter in massive gravity models. Based on the
nature of the deformation parameter, the original theory (GR)
can be recovered by taking some limits (e.g. the zero limit of
graviton mass parameter must recover GR and its associated
outcomes). In order to have a generalized and well-defined
theory, we should take care of ghosts. Although the first lin-
ear version of the massive theory (i.e., the Fierz–Pauli model
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[16]) is ghost-free, it does not lead to the linearized GR as
the graviton mass goes to zero which is known as the vDVZ
discontinuity [17,18]. Vainshtein discovered that such dis-
continuity appears as a consequence of working with the
linearized theory of GR [19], and by employing the Stueck-
elberg trick it can be found that all degrees of freedom intro-
duced by the graviton mass do not decouple in the zero limit
of graviton mass [20]. On the other hand, Boulware and
Deser showed some specific nonlinear models of massive
gravity suffer from ghost instabilities however they could
restore continuity with GR [21]. Eventually, the de Rham–
Gabadadze–Tolley (dRGT) theory of fully nonlinear mas-
sive gravity resolved the ghost problem in four dimensions
by adding higher order graviton self-interactions with appro-
priately tuned coefficients [22–25]. The higher dimensional
extension of the massive (bi)gravity has been discussed in
[26,27], which confirms the absence of ghost fields using the
Cayley- Hamilton theorem. Interestingly, in massive grav-
ity framework, spherically symmetric black hole solutions
were found in [28,29] and in the limit of vanishing graviton
mass they go smoothly to the Schwarzschild and Reissner-
Nordström (RN) black holes. Furthermore, asymptotically
flat black hole solutions were found in [30], but the curvature
diverges near the horizon of these solutions. In this regard,
black hole solutions with non-singular horizon were intro-
duced in [31] with the identification of the unitary gauge to
the coordinate system in which black hole has no horizon (for
more details see [31]). The other interesting solutions related
to the cosmology, gravitational waves and (time dependent)
black holes were found in [10,32–38] which will not dis-
cuss in this paper. Of interesting case for us is Vegh’s black
hole solution [39] in which the general covariance preserves
in the “t” and “r” coordinates, but, is broken in the other
spatial dimensions. In [40], this solution was generalized to
topological black holes in higher dimensions. Inspired by the
interesting features of these solutions, black hole solutions of
massive gravity coupled to the higher curvature terms, dila-
ton and nonlinear electromagnetic fields were constructed
and studied in detail [41–47].

From the string theory point of view and also braneworld
cosmology perspective, Lovelock gravity [48,49], as a nat-
ural deformation of GR in higher dimensions [50], has
an essential role. The most important motivation to study
such a theory is related to superstring theory models which
lead to ghost-free nontrivial gravitational interactions in
higher dimensions [51]. The low-energy limits of type
II string theory and E8 × E8 heterotic superstring give
rise to effective models of gravity in higher dimensions
which contain higher powers of the Riemann curvature
(e.g., R2, R3, RμνRμν, Rμνγ δRμνγ δ, . . .) in addition to the
usual Einstein and cosmological constant terms [52–55]. It
is notable that the ghost-free combinations of these terms
are proportional to the Euler invariant [51,56] which is

exactly the same as the Lovelock Lagrangian [48,49]. The
Lagrangian of the Lovelock gravity is given by a sum of
dimensionally extended Euler densities as

L =
[(d−1)/2]∑

k=0

αkLk,

Lk = 1

2k
δμ1 ν1 ... μk νk
ρ1 σ1 ... ρk σk

Rμ1 ν1
ρ1 σ1 . . . Rμk νk

ρk σk , (1.1)

in which δ
μ1 ν1 ... μk νk
ρ1 σ1 ... ρk σk and Rμk νk

ρk σk are the generalized
totally antisymmetric Kronecker delta and the Riemann ten-
sor respectively. In 4-dimensional spacetimes, the Lovelock
theory of gravity reduces to GR, and in spacetime dimen-
sions with d � 5 the Gauss–Bonnet term appears, and for
d � 7 the third order Lovelock term has contribution besides
the Einstein and Gauss–Bonnet terms. Lovelock gravity is
also ghost free with second order field equations and admits
black hole solutions and the associated thermodynamics as
expected [57–75].

Of interesting case for theoretical physicists is thermo-
dynamic properties of black holes in comparison with ordi-
nary systems in nature. In fact, black hole mechanics obeys
the same laws as the laws of thermodynamics [76], and
many investigations have confirmed this statement for more
complicated black hole spacetimes in modified gravities. In
addition, a wealth of results in the context of black hole
thermodynamics have been presented which show black
holes in Einstein gravity can imitate some thermodynamic
properties of ordinary systems such as the van der Waals
(vdW) phase transition which represents a liquid/gas (first
order) phase transition [77], the reentrant phase transition
(RPT) in multicomponent fluid systems [78,79] and the triple
point in solid/liquid/gas phase transition. The phase space
of Schwarzschild-anti de Sitter (Schwarzschild-AdS) black
holes admits the so-called Hawking-Page phase transition
[80] which is interpreted as a confinement/deconfinement
transition in the dual boundary gauge theory (SYM plasma)
[81]. Remarkably, RN-AdS and Kerr–Newman-AdS black
holes possess a first order phase transition which closely
resembles the well-known vdW phase transition in fluids
[82–84]. Interestingly, Born–Infeld-AdS black holes, as a
nonlinear version of RN-AdS ones, display a phase struc-
ture which relates the mass (M) and the charge (Q) of the
black holes similar to the solid–liquid–gas phase diagram
[85]. These considerations were done in the presence of the
cosmological constant as a fixed parameter and recently are
referred in the literature as non-extended phase space. In fact,
as stated in [86], these mathematical analogies are confus-
ing since some black hole intensive (extensive) quantities
have to be identified with an irrelevant extensive (intensive)
quantities in the fluid system, for example, the identification
between the fluid temperature and the charge of the black
hole is puzzling.
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In thermodynamic systems, some quantities are thermo-
dynamic variables and the others are fixed parameters which
cannot vary. Only experiment can determine that a quantity
(parameter) can vary or hold fixed. From the theoretical per-
spective, one can assume the variation of a fixed parameter
of a theory and then see its consequences. In this regard, the
later mismatch between extensive and intensive quantities of
the black hole and fluid systems can be solved if one treats
the cosmological constant (�) as a thermodynamic variable,
i.e., pressure [86]. This idea (which first established in [87]
and then developed in [88–92]) leads to an extension of the
phase space thermodynamics and the exact analogy between
quantities of a black hole and liquid-gas systems at the critical
point. For example, a transition occurs in P−T plane for the
both of RN-AdS (small/large) black hole and liquid-gas sys-
tems. In addition, the variation of � in the first law of black
hole thermodynamics solves the inconsistency between the
Smarr formula and the traditional form of first law since in the
presence of a fixed cosmological constant the scaling argu-
ment [87] is no longer valid. This motivates consideration of
the first law of black hole thermodynamics with varying �

which is referred to as the extended phase space thermody-
namics in physics community. Regarding the extended phase
space thermodynamics, RPT has been observed for Born–
Infeld-AdS and singly spinning Kerr-AdS black holes in the
context of Einstein gravity [93,94]. In a black hole system, it
is interpreted as large/small/large black hole phase transition.
Moreover, the analogue of solid/liquid/gas phase transition
was found for doubly spinning Kerr-AdS black holes which is
interpreted as small/intermediate/large black hole transition
[95,96].

The objective of this paper is to construct the higher cur-
vature massive gravity in order to study the effects of higher
order curvatures on the black hole solutions of massive grav-
ity and investigate the associated criticality and thermody-
namics in the extended phase space. Indeed, some thermo-
dynamic features of black holes, e.g. universal ratio, may
depend on the specific choice of the gravitational theory.
Therefore it is so important to understand the effect of mod-
ified gravities. We select the Lovelock gravity up to third
order (referred to as TOL gravity) as the higher curvature
framework for our investigations. When the Lovelock mas-
sive theory of gravity (LM gravity) is constructed, in princi-
ple, the parameters α (Lovelock coefficient) and m (graviton
mass) are considered as deformations of GR, and by taking
the limits m → 0 and α → 0, GR is naturally recovered.
According to scaling argument, any dimensionful parameter
in a given theory has a thermodynamic interpretation and as a
result, the Smarr formula and the first law of black hole ther-
modynamics must be modified. According to this fact, ther-
modynamically, more interesting phenomena can take place
in a more complicated theory of gravity such as Lovelock
and massive gravities which have a finite number of dimen-

sionful parameters. One can observe that modified gravities
such as massive and Lovelock theories exhibit a rich black
hole phase space structure with respect to those counterparts
in Einstein gravity. The existence of higher order curvatures
based on the third order Lovelock (TOL) gravity can lead
to critical behavior and phase transition for AdS black holes
with hyperbolic horizon topology [97–100] in contrast to Ein-
stein gravity which only spherically symmetric AdS black
holes admits phase transitions. Remarkably, hyperbolic vac-
uum black holes in Lovelock gravity expose non-standard
critical exponents at a special isolated critical point which
are different from those of vdW ones [101]. Until writing
this paper, a wealth of evidence has been indicating that all
the black hole solutions in Einstein gravity in the presence
of any matter field have the same critical exponents as the
vdW fluid [86,93,102,103]. Interestingly, a “λ-line” phase
transition occurs for a class of AdS-hairy black holes with
hyperbolic horizon in Lovelock gravity where a real scalar
field is conformally coupled to gravity [104]. In addition, for
charged black branes, the inclusion of higher curvature grav-
ities based on a generalized quasi-topological class could
lead to phase transition and critical behavior with the stan-
dard critical exponents [105]. These indications reveal the
rich phase space structure of Lovelock gravity’s black holes.
On the other hand, in the massive gravity framework, phase
transition and critical behavior could take place for all kinds
of topological black holes [106]. In this regard, the vdW
and RPTs were found for AdS black holes [107,108], and
in the presence of Born–Infeld (BI) nonlinear electromag-
netic fields, the triple point emerges and the corresponding
large/intermediate/small transition could take place [109].

Taking these considerations seriously, in this paper, we
mainly focus on the critical behavior and phase transitions
of AdS black hole solutions in the Lovelock massive (LM)
gravity. By constructing this model, besides its novel phase
structure, we could be able to figure out what character-
istic features of Lovelock and massive gravities persist or
ruin. Thus, we have organized this paper as follows: first,
in Sect. 2.1 , we give a brief review of thermodynamics in
extended phase space, stability analysis and phase transition
for AdS black holes in the context of Einstein gravity. After,
in Sect. 3, we construct the LM gravity by introducing the
action and associated field equations and then present a new
class of charged-AdS black hole solutions in arbitrary dimen-
sions. By computing thermodynamic quantities, we prove the
traditional first law of black hole thermodynamics is satis-
fied. After that, in Sect. 4.1, we perform a thermal stability
analysis for the obtained black hole solutions in the canon-
ical ensemble. Furthermore, we reconsider the first law of
thermodynamics in the extended phase space and then study
P − V criticality and phase transition(s) of black holes to
complete our discussion. Finally, in Sect. 5, we finish our
paper with some concluding remarks.
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2 General formalism: thermodynamics, stability and
phase transition for AdS black holes

In this section, we will develop the basic framework that
we need to study the critical behavior and thermodynamic
properties of AdS black holes in the next sections. Some
useful issues will be briefly reviewed such as gravitational
partition function, black hole thermodynamics, local ther-
modynamic stability, phase transition and critical behav-
ior of black holes. Throughout this paper, we use the geo-
metric units, GN = h̄ = c = kB = 1. In these units,
[Energy] = [Mass] = [Length]−1 = [Time]−1, and there-
fore there is only one dimensionful unit. Moreover, our con-
vention of the metric signature is (−,+,+,+, . . .).

2.1 Basic set up: partition function and action

According to an old idea of unification, it is believed that
all known forces (strong, weak, electromagnetic and grav-
itation) in nature might be unified in the so-called “theory
of everything”. For many years, physicists have been look-
ing for a consistent theory in which all forces in nature are
described using path integral formalism of quantum field the-
ory (QFT), like QCD and electroweak theories. Respecting
such approach, we expect generating functional of the quan-
tum theory of gravity could be defined by a Euclidean path
integral over a dynamical metric (tensor field), gμν , as fol-
lows

Z =
∫

D[g, φ] e−IG [g,φ] � e−IG (on-shell), (2.1)

where φ is considered as matter fields and IG represents the
on-shell gravitational action which is obtained by substitut-
ing the classical solutions of g. The generating functional Z
contains a complete summary of the theory which its dom-
inant contribution originates from the classical solution of
the action by applying the stationary phase method (also
known as steepest descent method or saddle-point approxi-
mation). Since the Euclidean formalism is obtained by apply-
ing the Wick rotation (tE = i t) on the Lorentzian version,
the Euclidean spacetime would be periodic in time. Follow-
ing the method proposed by Matsubara [110], one can use
the mapping

i t

h̄
= tE

h̄
↔ β = 1

kBT
, (2.2)

to calculate the partition function of a thermodynamic sys-
tem applying the techniques of calculus in QFT, and vice
versa (for more specific details see [111–113]). As a result,
considering the substitution (2.2), it is natural to regard Z as
the statistical mechanical partition function of a gravitational
system such as a black hole. Comparing Eq. (2.1) with the
free energy (F = −kBT lnZ), we find our main relation as

IG = βF. (2.3)

It should be noted that F can be identified with Helmholtz or
Gibbs free energy depending on the thermodynamic variables
of the system. Therefore, thermodynamic quantities associ-
ated with the gravitational system can be directly extracted
by using the standard methods in statistical mechanics
[114,115].

For systems in nature, one can define an appropriate action
in which its dynamical equation of motion is determined by
the variational principle. The total action (IG) for a gravita-
tional system, here black holes, consists of three terms as

IG = Ib + Is + Ict , (2.4)

where Ib, Is and Ict are, respectively, called the bulk action,
the surface term (boundary action), and the counterterm
action. The surface term is needed to have well-defined vari-
ational principle and remove the derivative terms of gμν nor-
mal to the boundary, and the counterterm actually is an alter-
native surface term that comes from renormalization method
in QFT to eliminate UV divergences and only can regulate
asymptotically AdS spacetimes [116–121]. For asymptoti-
cally flat spacetimes, one can use the subtraction method
to cancel divergences [122,123]. A finite number of surface
terms and counterterms are always needed to have a set of
well-defined field equations and a finite total action.

Since we intend to study the critical behavior of black
holes and understand the theory-dependence behind this phe-
nomenon, we devote the rest of this paper to explore in these
objects. Of interesting case is d-dimensional topological AdS
black holes with the following metric ansatz

ds2 = −ψ(r)dt2 + dr2

ψ(r)
+ r2hi j dxi dx j

(i, j = 1, 2, 3, . . . , d − 2), (2.5)

where the line element hi j dxi dx j is the metric of (d − 2)-
dimensional (unit) hypersurface with the constant curvature
d1d2k and volume ωd2 with the following form

hi j dxi dx j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx2
1 +

d2∑
i=2

i−1∏
j=1

sin2x j dx2
i k = 1

dx2
1 + sinh2x1dx2

2 + sinh2x1

d2∑
i=3

i−1∏
j=2

sin2x j dx2
i k = −1

d2∑
i=1

dx2
i k = 0

,

(2.6)

in which di = d − i (in what follows we will use this
notation). The different values of the topological factor (i.e.,
k = −1, 0,+1) determine the topology of the event hori-
zon and could be positive (spherical, Sn), zero (Planar, Rn),
or negative (hyperbolic, Hn). The details of metric function
ψ(r) depend on the theory that we pick out. In this paper, we
always consider our line element ansatz as above.
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Now, we focus on the charged (static) AdS black holes in
Einstein’s GR, briefly. The bulk action for the Einstein grav-
ity on the d-dimensional background (manifold M) in the
presence of negative cosmological constant and (Maxwell)
electromagnetic filed is

Ib = − 1

16π

∫

M
dd x

√−g(R − 2� − F), (2.7)

where g is the determinant of metric tensor gμν , � =
−(d−1)(d−2)/2�2 with the AdS radius �, andF = FμνFμν

is the Maxwell invariant in which Fμν = ∂μAν −∂ν Aμ is the
electromagnetic field tensor (Faraday tensor) with the gauge
potential Aμ. The Einstein bulk action has to be accompa-
nied by boundary action(s) and counterterm(s). The Gibbons-
Hawking boundary action and the counterterm for regulating
divergences of the Einstein bulk action have been introduced
in [124] and [119], respectively. In this paper, we leave out
the details of these terms and refer the readers to the above
references where the relevant details can be found.

Gravitational field equations are obtained by varying Eq.
(2.7) with respect to the metric tensor gμν as

Gμν + �gμν = −1

2
gμνF + 2FμλFν

λ, (2.8)

where Gμν = Rμν − 1
2gμνR is the Einstein tensor.

Considering the line element ansatz (2.5), the so-called
RN-AdS black hole solutions of gravitational field equations
(2.8) are given by

ψ(r)Einstein = k − 2�r2

d1 d2
− m0

rd3
+ 2q2

d2 d3 r2d3
, (2.9)

where q and m0 are integration constants related to the elec-
tric charge and finite mass of the black holes, respectively.
Calculating the Kretschmann scalar, one can find an essential
singularity. In fact, the Kretschmann scalar diverges only at
r = 0 which is covered with an event horizon and thus one
can interpret it as a black hole. The larger root of ψ(r+) = 0
with a positive slope determines the event horizon of black
holes. In Einstein gravity, numerical calculations show that
the metric function may have two real positive roots (RN
black holes), one extreme root (extreme black holes) or it
may be positive definite (naked singularity). These results
still hold for higher curvature gravities such as the Lovelock
gravity [70–72,74], but the situation is different in massive
gravity for which the metric function may have more than
three roots [41,44,45] as will be shown in Sect. 3.2.

2.2 Black hole thermodynamics

One can regard charged (static) black holes as thermody-
namic systems with the following first law [76]

dM = TdS + �dQ, (2.10)

in which a formal equivalence between the physical tem-
perature T and the surface gravity (κ) was established in
[125,126] by studying quantum fields and particle creation
near the event horizon for different observers in the black
hole background. The notion of black hole, like ordinary
thermodynamical systems, should be assigned an entropy
and a temperature. Entropy of the black holes satisfies the
so-called area law (S = A/4) in the Einstein gravity and this
may be modified for higher derivative gravities (see Refs.
[70–72] for the modified entropy in the Lovelock gravity).
In addition, respecting the first law of thermodynamics, for
all gravitational theories, one can always obtain the entropy
using the following relation

S =
∫ r+ 1

T

(
∂M

∂r+

)
dr+, (2.11)

which needs the functional forms of mass (M) and temper-
ature (T ). Besides, one can use the definition of the surface
gravity with the Killing vector χ as

κ =
√

−1

2
(∇μχν)(∇μχν), (2.12)

to calculate the Hawking temperature as

T = κ

2π
= 1

4π

∂ψ(r)

∂r

∣∣∣∣
r=r+

. (2.13)

It is worth mentioning that χ = ∂t is the temporal Killing
vector for static spacetimes. In order to define the electric
potential, it is necessary to select a reference. Naturally, elec-
tric potential can be measured at the horizon with respect to
infinity as a reference, i.e.,

� = Aμχμ
∣∣
r→∞ − Aμχμ

∣∣
r→r+ . (2.14)

Moreover, the electric charge is an extensive quantity cor-
responds to the potential as an intensive quantity. Using the
Gauss’ law as

Q = ωd2

4π

∫
dnxFμνd Aμν, (2.15)

and calculating the flux of the electromagnetic field at infinity,
the electric charge is obtained.

Finally, the mass M of the static black hole can be written
down as measured by a faraway observer using Ashtekar–
Magnon–Das (AMD) formula as [127–129]

M = d2 ωd2

16π
m0, (2.16)

in which m0 is a positive integration constant (see Eq. 2.9)
and easily obtained from ψ(r+) = 0 (its details depend
on the parameters of the gravitational theory). This formula
still holds for higher curvature gravities like Lovelock the-
ory [70,72,74] and can be calculated using the behavior of
the metric at large r (for asymptotically flat black holes) or
counterterm method (for asymptotically AdS black holes).
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In the following table, we summarize the analogy between
the standard thermodynamics and black holes mechanics.

Standard thermodynamics Black hole variables

Internal energy M (mass)
Temperature T = κ/2π (surface gravity)
Entropy S = A/4 (horizon area)

Obviously, in the traditional treatment of the first law of
black hole thermodynamics, the work term “PdV ” is missed.
Recent developments [86–91] show that one can extend the
thermodynamic phase space and insert the volume-pressure
term in the first law by treating the negative cosmological
constant (�) as a thermodynamic variable. If one employs
the following identification

P = − �

8π
= d1d2

16π�2 , (2.17)

naturally, its conjugate variable will be interpreted as the ther-
modynamic volume. It should be noted that, here, the grav-
itational background necessarily is an asymptotically AdS
spacetime in order to have a positive definite pressure. Such
identification leads to an extended version of the first law of
black hole thermodynamics with a volume-pressure term. In
the extended phase space, the first law is obtained as

dM = TdS + �dQ + VdP. (2.18)

Since the above first law has been written in the enthalpy
representation (the Legendre transform of the energy repre-
sentation, H = E + PV ), the mass of black hole has to
be interpreted as the enthalpy (M ≡ H ). Consequently, the
thermodynamic volume is calculated as

V =
(

∂H

∂P

)

Xi

=
(

∂M

∂P

)

Xi

. (2.19)

in which Xi ’s are the extensive quantities Q and S.
Now, it can be tested if the thermodynamic quantities of

RN-AdS black holes satisfy the first law. Thermodynamic
quantities for RN-AdS black holes read

T = d2d3k + 16π Pr2+ − 2q2r−2d3+
4πd2r+

, (2.20)

S = ωd2

4
rd2+ , (2.21)

Q = ωd2

4π
q, (2.22)

� = q

d3 r
d3+

, (2.23)

and

M = d2 ωd2

16π

(
krd3+ + 2q2

d2 d3r
d3+

+ 16π Prd1+
d1d2

)
. (2.24)

The enthalpy M is a function of S, P and Q, and by com-
puting T = (∂M/∂S)Q,P , � = (∂M/∂Q)S,P and V =
(∂M/∂P)S,Q , one can find the same quantities as (2.20),

(2.23) and geometrical volume, V = ωd2r
d1+

d1
. Therefore, we

deduce all intensive and corresponding extensive parameters
satisfy the extended first law of thermodynamics as presented
in Eq. (2.18).

2.3 Thermal stability of black holes

Here, we are going to explain the basic treatment for study-
ing the thermal stability of black holes. Analyzing the local
thermal stability of a black hole can be performed in both
canonical and grand canonical ensembles. It can be done by
studying the behavior of entropy S near a sufficiently small
neighborhood of a given point in the phase space of possi-
ble extensive variable Xi . Entropy is a smooth function of
extensive variables in which they are M and Q in our case.
Local thermal stability states that entropy must be a smooth
concave function of the extensive variables (S = S(M, Q)).
This is equivalent to have a negative definite value for the
determinant of the Hessian matrix of the entropy S, i.e.
HS

Xi ,X j
≡ [∂2S/∂Xi∂X j

]
[130]. Also, since one could invert

S = S(M, Q) picture to M = M(S, Q) one, the stability
criterion HS

Xi ,X j
≤ 0 may be expressed, differently, as the

determinant of the Hessian matrix of M being positive defi-
nite [131], i.e.

∣∣∣HM
Xi ,X j

∣∣∣ ≡
∣∣∣∣

∂2M

∂Xi∂X j

∣∣∣∣ ≥ 0. (2.25)

In what follows, we will use this later criterion in order to
analyze thermal stability of AdS black holes.

In the canonical ensemble, the total charges are held fixed
and, consequently, the Hessian matrix has one component as
HM

S,S ≡ [∂2M/∂S2
]
. As we have shown below,

HM
S,S =

(
∂2M

∂S2

)

Q
=
(

∂T

∂S

)

Q

= T

CQ
⇒ CQ = T

(
HM

S,S

)−1
� 0, (2.26)

the Hessian matrix will be the function of the heat capacity
CQ . It is possible that we confront with a situation for which
both of T and HM

S,S are negative definite, and therefore, CQ

acquires a positive value. In order to avoid this problem one
always has to take care of positivity of the temperature and
heat capacity, simultaneously. In conclusion, positivity of the
heat capacity ensures the local thermal stability in the non-
extended phase space of allowed physical black hole quanti-
ties with T, M � 0.

For extended phase space thermodynamics in the canon-
ical ensemble, the pressure as well as total charges is kept
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Fig. 1 T versus r+ for q = 1, P = 1/8π , k = +1 (solid lines), k = 0 (dotted lines) and k = −1 (dashed lines). d = 4 (left panel), d = 7 (middle
panel) and d = 9 (right panel)

constant. Consequently, the stability criterion (2.26) natu-
rally leads to positivity of heat capacity at constant pressure
and electric charge, i.e.,

CP,Q = T
(
HM

S,S

)−1
� 0 ⇒ CP,Q =

(
∂H

∂T

)

P,Q

= T

(
∂S

∂T

)

P,Q
≥ 0, (2.27)

where M ≡ H . Of course, one can still define another ensem-
bles in which pressure orU (1) charge could vary. In our con-
siderations, we will perform stability analysis in the extended
phase space of the canonical ensemble. In this regard, the
results are qualitatively the same as the case of non-extended
phase space, but thermodynamic interpretations are basically
different.

Now, we perform a thermal stability analysis for RN-AdS
black holes. To determine thermally stable regions for black
holes, first, one has to find in which regions the associated
temperature is positive. That could depend on the topology of
event horizons. In Fig. 1, typical behaviors of temperature are
depicted for different horizon topologies (k = 1, 0,−1) in
four and higher dimensions. Clearly, there is always a bound
point for the radius of the event horizon (rb) in which the
temperature of the black hole is positive for r+ > rb. The
topological type of event horizon (k = 1, 0,−1) can change
the value of rb. The more value for k results into the lower
value for rb. In addition, in the region r+ > rb the mass of
the black holes (M) is always positive.

The heat capacity of RN-AdS black holes can be calcu-
lated as

CP,Q =
d2

(
2q2rd2+ − r3d−8+ (d2d3k + 16π Pr2+)

)

4r2d3+ (d2d3k − 16π Pr2+) − 16d5/2q2
. (2.28)

Using the heat capacity, one can obtain some information
about phase transition. For example, a divergence point of

heat capacity is a sign of a possible phase transition. For large
enough values of r+, since temperature and heat capacity are
both increasing functions of r+, thus the large black holes are
thermally stable. Here, we examine the heat capacity for RN-
AdS black holes with different topological factor (k) in more
details. This will complete our discussion of local thermal
stability.

Spherical black holes (k = 1): In this case, the heat capacity
has only one positive root (rb) in which CQ is negative defi-
nite for regions r+ < rb. For regions r+ > rb, depending on
the values of q and spacetime dimensions (d), three possibili-
ties may happen: (i) CQ is an increasing function of r+, thus,
in regions r+ > rb, the heat capacity will be positive and
black holes are thermally stable. (ii) CQ may have two diver-
gence points for the RN-AdS black holes, where between
divergence points the heat capacity is negative definite (unsta-
ble black hole region), thus a thermal phase transition can
happen. (iii) CQ has one divergence point which is positive
around such divergency. Such a single divergence point, with
positive CQ around it, may indicate critical behavior of the
system. In Fig. 2, the possibilities of items (i) and (ii) are
depicted. We refer to the first and second divergence points
as rm and ru respectively (rb < rm < ru). In regions rb <

r+ < rm and r+ > ru , RN-AdS black holes are thermally
stable (a phase transition could occur between these two ther-
mally stable regions) and for the other regions are unstable.

Ricci flat black holes (k = 0): In this case, the heat capacity
has only one positive root, rb, in whichCQ is negative definite
for regions r+ < rb and positive for r+ > rb. According to
Eq. 2.28, the heat capacity does not diverge for finite values
of r+ since the denominator of the heat capacity cannot have
any root (see the left panel of Fig. 3). As a result, Ricci flat
black holes are thermally stable for regions r+ > rb and no
phase transition takes place.
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Fig. 2 CQ versus r+ for k = 1, q = 1, P = 1/8π , d = 4 (solid lines), d = 7 (dotted lines) and d = 9 (dashed lines). Different scales: left panel
(0 < r+ < 0.9), middle panel (0.8 < r+ < 1.4) and right panel (1.4 < r+ < 8)

Fig. 3 CQ versus r+ for q = 1, P = 1/8π , d = 4 (solid lines), d = 7 (dotted lines) and d = 9 (dashed lines). Left panel for k = 0. Middle panel
(0 < r+ < 1.5) and right panel (1.4 < r+ < 6) for k = −1 with different scales

Hyperbolic black holes (k = −1): In this case, as well as
Ricci flat black holes (k = 0), there is only one root (rb) for
the heat capacity. Again, hyperbolic black holes are thermally
stable in regions r+ > rb since the heat capacity is always
positive and no phase transition takes place (see the middle
and right panels of Fig. 3).

2.4 Phase transition for RN-AdS black holes

In this section, we review the essence of critical behavior and
phase transition in AdS black holes. In recent years, the inter-
esting analogy between liquid/gas and small/large black hole
phase transitions has attracted the attention of many authors.
In this regard, the exact analogy between liquid-gas system
(vdW fluid) and charged-AdS black holes was first completed
by [86] in the context of Einstein–Maxwell gravity. In fact,
RN-AdS black holes exhibit first-order phase transition with
the same critical exponents as the vdW system. We will gen-

eralize the results in [86] for higher dimensions and various
event horizon topologies and will show that P−V criticality
only exists for spherically symmetric black holes.

Here, we show the extension of thermodynamic phase
space, by introducing negative cosmological constant as ther-
modynamic pressure (i.e. P = −�/8π ), indicates the phase
transition for charged-AdS black holes. Using Eq. (2.20), the
equation of state reads as

P = d2T

4r+
− d2d3k

16πr2+
+ q2

8πr2d2+
, (2.29)

for RN-AdS black holes. Following the method introduced in
[86], one can translate the geometric equation of state (2.29)
to a physical version by performing dimensional analysis and
substituting the following quantities

P ⇒ Pphys = h̄c

�
d2
P

P, T ⇒ Tphys = h̄c

kB
T, (2.30)
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in which Pphys and Tphys denote the physical pressure and
temperature, respectively. As a result, physical equation of
state is given as

Pphys = d2

4r+�
d2
P

kBTphys + · · · . (2.31)

Equation (2.30) should be compared with the following equa-
tion of state of vdW fluid
(
P + a

v2

)
(v − b) = kBT, (2.32)

in which a (molecular interaction forces) and b (molecular
size) are positive definite quantities, and v is the specific
volume of vdW fluid. To do so, rewriting vdW equation in
terms of P and then expanding for v 
 b lead to

P =
(
kBT

v
− a

v2

)
+ kBT

v2 b + kBT

v3 b2 + O(
b3

v4 ). (2.33)

Comparing Eq. (2.31) with the above expansion implies that
the horizon radius (not the thermodynamic volume V ) is
associated with the vdW fluid specific volume, i.e.

v = 4r+�
d2
P

d2
. (2.34)

It should be emphasized, in this analogy, the same physical
quantities are compared with each other. To sum up, we sum-
marize the analogy between vdW fluid and RN-AdS black
hole in the following table.

vdW fluid RN-AdS black hole

Temperature T
Pressure P = −�/8π

Volume r+ = (3 V/4π)1/3

The critical point occurs at the spike like divergence of
specific heat at constant pressure (i.e., an inflection point in
the P−V (P−r+) diagram) and can be found by considering
the following equations, simultaneously
(

∂P

∂v

)

T
= 0 ⇐⇒

(
∂P

∂r+

)

T
= 0,

(
∂2P

∂v2

)

T
= 0 ⇐⇒

(
∂2P

∂r2+

)

T

= 0. (2.35)

Regarding Eq. (2.35) with the equation of state (2.29), one
finds that the critical quantities are obtained as

vc = 4

d2

(
2q2(2d − 5)

d3k

) 1
2d3

, Pc = d2
3k

d2
2πv2

c

,

Tc = 4d2
3k

(2d − 5)d2πvc
. (2.36)

The thermodynamic quantities Pc, Tc and vc must be positive
definite. Evidently, for uncharged-AdS black holes (q = 0)
or non-spherical horizon solutions (k = 0,−1), there are
no phase transition and critical behavior. In fact, the elec-
tric charge parameter q and topological factor k play crucial
rules to have critical behavior for AdS black holes in the Ein-
stein gravity. In Sect. 4.1, we will show this is not the case in
Lovelock or massive gravities and phase transition can hap-
pen even for uncharged black holes or black holes with Ricci
flat/hyperbolic horizons.

The thermodynamic quantities at the critical point satisfy
the following universal ratio

Pcvc
Tc

= 2d − 5

4d2
, (2.37)

and of course, is only valid for spherical black holes (k = 1).
Amazingly, the universal ratio for RN-AdS black holes coin-
cides with the vdW fluid (the universality is equal to 3/8 in
4-dimensions) and it only depends on spacetime dimensions.

Now, by finding and analyzing the free energy of RN-AdS
black hole system, we complete our discussion on the criti-
cality. In the fixed charged ensemble (canonical ensemble),
the on-shell action is identified with the Gibbs free energy
(since � is a thermodynamic variable in the theory). When
Q is held fixed, one has to add a surface term (for electro-
magnetic field) to fix charge on the boundary. As a result, the
total action (2.4) has to be accompanied with the following
boundary term

Is2 = − 1

4π

∫

∂M
dd−1x

√−hnμF
μν Aν . (2.38)

The Gibbs free energy can be obtained using the Legendre
transformation or calculating the on-shell action as follows

G=M − T S= ωd2

16π

(
krd3+ − 16π P rd1+

d1d2
+ (4d − 10)q2

d2d3r
d3+

)
.

(2.39)

The qualitative behavior of Gibbs free energy as a function of
temperature is depicted in the right panel of Fig. 4. Obviously,
the swallow-tail behavior demonstrates the first order phase
transition (exactly the same as vdW fluid). For the sake of
completeness, in the left and middle panels of Fig. 4, P − r+
and T − r+ diagrams are plotted. Evidently, the RN-AdS
equation of state (2.29) mimic the behavior of the vdW fluid
for any fixed Q.

3 Lovelock massive (LM) gravity with Maxwell field

3.1 Action and field equations

In this section, we start the investigation of black holes in the
LM gravity framework. Again, the total action consists of
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Fig. 4 RN-AdS black hole: P − r+ (left), T − r+ (middle) and G − T
(right) diagrams for k = 1, d = 4 and q = 1. Left panel: T < Tc
(continuous lines), T = Tc (dotted line) and T > Tc (dashed lines).

Middle and right panels: P < Pc (continuous lines), P = Pc (dotted
lines) and P > Pc (dashed lines)

three terms,IG = Ib+Is+Ict . The Lovelock boundary term
(Is) is needed to have a well-defined gravitational action,
and the counterterm for static solutions with Ricci flat or
curved horizons (Ict ) is necessary to regulate divergences
of the Lovelock bulk action. The boundary and counterterm
of Lovelock gravity are constructed before and the relevant
details can be found in [71,132,133]. We add generic mass
terms for the gravitons in the Lovelock theory of gravity
by supplementing higher order interaction terms of massive
gravitons (which first proposed in [23]). Considering this
theory on the d-dimensional background manifold M with
the dynamical metric gμν , the bulk action for LM gravity
with a U (1) gauge field (Maxwell field) may be written as

Ib = − 1

16π

∫

M
dd x

√−g

×
⎡

⎣α0L0 + α1L1 + α2L2 + α3L3 − F + m2
∑

i≥1

ciUi (g, f )

⎤

⎦ ,

(3.1)

where α0L0 = −2� and α1L1 = R are, respectively, the
negative cosmological constant and the Ricci scalar, and L2

and L3 are called the Gauss–Bonnet (GB) and the third order
Lovelock (TOL) Lagrangians in the literature which have the
following forms

L2 ≡ LGB = Rμνγ δRμνγ δ − 4RμνRμν + R2,

L3 ≡ LTOL = 2Rμνσκ Rσκρτ R
ρτ

μν

+ 8Rμν
σρR

σκ
ντ R

ρτ
μκ + 24Rμνσκ RσκνρR

ρ
μ

+ 3RRμνσκ Rσκμν + 24Rμνσκ RσμRκν

+ 16RμνRνσ R
σ

μ − 12RRμνRμν + R3. (3.2)

The Lovelock coefficients α2 and α3, which are positive
definite constants [57], indicate the strength of the second and
third order curvature terms. In the action (3.1), the last term

is called massive interaction terms in which m is the gravi-
ton mass parameter, and f is the auxiliary reference metric
which is a fixed rank-2 symmetric tensor. The massive cou-
pling ci ’s, as the free parameters of the theory, are arbitrary
constants which their values can be determined according to
observational or theoretical considerations [10–12,31,39].
Ui ’s (interaction terms) are symmetric polynomials of the
eigenvalues of d × d matrix Kμ

ν = √
gμα fαν with the fol-

lowing explicit forms [22,23,39]

U1 = [K],
U2 = [K]2 − [K2],
U3 = [K]3 − 3 [K] [K2] + 2 [K3],
U4 = [K]4 − 6 [K]2 [K2] + 8 [K] [K3] + 3 [K2]2 − 6 [K4],
U5 = [K]5 − 10 [K]3 [K2] + 20[K]2 [K3] − 20[K2] [K3]

+15 [K][K2]2 − 30 [K] [K4] + 24 [K5],
...

(3.3)

where the square root in K stands for matrix square root,
i.e. Kμ

ν = (
√K)

μ
λ(

√K)λν , and the rectangular bracket
denotes the trace [K] = Kμ

μ. We restrict our study to Ui

up to the fourth interaction term (U4), while considering the
higher order terms is straightforward.

Using the variational principle, the electromagnetic and
gravitational field equations of LM-Maxwell gravity can be
obtained as

Gμν + �gμν + α2G
(GB)
μν + α3G

(TOL)
μν + m2Xμν

= −1

2
gμνF + 2FμλFν

λ, (3.4)

∇μF
μν = 0, (3.5)
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in which Gμν = Rμν − 1
2gμνR is the Einstein tensor and

G(GB)
μν and G(TOL)

μν are, respectively, the second (GB) and
third order Lovelock (TOL) tensors given as

G(GB)
μν = 2(RRμν − Rμσκτ R

κτσ
ν − 2Rμρνσ R

ρσ

− 2Rμσ R
σ

ν) − 1

2
gμνLGB, (3.6)

G(TOL)
μν = −3[4Rτρσκ RσκλρR

λ
ντμ − 8Rτρ

λσ R
σκ

τμR
λ
νρκ

+ 2R τσκ
ν RσκλρR

λρ
τμ

− Rτρσκ RσκτρRνμ + 8Rτ
νσρR

σκ
τμR

ρ
κ

+ 8Rσ
ντκ R

τρ
σμR

κ
ρ

+ 4R τσκ
ν RσκμρR

ρ
τ − 4R τσκ

ν RσκτρR
ρ
μ

+ 4Rτρσκ RσκτμRνρ + 2RR κτρ
ν Rτρκμ

+ 8Rτ
νμρR

ρ
σ R

σ
τ − 8Rσ

ντρR
τ
σ R

ρ
μ

− 8Rτρ
σμR

σ
τ Rνρ − 4RRτ

νμρR
ρ
τ

+ 4RτρRρτ Rνμ − 8Rτ
νRτρR

ρ
μ

+ 4RRνρR
ρ
μ − R2Rνμ] − 1

2
gμνLTOL. (3.7)

In addition, Xμν is given by

Xμν = −c1

2
(U1gμν − Kμν) − c2

2
(U2gμν − 2U1Kμν + 2K2

μν)

−c3

2
(U3gμν − 3U2Kμν + 6U1K2

μν − 6K3
μν)

−c4

2
(U4gμν − 4U3Kμν + 12U2K2

μν

−24U1K3
μν + 24K4

μν) + · · · . (3.8)

In the next section, we will obtain charged-AdS black hole
solutions of the fully nonlinear gravitational field equations
(3.4) and study their geometric properties.

3.2 LM charged-AdS black holes

Here, we intend to obtain static black hole solutions of LM
gravity. In order to achieve the topological charged-AdS
black holes, we consider the d-dimensional line element
ansatz given in Eq. (2.5). We make use of the appropriate
ansatz for the reference metric fμν with the following form
[39,40,45]

fμν = diag
(

0, 0, c2
0hi j

)
, (3.9)

where c0 is a positive constant. It is important to note that
this choice of reference metric fμν , first, cannot produce
any infinite value for the bulk action (3.1) (since the bulk
action only contains non-negative powers of fμν), second, it
does not preserve general covariance in the transverse spatial
coordinates x1, x2, . . . (since fμν only depends on the spatial
components hi j of the spacetime metric). Regarding Eqs.
(3.3) and (3.9), the interaction terms Ui ’s can be calculated
as

U1 = d2 c0

r
, U2 = d2 d3 c2

0

r2 , U3 = d2 d3 d4 c3
0

r3 ,

U4 = d2 d3 d4 d5 c4
0

r4 , U5 = d2 d3 d4 d5 d6 c5
0

r5
, . . . . (3.10)

Using the electromagnetic field equation (3.5), the gauge
potential is obtained as follows

Aμ = q

d3rd3
δ0
μ, (3.11)

where q is an integration constant related to the electric
charge. As a result, the non-zero components of the Fara-
day tensor are

Ftr = −Frt = q

rd2
. (3.12)

Now, by use of the gravitational field equations (3.4), we
are going to obtain the AdS black hole solutions. It is well
known that solutions of TOL gravity with different Lovelock
coefficients α2 and α3 are mathematically too long; therefore
not appropriate to be studied. These complete solutions have
been proposed in [70]. The black hole solutions can still be
found if α2 and α3 are dependent to each other. In order to
have practical black hole solutions, we consider the following
special case for Lovelock coefficients

α2 = α

d3 d4
, α3 = α2

3 d3 d4 d5 d6
, (3.13)

which is a standard simple choice [70–75]. Considering Eq.
(3.13), one may find one real and two complex (conjugate)
solutions for the metric function ψ(r). The real valued solu-
tion for the metric function ψ(r) is obtained as

ψ(r) = k + r2

α

(
1 −

[
1 + 3αm0

rd1
+ 6α�

d1d2
− 6αq2

d2d3r2d2

−3αm2A(r)

] 1
3
)

, (3.14)

with

A(r) = c0 c1

d2 r
+ c2

0c2

r2 + d3 c3
0c3

r3 + d3 d4 c4
0c4

r4 + O
(c5

r5

)
,

(3.15)

in which the parameter m0 is a positive integration constant
related to the finite mass of the obtained spacetimes. The
above metric function satisfies simultaneously all compo-
nents of the field equations (3.4) and reduces to the Lovelock-
Maxwell black hole solution as m → 0 [70]. In addition, for
α → 0, static black hole solutions of (Einstein) massive
gravity [40] can be recovered as follows

ψ(r)massive= k − 2�r2

d1 d2
− m0

rd3
+ 2q2

d2 d3 r2d3
+ m2r2A(r).

(3.16)
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Fig. 5 ψ(r) versus r for k = 1, d = 7, � = −1, q = 2.4, α = 0.2.
Left panel: for Lovelock gravity with m0 = 2 (solid line), m0 = 1.75
(dotted line) and m0 = 1.5 (dashed line). Right panel: for Lovelock
massive (LM) gravity with m0 = 1.2, m = 0.8, c0 = 1, c1 = −5,

c2 = −3, c3 = 4, c4 = −2 (long-dashed line), c4 = −1.65 (dash-
dotted line), c4 = −1.5 (thin-solid line), c4 = −1.02 (dotted line),
c4 = 4.4 (bold-solid line) and , c4 = 7 (dashed line)

The existence of the possible curvature singularity could
be explored by use of calculating the Kretschmann scalar
which is

Rαβγ δRαβγ δ =
(

∂2ψ(r)

∂r2

)2

+ 2d2

(
1

r

∂ψ(r)

∂r

)2

+ 2d2d3

(
ψ(r) − k

r2

)2

. (3.17)

Taking into account the metric function ψ(r), one may find
Rαβγ δRαβγ δ ∝ r−4d2 near the origin (r → 0). In addition,
the Kretschmann scalar is finite for r > 0 and diverges at
r = 0, and in conclusion, we regard the origin as an essential
singularity of the curvature. This physical singularity can be
covered by an event horizon. The roots of the metric function
ψ(r) = grr = 0 specify the number of horizons. Surpris-
ingly, numerical calculation shows the metric function ψ(r)
could have more than two roots for all horizon topologies
in contrast to the usual solutions of Lovelock and Einstein
gravities (reported in Refs. [41,44,134] as well). Evidently,
this is due to the massive interaction terms. In Fig. 5, we have
depicted diverse cases for the possibility of the existence of
the multi-horizon solutions in LM gravity. In the left panel
of Fig. 5, we have displayed a typical example for the behav-
ior of the metric function ψ(r) in Lovelock gravity (with
zero mass for gravitons). As shown in Fig. 5, in LM gravity
(right panel), the metric function may have (i) four (ordinary)
roots, (ii) one extreme and two roots, (iii) one extreme root,
(iv) two roots, or (v) without any root (which all the roots are
real and positive). Hence presented solutions may be inter-

preted as the black holes with (three) four horizons, extreme
black holes, black holes with one non-extreme horizon, or
naked singularity. Hereafter, we assume that r+ is the event
horizon radius of the black hole solutions (3.14) and can be
numerically computed by finding the largest real positive root
of ψ(r) = 0.

In order to investigate the asymptotic behavior of space-
time, we consider the metric function ψ(r) at large r , i.e.

ψ(r)|asymp. = k + r2

α

(
1 −

[
1 + 6α�

d1 d2

] 1
3
)

. (3.18)

We can find that the obtained solutions are asymptotically
AdSd (�e f f < 0) with SO(2, d−1) invariance, dS (�e f f >

0, k = 1) with SO(1, d) invariance or flat (�e f f = � =
0, k = 1) if we replace � with the effective cosmological
constant �e f f = �[d1d2−2α�]

d1d2
.

We are more interested in studying AdS black holes
since these types of black objects admit dual interpre-
tation and also possess certain phase transition(s) in the
extended phase space. Hereafter, we assume only AdS black
holes.

3.3 Thermodynamics of LM charged-AdS black holes

Here, we examine traditional form of the first law of black
hole thermodynamics in which the cosmological constant is
considered as a fixed parameter in the theory. We calculate
conserved charges and thermodynamic quantities associated
with the charged-AdS black hole solutions (3.14) in LM grav-

123



Eur. Phys. J. C (2019) 79 :227 Page 13 of 34 227

ity. First, using the definition of surface gravity, Eq. (2.12),
the Hawking temperature can be obtained as

T = d2k
(
d7α

2 + 3d5kαr2+ + 3d3r4+
)− 6�r6+ − 6q2r−2d5+ + 3d2m2r6+B+

12πd2r+
(
kα + r2+

)2 ,

(3.19)

where

B+ = c0c1r
−1+ + d3c

2
0c2r

−2+ + d3d4c
3
0c3r

−3+
+ d3d4d5c

4
0c4r

−4+ + O(c5, r
−5+ ). (3.20)

For the black hole entropy, since the area law is gen-
erally not valid for higher curvature gravities, one should
use another approach to calculate it. For asymptotically flat
spacetimes, one can easily apply the Wald method [135] as

SLovelock = 1

4

[d1/2]∑

k=1

kαk

∫
dd−2x

√
g̃L̃k−1, (3.21)

where g̃ is the determinant of the induced metric g̃μν on
(d−2)-dimensional boundary, L̃k−1 is the k-th order of Love-
lock Lagrangian constructed from g̃μν and [d1/2] denotes the
integer part of d1/2. Moreover, as shown in [133], one can
still use the Wald formula to calculate the entropy for asymp-
totically AdS spacetimes. Using this method, in TOL gravity
the entropy may be written as

S = 1

4

∫
dd−2x

√
g̃
[
1 + 2α2 R̃

+ 3α3

(
R̃μνγ δ R̃μνγ δ − 4R̃μν R̃μν + R̃2

)]
, (3.22)

where R̃μνγ δ , R̃μν and R̃ are, respectively, the Riemann ten-
sor, the Ricci tensor and the Ricci scalar of the induced metric
g̃μν on (d−2)-dimensional boundary. The modified entropy
of TOL gravity is obtained as

S = ωd2

4
rd2+

(
1 + 2d2kα

d4r2+
+ d2k2α2

d6r4+

)
, (3.23)

and the interaction Lagrangian (3.3) do not impose any extra
term in the above formula. The electric charge and its conju-
gate potential can be found by use of definitions (2.14) and
(2.15), yielding

� = q

d3 r
d3+

, (3.24)

and

Q = ωd2

4π
q. (3.25)

Using ψ(r+) = 0 and Eq. (2.16), the finite mass of d-
dimensional AdS black holes with different horizon topolo-
gies can be derived as

M(S, Q) = d2ωd2

16π

(
1

3
k3α2rd7+ + k2αrd5+ + krd3+

+ 32π2Q2

d2d3r
d3+

− 2�rd1+
d1d2

+ m2rd1+ A+

)
, (3.26)

where r+ = r+(S) and

A+ ≡ A(r+) = c0 c1

d2 r+
+ c2

0c2

r2+
+ d3c3

0c3

r3+

+d3d4c4
0c4

r4+
+ O

(
c5

r5+

)
, (3.27)

as introduced in Eq. (3.15).
Now, it can be straightforwardly checked that by comput-

ing the following intensive quantities

T =
(

∂M

∂S

)

Q
=

(
∂M
∂r+

)

Q(
∂S
∂r+

)

Q

, (3.28)

� =
(

∂M

∂Q

)

S
=

(
∂M
∂q

)

r+(
∂Q
∂q

)

r+

, (3.29)

we obtain the same quantities as those found before for T
(3.19) and � (3.24). In conclusion, we have a prescription
at hand for the first law of black hole thermodynamic which
takes the form

dM = TdS + �dQ. (3.30)

This prescription for the first law is not consistent with
Smarr formula based on scaling argument. In the next section
(Sect. 3.4), we reconsider the first law of thermodynamics in
the extended phase space and resolve this inconsistency.

3.4 Extended phase space thermodynamics

In this section, by treating the negative cosmological constant
as a thermodynamic pressure, we reconsider the first law of
black hole thermodynamics Eq. (3.30) and makes it consis-
tent with the Smarr formula. In order to extend the first law of
thermodynamics for LM gravity, we also regard the massive
couplings ci and Lovelock coefficient α as thermodynamic
variables.

The thermodynamic quantities M , T , S, Q and � have
been already derived in Sect. 3.3. The conjugate quantity of
the thermodynamic pressure, i.e., the thermodynamic vol-
ume, is defined as

V =
(

∂M

∂P

)

S,Q,α2,α3,ci

= ωd2

d1
rd1+ . (3.31)

Now, taking into account ci ’s and α as thermodynamic vari-
ables, the finite mass M (enthalpy) will be a function of new
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variables, i.e. M = M(Q, S, P, α, ci ). Consequently, the
first law of thermodynamics in the extended phase is rewrit-
ten as

dM = TdS + �dQ + VdP + Υ dα +
∑

i≥1

Ci dci , (3.32)

where

� =
(

∂M

∂Q

)

S,P,α,ci

, T =
(

∂M

∂S

)

Q,P,α,ci

,

Υ =
(

∂M

∂α

)

S,Q,P,ci

, (3.33)

and Ci ’s are conjugate quantities corresponding to the ther-
modynamic variables ci with the following explicit forms

Ci =
(

∂M

∂ci

)

S,P,Q,α,c j �=i

= ωd2

16π
m2ci0r

di+1+
i∏

j=2

d j . (3.34)

Moreover, after a long and tedious calculation, it can be
derived that obtained thermodynamic quantities obey the
Smarr relation as

(d − 3)M = (d − 2)T S + (d − 3)�Q − 2PV + 2(Υ1α + Υ2α
2)

− C1c1 + C3c3 + 2C4c4 + · · · , (3.35)

in which

Υ1 = d2k2rd5+
16π

− d2kTr
d4+

2d4
, Υ2 = d2k3rd7+

24π
− d2k2Trd6+

2d6
.

(3.36)

Since c2 is a dimensionless parameter in the massive theory
of gravity, it does not appear in the Smarr formula and has no
thermodynamic contribution. Furthermore, one can get the
Smarr relation by invoking the method of scaling argument
and performing the dimensional analysis for all variables in
the theory as

[M] = Ld−3, [αk] = L2(k−1), [ci ] = Li−2,

[P] = L−2, [S] = Ld−2, [Q] = Ld−3. (3.37)

As a result, we find

(d − 3)M = (d − 2)

(
∂M

∂S

)
S + (d − 3)

(
∂M

∂Q

)
Q

− 2

(
∂M

∂P

)
P +

∑

i≥1

(i − 2)

(
∂M

∂ci

)
ci +

∑

k

2(k − 1)αk�k,

(3.38)

in which, evidently, c2 has scaling weight equal to zero and
the conjugate potentials �k consist of three terms originating
respectively from the dependence of the entropy, the mass
and the bulk Hamiltonian on the Lovelock couplings αk ’s (for
more details see [136]). However, the mathematical structure
of Regarding the condition (3.13), the general form of Smarr

formula Eq. (3.38) reduces to our special case Eq. (3.35) in
which Lovelock coefficients are dependent to each other.

Here, we should warn the readers that, so far, the unusual
variations of ci and α originate only from the requirement
of the consistency between the first law and the Smarr for-
mula (see Eqs. (3.32) and (3.35)). For example, in the pres-
ence of the Born–Infeld electrodynamics, a new thermody-
namic quantity B (interpreted as Born–Infeld vacuum polar-
ization) conjugate to the nonlinear electromagnetic parame-
ter β is defined for AdS black holes [93]. But, in the view
of AdS/CFT correspondence, more justification is needed to
find the correct first law. In this regard, the first law of ther-
modynamics for general asymptotically locally AdS black
hole spacetimes can be proven using Noether’s theorem and
covariant phase space techniques which is described in detail
in Ref. [137]. As first suggested in Ref. [87], the inclusion of
� as a thermodynamic variable may find application in the
AdS/CFT context, and, consequently, variation with respect
to � on the gravity side essentially amounts to changing the
number of colors N on the field theory side (for more detailed
discussion see Ref. [138]). In addition, the holographic Smarr
relation beyond the large N limit is investigated in Ref. [139]
which proves that the bulk correlates of subleading 1/N cor-
rections to the Smarr relation are related to the couplings in
Lovelock gravity theories.

3.5 Thermal stability of LM charged-AdS black holes

In this section, we perform a thermal stability analysis for
the extended phase space of LM charged-AdS black holes in
the canonical ensemble, so the conserved (electric) charge Q,
Lovelock coefficient α, massive couplings ci and the pressure
P will be regarded as fixed thermodynamic quantities. In this
ensemble, we will show the heat capacity at constant P , Q, α
and ci by the symbolCP,Xi , in which Xi denotes the extensive
quantities Q, α and ci . Since negativity of heat capacity, i.e.
CP,Xi < 0, indicates local thermodynamic instability, we
look for regions where CP,Xi is positive. For this purpose,
we calculate the heat capacity as

CP,Xi = T

(
∂S

∂T

)

P,Xi

= D

F
, (3.39)

where

D = 3d2

[
d2k(d3 + d5kαr

−2+ + d7α
2r−4+ /3)r2d3+ + d2m

2Br2d−5+

− 2q2 + 16π Pr2d2+
]
(α + r2+)3rd6+ , (3.40)

F = 4
[
12d2kαm

2c0c1r
2d−5+ + 3d2d3(3kα − r2+)(k + m2c2

0c2)r
2d3+

+ 6d2d3d4m
2c3

0c3(kα − r2+)r2d−7+
+ 3d2d5(kα − 3r2+)(k2α + d3d4m

2c4
0c4)r

2d4+
− d2d7kα

2(kα + 5r2+)r2d5+ + 48π P(5kα + r2+)r2d2+
+ 6q2((2d − 9)kα + (2d − 5)r2+)

]
. (3.41)
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As mentioned before, we have restricted our study to Ui

up to the fourth interaction term (U4). To study local ther-
modynamic stability of black holes, first, we explore the
physical temperature for topological black holes. Numeri-
cal calculations for thermal analysis show that for a black
hole with definite mass M , there always exists a lower value
for the radius of event horizon, i.e. rb, in which the black
hole temperature is always positive for r+ > rb. According
to Eq. (3.19), it can be seen that temperature always has a
root regardless of horizon geometry. In Fig. 6, the typical
behavior of temperature is depicted for spherical black holes
with various values for spacetime dimensions (d), Love-
lock coefficient (α) and massive parameter c0. As seen, the
value of rb depends on many parameters in the theory. For
instance, it is an increasing function of spacetime dimen-
sions (d) and a decreasing function of α and c0. In addition,
we plot Fig. 7 to investigate the qualitative behavior of tem-
perature for Ricci flat and hyperbolic black holes. For Ricci
flat black holes, the behavior of temperature is qualitatively
similar to spherical black holes (see left panel of Fig. 7).
The result is radically different for hyperbolic black holes.
In this case, interestingly, an infinity is observed at the diver-
gence point ri = √

α. Again, the black hole temperature is
always positive for r+ > rb (see middle and right panels
of Fig. 7). If ri > rb, an infinite (positive) temperature is
observed for hyperbolic black holes with horizon radius of
r+ = ri = √

α. It should be emphasized that the temperature
behaves as T ∝ r+ for large values of the event horizon r+
(see Eq. 3.19). Therefore, temperature diagrams (Figs. 6 and
7) diverge at r+ → ∞ for LM AdS black holes with diverse
horizon topologies.

Now, we discuss positivity of the heat capacity with
respect to the event horizon topology (k) case by case and in
detail.

Spherical black holes (k = 1): In Figs. 8, 9, 10, we have
displayed various cases for the behavior ofCP,Xi with respect
to r+. As seen, the heat capacity always has only one root
(rb) in which it is negative definite for regions r+ < rb.
For regions r+ > rb, as before in Einstein gravity, there are
various possibilities. Depending on the values of q, α, m
(graviton mass), massive gravity couplings (c1, c2, c3, c4)
and spacetime dimensions (d), the heat capacity (i) may be
an increasing function of r+, (ii) may have two divergence
points, or iii) has solely one divergence point. LM AdS black
holes would be thermally stable if CP,Xi were an increasing
function of r+ without any divergence or root in regions r+ >

rb. For the second possibility, again, we refer to the first and
second divergence points as rm and ru respectively (rb <

rm < ru). As seen in Figs. 8, 9, 10, for regions rb < r+ <

rm and r+ > ru , LM AdS black holes are thermally stable
and for regions rm < r+ < ru are unstable. The third item
(iii) appears in thermodynamic phase space of all kinds of
topological black holes, so we postpone this case until later
in this section.

For the sake of completeness, Figs. 8, 9, 10 are plotted for
different cases to investigate the effects of Lovelock coeffi-
cient and massive graviton parameter (m) on thermal stability
of the solutions in higher dimensions. Since the quantities m
and c0 are always coupled, thus we would rather vary c0

instead of m. The results are qualitatively similar. We found
that thermally stable regions are drastically affected by both
of the deformation parameters, i.e., α and m.

Moreover, since the thermodynamic phase space of topo-
logical black holes have been enriched due to the higher
order curvatures and the graviton’s mass, we can speculate
that the heat capacity may have more than two divergence
points which indicates more complex critical behaviors with
the associated phase transitions. Therefore, by fine tuning

Fig. 6 T versus r+ for k = 1, q = 1, P = 1/8π , m = 0.1,
c1 = c2 = c3 = c4 = 1. Left panel: for α = 1, c0 = 1 and d = 7 (solid
line), d = 8 (dotted line) and d = 9 (dashed line). Middle panel: for

d = 7, c0 = 1 and α = 0.1 (solid line), α = 1 (dotted line) and α = 10
(dashed line). Right panel: for d = 7, α = 1 and c0 = 0.1 (solid line),
c0 = 1 (dotted line) and c0 = 10 (dashed line)
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Fig. 7 T versus r+ for q = 1, P = 1/8π , m = 0.1, α = 1, c1 = c2 = c3 = c4 = 1, c0 = 1 (solid lines), c0 = 5 (dotted lines) and c0 = 10
(dashed lines). Left panel for k = 0. Middle panel (0 < r+ < 2) and right panel (2 < r+ < 5) for k = −1 with different scales

Fig. 8 CP,Xi versus r+ for k = 1, d = 7, q = 1, α = 1, P = 1/8π , m = 0.1, c1 = c2 = c3 = c4 = 1 and c0 = 0.1 (solid line), c0 = 1 (dotted
line) and c0 = 10 (dashed line). Different scales: left panel (0 < r+ < 1.5), middle panel (1.4 < r+ < 8) and right panel (8 < r+ < 25)

Fig. 9 CP,Xi versus r+ for k = 1, d = 7, q = 1, P = 1/8π , m = 0.1, c0 = c1 = c2 = c3 = c4 = 1 and α = 0.1 (solid line), α = 1 (dotted line)
and α = 10 (dashed line). Different scales: left panel (0 < r+ < 0.9), middle panel (0.8 < r+ < 1.6) and right panel (1.5 < r+ < 6)

the thermodynamic variables, one can form other possibili-
ties besides the three items which were presented previously.
These possibilities can be presented as: item (iv) three diver-

gence points for the heat capacity and item (v) existence
of four divergence points. In these cases, the absence of
any root (i.e. rb in the previous cases) for the heat capac-
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Fig. 10 CP,Xi versus r+ for k = 1, q = 1, α = 1, P = 1/8π , m = 0.1, c0 = c1 = c2 = c3 = c4 = 1 and d = 7 (solid line), d = 8 (dotted line)
and d = 9 (dashed line). Different scales: left panel (0 < r+ < 1), middle panel (1 < r+ < 2) and right panel (2 < r+ < 7)

Fig. 11 Three divergence points and RPT: CP,Xi versus r+ for k = 1,
d = 10, P = 3.94, q = 0, m = 0.1, c0 = 1, c1 = −9, c2 = −2,
c3 = −1, c4 = 0 and α = 0.01. In order to observe the well-known
RPT, the pressure must be chosen near the virtual triple point (Ptr ). See
Fig. 11 for the corresponding P−r+, T −r+ and G−T phase diagrams

ity plays an essential role. The case related to the item (iv) is
depicted in Fig. 11 which shows that there are two unstable
regions and two stable ones denoted by SBHs and LBHs.
More investigations, which were also done for another black
hole set-ups, reveal that this critical behavior corresponds
with the RPT. In Fig. 24 in Sect. 4.4, we have plotted the
corresponding P − r+, T − r+ and G − T phase diagrams
which confirm the mentioned RPT behavior. The behav-
ior associated with the four critical points, item (v), is dis-
played in Fig. 12. As shown, there are two unstable regions
and three stable ones denoted by SBHs, IBHs and LBHs.
Thus, the well-known small/intermediate/large black hole
phase transition is inferred easily. The corresponding P−r+,
T − r+ and G − T phase diagrams are plotted in Fig. 25
which support the existence of triple points and the associ-
ated small/intermediate/large black hole phase transition as
expected. It should be emphasized this behavior, item (v), is
only observed in the spherical black holes of LM gravity.

Fig. 12 Four divergence points and small/intermediate/large black
hole (SBH/IBH/LBH) phase transition: CP,Xi versus r+ for k = 1,
d = 7, P � 1.09, q = 0, m � 5.98, c0 = 1, c1 � −3.98, c2 � 12.8,
c3 � −12.02, c4 = 13.63 and α � 9.08. In order to observe the well-
known SBH/IBH/LBH phase transition, we have set the corresponding
pressure near the triple point, P � Ptr . See Fig. 25 for the correspond-
ing P − r+, T − r+ and G − T phase diagrams

Ricci flat black holes (k = 0): In this case, the heat capacity
of Ricci flat black holes qualitatively behaves in a way remi-
niscent of spherical black holes in Einstein and LM gravities
(see Figs. 2, 8 and 13), but they are completely different from
their counterparts in Einstein gravity, in which the heat capac-
ity cannot possess any divergence point. In fact, depending
on the values of parameters in the theory, the heat capacity
may possess infinities (at one, two or three points) like those
in the case of black holes with spherical horizons (items i, ii,
iii and iv). In this regard, according to Fig. 13, black holes are
thermally stable in regions rb < r+ < rm and r+ > ru , and
unstable for rm < r+ < ru (the same notations as the case of
spherical black holes, items i and ii, have been assumed here).
In addition, the case of three divergence points can take place
the same as the spherical black holes (see Fig. 11) signaling
a RPT (the analytic conditions to have the RPT behavior are
presented in Sect. 4.3).
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Fig. 13 CP,Xi versus r+ for k = 0, d = 7, q = 1, α = 1, P = 1/8π , m = 0.1, c1 = c2 = c3 = c4 = 1 and c0 = 1 (solid line), c0 = 5 (dotted
line) and c0 = 10 (dashed line). Different scales: first panel (0 < r+ < 0.25), second panel (0.24 < r+ < 0.3), third panel (0.3 < r+ < 1.8) and
fourth panel (1.8 < r+ < 20)

Fig. 14 CP,Xi versus r+ for k = −1, d = 7, q = 1, α = 1, P = 1/8π , m = 0.1, c1 = c2 = c3 = c4 = 1 and c0 = 1 (solid line), c0 = 5 (dotted
line) and c0 = 10 (dashed line). Different scales: left panel (0 < r+ < 1.4), middle panel (1.4 < r+ < 4) and right panel (4 < r+ < 20)

Hyperbolic black holes (k = −1): Interestingly, in the case
of k = −1, there exists two positive roots and one divergence
point (rm) for the heat capacity (not seen in Einstein gravity).
It is a general consequence of higher curvature terms of TOL
gravity and the results are radically different from hyper-
bolic black holes in Einstein gravity. As shown in Fig. 14,
the sequence of roots and divergence point is highly impor-
tant to find stable regions. The smaller and larger roots are
referred to as rb1 and rb2 , respectively. Investigations show
that two sequences are possible: (i) the divergence point is
smaller than the roots (rm < rb1 < rb2 ), and therefore,
LM AdS black holes are thermally stable only in regions
rm < r+ < rb1 and r+ > rb2 ; (ii) the divergence point is
larger than the roots (rb1 < rb2 < rm), and hence, black hole
solutions are thermally stable only in regions rb1 < r+ < rb2

and r+ > rm . In the other regions, hyperbolic black holes
behave thermally unstable. The existence of two divergence
points for the heat capacity of hyperbolic black holes will be
clarified in a moment.

Now, we seek other qualitative behaviors of the topolog-
ical black holes’ heat capacity. As mentioned in Sect. 2.3,
the heat capacity of spherically symmetric AdS black holes

in Einstein gravity may have solely one divergence point
(rm) which is positive around such divergency. Interestingly,
that behavior can occur for the obtained black hole solutions
with various horizon topologies in LM gravity. In Fig. 15,
this possibility is depicted for all topological black holes in
7-dimensions. Such single divergence point, with positive
CP,Xi around it, may signal critical behavior of the topolog-
ical black holes. As seen, all plots have the same qualitative
behavior as the spherically symmetric AdS ones in Einstein
gravity. The only difference is the asymptotic behavior of
the heat capacity of the hyperbolic black hole in compari-
son with spherical and Ricci flat black holes. In fact, when
r+ → ∞, CP,Xi approaches large negative values for hyper-
bolic black hole solutions. Instead, large positive values are
observed for the asymptotic behavior of the heat capacity of
AdS black holes with spherical and Ricci flat horizons. Con-
sequently, there is a lower bound, referred to as rb (rb < rm),
where the heat capacity is positive for spherical and Ricci flat
black holes in regions r+ > rb. For hyperbolic black holes,
there is an upper bound for the horizon radius (ru) besides
the lower bound (rb), in which the heat capacity is positive
in regions rb < r+ < ru and negative for the other regions.
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Fig. 15 CP,Xi versus r+ with one divergence point for topological
black holes in 7-dimensions. Solid lines display situation related to
two divergence points. By decreasing (for k = +1, 0) and increasing
(k = −1) the massive coupling c4, two divergence points (see solid
lines) merge together to form one positive divergence point (see dotted
and dashed lines). Left panel: for k = +1, q = 1, α = 1, P = 1/8π ,
m = 0.1, c0 = 1, c1 = −10, c2 = −10, c3 = −10, c4 = 7 (solid

line), c4 = 6.4 (dotted line) and c4 = 6 (dashed line). Middle panel:
for k = 0, q = 1, P = 1/8π , m = 1, c0 = 1, c1 = 20, c2 = 10,
c3 = −10, c4 = 2.4 (solid line), c4 = 2.09 (dotted line) and c4 = 2.04
(dashed line). Right panel: for k = −1, q = 1, α = 6.7, P = 1/8π ,
m = 1, c0 = 1, c1 = 20, c2 = 10, c3 = −10, c4 = 2.3 (solid line),
c4 = 2.5 (dotted line) and c4 = 2.6 (dashed line)

Fig. 16 CP,Xi versus r+ with one divergence point for topological
black holes in d = 7 (solid lines), d = 8 (dotted lines) and d = 9
(dashed lines). Plots have been depicted with different scales. Left panel:
for k = +1, q = 0, α = 1, P = 1/8π , m = 0.1, c0 = 1, c1 = −10,

c2 = −10, c3 = −10 and c4 = −10. Middle panel: for k = 0, q = 0,
P = 1/8π , m = 0.5, c0 = 1, c1 = 2, c2 = −3, c3 = −2 and c4 = 1.
Right panel: for k = −1, q = 0, α = 0.1, P = 1/8π , m = 0.6, c0 = 1,
c1 = 4, c2 = 2, c3 = −4 and c4 = 1.9

In addition, there is another possibility for the case of
one divergence point in the heat capacity, which indicates
the Hawking-Page phase transition. According to Fig. 16,
around such divergency, the heat capacity is negative and
positive corresponding to the area on the right and the area on
the left, respectively. In all cases, besides a divergence point
(rm), CP,Xi may have one or two positive roots (referred to
as rb1 and rb2 ) depending on the chosen parameters. When
there exist two roots, the divergence point is located between
the roots. This situation is different from the previous case
of hyperbolic black holes (see the items i and ii related to
hyperbolic black holes). Assuming that there are two roots

(rb1 < rb2 ), an unstable region is observed for rm < rb2 in
the heat capacity’s plots of Fig. 16. Consequently, thermally
stable regions correspond with rb1 < r+ < rm and r+ >

rb2 .

4 P − V criticality of LM charged-AdS black holes

4.1 Critical behavior and vdW phase transition

In this section, we study the critical behavior of the LM
charged-AdS black holes in the canonical ensemble under
certain conditions which vdW phase transition appears. Geo-
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metrical equation of state for LM black hole solutions in the
canonical ensemble can be simply obtained by substituting
� = −8π P in Eq. (3.19) as

P = d2
(
kα + r2+

)2
T

4r5+
+ q2

8πr2d2+

− d2k
(
d7α

2 + 3d5kαr2+ + 3d3r4+
)

48πr6+
− d2m2B+

16π
, (4.1)

where

B+ = c0c1r
−1+ + d3c

2
0c2r

−2+ + d3d4c
3
0c3r

−3+
+ d3d4d5c

4
0c4r

−4+ + O(c5, r
−5+ ), (4.2)

and r+ is a function of thermodynamic volume, V . This is a
worthwhile equation since one can easily recover the equa-
tions of state of charged-AdS black holes in Einstein, Gauss–
Bonnet and massive gravities (and also any possible combi-
nation of them). It is well-known that black hole solutions
in TOL gravity have no Gauss–Bonnet limit [140], thereby
one cannot obtain Gauss–Bonnet gravity’s outcomes by tak-
ing limit α3 ≡ αTOL → 0 in the context of TOL gravity.
But there is a tricky procedure, for example, to obtain the
equation of state of AdS black holes in Gauss–Bonnet grav-
ity from TOL gravity. Since the terms including α2 are due
to the effect of third order term in the Lovelock Lagrangian
(3.2), one can recover the Gauss–Bonnet-massive equation
of state for charged-AdS black holes in Ref. [45] by taking
limits α → d3d4αGB and α2 → 0 according to the Lovelock
coefficient conditions (3.13) which state that α2 ≡ αGB ∝ α

and α3 ≡ αTOL ∝ α2. It should be noted that in the above
discussion we did not assume the square of Gauss–Bonnet
coefficient (αGB

2) is too small.
In what follows, we restrict our study toUi up to the fourth

interaction term (U4). Again, the physical equation of state
can be obtained by translating the geometric version, Eq.
(4.1). The same result is obtained for associated specific vol-
ume (by performing the steps as stated in 2.4). To do that, one
has to define the shifted Hawking temperature [107–109] as

T̃ ≡ T − m2c0c1

4π
, (4.3)

Rewriting the geometric equation of state (4.1) as

P = d2T̃

4r+
− d2d3(k + m2c2

0c2)

16πr2+
+ d2(8πkαT − d3d4m2c3

0c3)

16πr3+

− d2d5(k2α + d3d4m2c4
0c4)

16πr4+
+ d2(kα)2T

4r5+

− d2d7kα2

48πr6+
+ q2

8πr2d2+
, (4.4)

and substituting the following quantities

P ⇒ Pphys = h̄c

�
d2
P

P, T̃ ⇒ T̃phys = Tphys − h̄c

kB

m2c0c1

4π
,

(4.5)

the physical equation of state is obtained as

Pphys = d2

4r+�
d2
P

kBT̃phys + · · · . (4.6)

Hence, we can identify the specific volume v as v =
4r+�

d2
P /d2. Since in the geometric units r+ = d2v/4, here-

after, we would rather use the event horizon radius (r+)
instead of the specific volume (v) in order to analyze the
criticality. However, there are physical differences between
r+, v and V , but because of their dependency to each other,
criticality in one of P − r+, P −v or P −V planes indicates
criticality in the others.

Let’s compare the LM equation of state (4.4) with the
equation of state of the RN-AdS black holes (2.29). In the
right hand side of the RN-AdS equation of state, the first
and the last terms are always positive and the second term
can be positive, zero or negative. In fact, signs of the pre-
sented terms in the equation of state could ensure the critical
behavior for a given black hole solution. We introduce the
signature of the equation of state of RN-AdS black holes
as P(+,±,+). We saw that there does not exist P − V
(P − r+) criticality for black holes with Ricci flat and hyper-
bolic horizons. In order to have P − V (P − r+) criticality
two positive terms and one negative term are needed, i.e.,
an equation of state with signature P(+,−,+) which is the
case with spherical horizon (k = +1). Therefore, at least,
two positive terms and one negative term in the equation of
state can possibly ensure the critical behavior and phase tran-
sition for a given black hole. Regarding this, the equation
of state of LM charged-AdS black holes (4.4) with signa-
ture P(±,±,±,±,+,±,+) predicts critical behavior and
phase transition for Ricci flat and hyperbolic black holes as
well as spherically symmetric black holes depending on the
massive coupling coefficients (ci ), Lovelock coefficient (α)
and topological factor (k).

We are looking for the inflection point of isothermal P−r+
diagrams, the subcritical isobar of T − r+ plots, and the
characteristic swallow-tail form of G − T diagrams for the
obtained black hole solutions according to Sect. 2.4. These
pieces of evidence guarantee the existence of phase transition
and indicate the vdW like behavior for the LM AdS black
holes. In our considerations, we suppose that all the massive
coupling coefficients are simultaneously positive (c1 = c2 =
c3 = c4 = +1) or negative (c1 = c2 = c3 = c4 = −1) and
keep track of the effect of higher order curvature terms of the
Lovelock Lagrangian on the outcomes of massive gravity.
Later, we do not impose this assumption and will summarize
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the results of arbitrary signs for the massive couplings (ci =
±1).

First, we study the P−r+ diagrams of LM AdS black holes
with various topological factors. In an isothermal P − r+
diagram, the critical point is an inflection point and can be
obtained from Eq. (2.35). Investigation of the critical behav-
ior is not possible, analytically, and so we apply the numerical
analysis. Using Eqs. (4.1) and (2.35), the critical point can be
found numerically. At the critical point, we refer the value of
horizon radius as a critical horizon radius, rc. The critical val-
ues for the topological black holes in d = 7 dimensions are
gathered in Table 1 in which we have focused on the effect of
horizon topology factor (k) while keeping other parameters
fixed.

Considering the obtained critical values in Table 1 for the
pressure, horizon radius and temperature, one can plot their
corresponding phase diagrams. In the left panels of Figs. 17,
18, 19, the characteristic behavior of pressure as a function of
event horizon radius (r+) is depicted for the topological black
holes. Compared to P−r+ diagram of vdW fluid or RN-AdS
black holes (see Fig. 4), it is seen that the associated P − r+
diagrams for LM AdS black holes qualitatively behave like
vdW fluid. Therefore, critical radius (inflection point) can
be found for Ricci flat or hyperbolic black holes as well as
spherically symmetric black holes. For all P − r+ diagrams,
the temperature of isotherms decreases from top to bottom.
For T > Tc, the isotherms correspond to the ideal gas with a
single phase. For T < Tc, a two-phases behavior is seen, and
in comparison with the liquid/gas system, there exists (first
order) small/large black hole phase transition for topological
black holes. It is notable that, based on Maxwell’s equal-
area law, the (unphysical) oscillatory part of each isotherm
is replaced by a line of constant pressure.

Now, we are looking for the characteristic swallow-tail
form of G − T diagrams. The Gibbs free energy is found
by computing on-shell action (IG) or using the Legendre
transformation, G = M − T S. Analytical calculation of the
Gibbs free energy is too lengthy to write here and, therefore,
we leave out the analytical result for reasons of economy.
We have plotted the Gibbs free energy as a function of tem-
perature for various pressures in right panels of Figs. 17, 18,
19. As seen, obviously, G − T diagrams indicate the char-
acteristic swallow-tail behavior for all types of topological

Table 1 Topological black holes: d = 7, q = 1, m = 1, c0 = c1 =
c2 = c3 = c4 = 1 and α = 0.01 (for k = ±1)

k Pc rc Tc
Pcrc
Tc

+1 22.8678 0.69318 19.7148 0.80404

0 25.0668 0.68738 21.2994 0.80897

-1 27.8071 0.68117 23.3249 0.81207

black holes. This behavior demonstrates a first-order phase
transition in the black hole systems.

For the sake of completeness, the qualitative behavior of
temperature as a function of horizon radius (which corre-
sponds to specific volume, v) are depicted in the middle pan-
els of Figs. 17, 18, 19. Comparing Fig. 4 with Figs. 17, 18,
19, T − r+ diagrams shows a vdW like behavior. Evidently,
Ricci flat and hyperbolic black holes can qualitatively imitate
the critical behavior of spherical black holes in LM gravity. It
should be emphasized that the vdW like behavior persists in
higher dimensions for all kinds of topological black holes. In
addition, the universal ratio (i.e., Pcrc

Tc
) is a function of event

horizon topology.
To be more specific, we analyze the equations of state and

phase transitions for topological black holes case by case
and in details. We focus on the effects of Lovelock coeffi-
cient (α), graviton mass parameter m, spacetime dimension
(d) and topological factor (k) and present related tables (see
Tables 2, 3, 4, 5, 6, 7, 8, 9 and 10). In this regard, we reveal
a peculiar phase transition and critical behavior for hyper-
bolic black holes in the LM gravity in higher dimensions of
spacetime (i.e., d � 7).

Spherical horizon(k = +1):
The LM equation of state for spherical black holes with

signature P(±,±,±,±,+,−,+) reads

P = d2(T − m2c0c1/4π)

4r+
− d2d3(1 + m2c2

0c2)

16πr2+

+ d2(8παT − d3d4m2c3
0c3)

16πr3+
− d2d5(α + d3d4m2c4

0c4)

16πr4+

+ d2α
2T

4r5+
− d2d7α

2

48πr6+
+ q2

8πr2d2+
. (4.7)

Our investigations show this equation of state predicts the
critical behavior in higher dimensions. In this case, if all
the massive coupling coefficients (ci ) be positive (negative)
definite, one (two) physical critical point(s) can be found at
most. In Tables 2, 3 and 4, the critical values for pressure,
horizon radius and temperature have been computed for var-
ious spacetime dimensions (d), Lovelock coefficient (α) and
graviton mass parameter (m). According to Tables 2 and 4,
critical pressure and temperature are increasing functions of
d and m whereas the critical horizon radius is a decreasing
function of them. The universal ratio Pcrc

Tc
is an increasing

function of spacetime dimensions the same as RN-AdS black
holes in Einstein gravity (see Eq. 2.37).

In addition, the functional form of critical values with
respect to the Lovelock coefficient (α) are investigated in
Table 3. According to this table, critical pressure and tem-
perature are decreasing functions of α and critical horizon
radius is an increasing function of it. Now, suppose there is a
certain vdW phase transition for a given spherical black hole
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Fig. 17 LM AdS black hole with spherical horizon: P − r+ (left),
T −r+ (middle) and G−T (right) diagrams; we have set k = 1, d = 7,
q = 1, m = 1, c = c1 = c2 = c3 = c4 = 1 and α = 0.01. Left panel:

T < Tc (continuous lines), T = Tc (dotted line) and T > Tc (dashed
lines). Middle and right panels: P < Pc (continuous lines), P = Pc
(dotted lines) and P > Pc (dashed lines)

Fig. 18 LM AdS black hole with Ricci flat horizon: P − r+ (left),
T −r+ (middle) and G−T (right) diagrams; we have set k = 0, d = 7,
q = 1, m = 1 and c0 = c1 = c2 = c3 = c4 = 1. Left panel: T < Tc

(continuous lines), T = Tc (dotted line) and T > Tc (dashed lines).
Middle and right panels: P < Pc (continuous lines), P = Pc (dotted
lines) and P > Pc (dashed lines)

Fig. 19 LM AdS black hole with hyperbolic horizon: P − r+ (left),
T − r+ (middle) and G − T (right) diagrams; we have set k = −1,
d = 7, q = 1, m = 1, c0 = c1 = c2 = c3 = c4 = 1 and α = 0.01. Left

panel: T < Tc (continuous lines), T = Tc (dotted line) and T > Tc
(dashed lines). Middle and right panels: P < Pc (continuous lines),
P = Pc (dotted lines) and P > Pc (dashed lines)
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Table 2 Spherical black holes: k = 1, q = 1, m = 1, c0 = c1 = c2 =
c3 = c4 = 1 and α = 1

d Pc rc Tc
Pcrc
Tc

7 0.53489 1.17791 1.03718 0.60747

8 1.96244 1.03318 2.19721 0.92278

9 5.07146 0.97562 4.05437 1.22037

10 10.7318 0.94705 6.76637 1.50208

11 19.9878 0.93112 10.4942 1.77347

Table 3 Spherical black holes: k = 1, d = 7, q = 1, m = 1, and
c0 = c1 = c2 = c3 = c4 = 1

α Pc rc Tc
Pcrc
Tc

0.00000 25.9104 0.68616 22.2263 0.79989

0.01000 22.8678 0.69318 19.7148 0.80404

0.10000 10.4454 0.74202 9.39628 0.82488

1.00000 0.53489 1.17791 1.03718 0.60747

10.0000 0.00341 9.05845 0.15170 0.20372

100.000 0.00004 78.3049 0.08775 0.03896

100000 4.7154 × 10−11 75003.7 0.07959 0.00004

→ ∞ → 0 → ∞ → 0 → 0

Table 4 Spherical black holes: k = 1, d = 7, q = 1, c0 = c1 = c2 =
c3 = c4 = 1 and α = 1

m Pc rc Tc
Pcrc
Tc

0.000000 0.026994 2.247111 0.142259 0.426396

0.001000 0.026994 2.247103 0.142260 0.426395

0.010000 0.027016 2.246273 0.142327 0.426375

0.100000 0.029227 2.165797 0.149086 0.424592

1.000000 0.534893 1.177908 1.037184 0.607467

10.00000 60.18878 1.051550 93.72279 0.675305

set-up in the absence of higher curvature terms, α = 0 (this
case has been illustrated in the first line in Table 3). Interest-
ingly, in the presence of higher curvatures (α �= 0), criticality
is observed for all values of α. We examined the asymptotic
behavior of critical values with respect to α (i.e., α → ∞)
and found that critical pressure, temperature and universal
ratio approach zero, and critical radius moves towards infin-
ity (i.e., rc → ∞). These results have been confirmed in
higher dimensions as well. We will see that this is not the
case for hyperbolic black holes in LM gravity.

Ricci flat horizon (k = 0):
The LM equation of state for Ricci flat black holes is given

as

P = d2T̃

4r+
− d2d3m2c2

0c2

16πr2+
− d2d3d4m2c3

0c3

16πr3+

− d2d3d4d5m2c4
0c4

16πr4+
+ q2

8πr2d2+
, (4.8)

Table 5 Ricci flat black holes: k = 0, q = 1, m = 1 and c0 = c1 =
c2 = c3 = c4 = 1

d Pc rc Tc
Pcrc
Tc

7 25.0668 0.68738 21.2994 0.80897

8 73.0874 0.69501 50.5821 1.00423

9 159.769 0.71105 95.0377 1.19535

10 297.840 0.72793 156.551 1.38489

11 501.676 0.74375 237.102 1.57368

Table 6 Ricci flat black holes: k = 0, d = 7, q = 1 and c0 = c1 =
c2 = c3 = c4 = 1

m Pc rc Tc
Pcrc
Tc

0.00000 – – – –

0.01000 – – – –

0.05000 0.00203 1.78699 0.00497 0.73219

0.10000 0.017231 1.43748 0.03266 0.75834

0.50000 2.72792 0.86004 2.93899 0.79827

1.00000 25.0668 0.68738 21.2994 0.80897

5.00000 4599.43 0.40662 2267.57 0.82476

10.0000 44299.1 0.32383 17304.4 0.82476

with the signature P(±,±,±,±,+). As seen in Eq. (4.8),
the effect of higher order curvatures of TOL gravity, which
encodes in the Lovelock coefficient α, vanishes for Ricci
flat black holes, and the only effect of them comes from
the location of the event horizon according to ψ(r+) = 0
(see Eq. 3.14). In this case, one can show that there exists
only one critical point depending on all massive coupling
coefficients be positive or all of them be negative definite
(see Sect. 4.3). Tables 5 and 6 show some Ricci flat black
hole set-ups with various values of d and m. Interestingly, as
shown in Table 6, there is a lower value for the graviton mass
parameter, referred to as mb, in which no phase transition
takes place in region m < mb. Remarkably, Ricci flat black
holes can experience critical behavior and small/large black
hole phase transition by giving mass to gravitons.

Hyperbolic horizon (k = −1):
The LM equation of state for hyperbolic black holes reads

P = d2(T − m2c0c1/4π)

4r+
+ d2d3(1 − m2c2

0c2)

16πr2+

−d2(8παT + d3d4m2c3
0c3)

16πr3+
− d2d5(α + d3d4m2c4

0c4)

16πr4+

+d2α
2T

4r5+
+ d2d7α

2

48πr6+
+ q2

8πr2d2+
, (4.9)

with the signature P(±,±,±,±,+,+,+).Amazingly,
when all the massive coupling coefficients are positive or
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Table 7 (Hot) Hyperbolic black holes: k = −1, q = 1, m = 1, c0 = c1 = c2 = c3 = c4 = 1 and α = 0.01

d Pc1 rc1 Tc1

Pc1 rc1
Tc1

7 1.201689804 × 107 0.199182022693580 3.308081979 × 106 0.7235461736

8 3.540682432 × 108 0.203488734706851 8.162818360 × 107 0.8826473362

9 9.794234509 × 109 0.206528200802543 1.941047787 × 109 1.042110166

10 2.589915504 × 1011 0.208777110589713 4.499390023 × 1010 1.201751955

11 6.619241728 × 1012 0.210505697368947 1.023424155 × 1012 1.361496198

Table 8 (Cold) Hyperbolic black holes: k = −1, q = 1, m = 1,
c0 = c1 = c2 = c3 = c4 = 1 and α = 0.01

d Pc2 rc2 Tc2

Pc2 rc2
Tc2

7 27.8071 0.68117 23.3249 0.81207

8 81.8748 0.68966 56.3992 1.00118

9 178.635 0.70655 106.200 1.18847

10 331.629 0.72410 174.622 1.37516

11 556.211 0.74044 263.733 1.56159

all of them are negative, two (physical) critical points can be
found at most. In fact, the equation of state (4.9) could have
three positive roots, but only two of them can be physical.
We refer to the smaller and larger critical horizon radii as
rc1 and rc2 respectively (rc1 < rc2 ). It should be noted that
the third critical point, which actually has the smallest value
for the critical horizon radius, is always unphysical since
the associated black hole has a negative temperature. In the
Tables 7 and 8, the smaller and larger critical horizon radii
(rc1 and rc2 ) have been computed for the LM AdS black holes
with hyperbolic horizons in higher dimensions. Hyperbolic
black holes with smaller critical horizons (rc1

) experience
large values for the temperature and pressure, and therefore,
we call them as “hot black holes”. In this sense, hyperbolic
black holes corresponding to larger critical horizons (with
small values for the temperature and pressure respect to the
hot black holes) are referred to as “cold black holes”.

In Figs. 20 and 21, we have depicted the typical behav-
ior of P − r+, T − r+ and G − T curves in the vicinity
of the first and second (physical) critical points correspond-
ing to rc1 and rc2 respectively. Also, the associated critical

Table 10 Hyperbolic black holes: k = −1, d = 7, q = 1, m = 1, and
c0 = c1 = c2 = c3 = c4 = 1

α Pc rc Tc
Pcrc
Tc

0.00000 24.2262 0.68863 20.3741 0.81883

0.00100 24.5447 0.68792 20.6369 0.81818

0.01000 27.8071 0.68117 23.3249 0.81207

0.03000 39.1688 0.66318 32.6101 0.79656

0.05000 66.6893 0.63617 54.6276 0.77664

0.07000 – – – –

data for temperature, pressure and event horizon radius are
presented in Tables 7 and 8. In Fig. 20, for the first critical
point (corresponding to the smaller horizon radius, denoted
by Pc1 , rc1

and Tc1 ), we observe the characteristic swallow-
tail behavior in G − T diagrams for pressures in the range
P > Pc1 in contrast to the vdW phase transition which only
takes place for P < Pc. From this diagram, it can be inferred
that a first order phase transition occurs for P > Pc1 since the
first derivative of the Gibbs free energy at the critical point is
undefined. In P−r+ diagrams, interestingly, the (unphysical)
oscillating part of isotherms takes place for T > Tc1 which
means the existence of two-phases behavior, and the oscil-
lating part is replaced by an isobar according to Maxwell’s
equal area law. For region T < Tc1 in P − r+ diagrams, the
one phase behavior corresponding to ideal gas is observed.
Moreover, T − r+ plots reveal that oscillating part of crit-
ical isobars occurs for the pressures in the range P > Pc1 .
Comparing with the vdW phase transition, this critical behav-
ior is completely reverse. This evidence shows hyperbolic
black holes could potentially experience the reverse vdW

Table 9 Hyperbolic black holes: k = −1, d = 7, q = 1, c0 = c1 = c2 = c3 = c4 = 1 and α = 0.01

m Pc rc Tc
Pcrc
Tc

0.000000 1.203736376 × 107 0.1991562990 3.313433416 × 106 0.7235144082

0.010000 1.203737744 × 107 0.199156282030114 3.313437004 × 106 0.7235143849

0.100000 1.203715916 × 107 0.199156555956048 3.313379914 × 106 0.7235147264

0.500000 1.203224868 × 107 0.199162723328388 3.312095942 × 106 0.7235223426
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Fig. 20 Hot hyperbolic black hole in LM gravity: P−r+ (left), T −r+
(middle) and G − T (right) diagrams; we have set k = −1, d = 8,
q = 1, m = 1, c0 = c1 = c2 = c3 = c4 = 1 and α = 0.01. Left

panel: T < Tc1 (dashed lines), T = Tc1 (dotted line) and T > Tc1
(continuous lines). Middle and right panels: P < Pc1 (dashed lines),
P = Pc1 (dotted lines) and P > Pc1 (continuous lines).

Fig. 21 Cold hyperbolic black hole in LM gravity: P−r+ (left), T−r+
(middle) and G − T (right) diagrams; we have set k = −1, d = 8,
q = 1, m = 1, c0 = c1 = c2 = c3 = c4 = 1 and α = 0.01. Left panel:

T < Tc2 (continuous lines), T = Tc2 (dotted line) and T > Tc2 (dashed
lines). Middle and right panels: P < Pc2 (continuous lines), P = Pc2

(dotted lines) and P > Pc2 (dashed lines)

like behavior for (first order) phase transition at high tem-
perature and pressure which is a remarkable result. Further,
in the next part of this section, we will uncover the theory
dependency’s origin of the ”reverse behavior” in LM gravity
with a detailed discussion. As far as we know, there is no
reverse vdW phase transition in usual thermodynamic sys-
tems.

In Fig. 21, the qualitative behavior of the hyperbolic (cold)
black hole at the second critical point (rc2 ) is displayed. At
this critical point, we observe the standard vdW phase transi-
tion which explained in details before. Interestingly, numeri-
cal calculations, which are presented in Tables 7 and 8, show
that the critical pressure, horizon radius, temperature and the

universal ratio (
Pci rci
Tci

) are increasing functions of spacetime

dimension (d) at both critical points.
In addition, according to numerical calculations which are

presented in Table 10, there is an upper limit for the value of

Lovelock parameter, αu , in which no phase transition could
happen for α > αu . This statement does not hold for LM AdS
black holes with spherical horizon which is inferred from
Table 3. In Table 10, we have shown only those branches
corresponding to standard vdW phase transitions and the
associated larger critical radii. As α → αu , the two critical
points associated with vdW and reverse-vdW phase transi-
tions move towards each other, and eventually, when α = αu

both phase transitions with the associated critical radii dis-
appear. This shows that inclusion of higher curvature terms
(based on Lovelock Lagrangian) affects drastically the crit-
icality of AdS black holes with the hyperbolic horizon in
massive gravity; by tuning the Lovelock coefficient (α) the
first-order phase transition can be produced or ruined (see
Table 10). Moreover, the universal ratio Pcrc

Tc
is a decreasing

function of α in the range 0 < α < αu .
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Until now we have considered the equations of state of
AdS black holes in the LM gravity framework and disclosed
a peculiar critical behavior and a strange phase transition for
hyperbolic black holes at high temperatures. In order to have
a better understanding of the theory dependency and nature
of phase transitions, we will separately study the equations
of state of AdS black holes in Lovelock and massive gravi-
ties.

4.2 Lovelock gravity: the phase transition revisited

Here, we explicitly show that the higher order curvatures are
responsible for reverse vdW phase transition. In the context
of TOL gravity (massless graviton case), by taking the limit
m → 0 of Eq. (4.4), the equation of state for AdS black holes
reads

P = d2T

4r+
− d2d3k

16πr2+
+ d2kαT

2r3+
− d2d5k2α

16πr4+

+ d2(kα)2T

4r5+
− d2d7kα2

48πr6+
+ q2

8πr2d2+
. (4.10)

The signature of the Lovelock equation of state (4.10) implies
no critical behavior and phase transition for Ricci flat black
holes (i.e., P(+,+)). But, for Lovelock AdS black holes
with spherical and hyperbolic horizons (k = ±1), the equa-
tion of state (4.10) with signature P(+,∓,±,−,+,∓,+)

predicts the possibility of finding critical point(s) for Love-
lock AdS black holes (upper and lower signs in P(+,∓,±,

−,+,∓,+) are related to the spherical and hyperbolic
geometries, respectively) . By using Eq. (2.35), the equa-
tion of critical point for Lovelock AdS-charged black holes
is given as

kr2d+
[
12kαr6+ +

(
3(d + 5)k2 − 5d7

)
α2r4+

+ 2
(

5d5k
2 − 9d7

)
kα3r2+ − 5d7k

2α4 − d3r
8+
]

+ 4q2r10+
[
6d7/2kαr

2+ + 5d9/2k
2α2 + d5/2r

4+
]

= 0.

(4.11)

For simplicity, we first consider neutral black holes (q =
0), and then we discuss the charged case. Our investigations
show the above equation (with q = 0) admits the following
solutions as critical radii

rc =
√

(d + 3)k ± 2k2
√
d2(12 − d)

d3
α , rc = √−kα,

(4.12)

in which only real-valued roots are permissible for the topo-
logical black holes. Obviously, there are at most one or two
positive critical radii for Lovelock AdS (neutral) black holes.
Here, we confront with an interesting situation: for space-
times with d > 12, there does not exist any critical point for

Lovelock AdS black holes with spherical horizon geometry,
and so phase transition does not take place. In 7-dimensions,
we observe only one critical point for spherical black holes,
and in 8 � d � 11 there are always two critical horizon
radii, rc1 and rc2 , which the corresponding critical points can
be physical or unphysical (the critical data are presented in
[97]). As a result, in 7-dimensions, the vdW behavior, and
in 8 � d � 11, the reentrant behavior for phase transition
are observed. In d = 12 we do not observe P − V (P − r+)
criticality and instead, there is a cusp-like behavior in the
G − T diagram. The effect of the U (1) charge could dras-
tically alter the number of critical point(s) and the nature
of phase transitions. In fact, in spacetime dimensions with
the range 8 � d � 11, there is a lower value for the electric
charge (Qb), where for Q > Qb, one of the critical points dis-
appears and consequently the reentrant behavior is replaced
by the vdW like phase transition (some critical data associ-
ated with the Lovelock charged-AdS black holes in higher
dimensions are presented in [99]). Interestingly, for d � 12,
one critical point emerges when the U (1) charge is consid-
ered and the vdW phase transition takes place. In addition,
in d = 7, the inclusion of the U (1) charge only changes the
location of the critical point. In Fig. 22, as an example, we
have plotted the critical behavior of a spherical black hole. As
seen, in this case, criticality in P − r+ plane is qualitatively
similar to the critical behavior of the vdW fluid, RN-AdS and
LM AdS black holes.

In the case of hyperbolic black holes, there always exists
only one critical radius (rc = √

α) in all spacetime dimen-
sions (d � 7) according to Eq. (4.12). As stated in Sect. 3.5,
the temperature of hyperbolic black holes blows up at the
point r+ = ri = √

α which is referred to as the ther-
modynamic singularity [100] since all isotherms cross at
rc = √

α = d2vc/4. Also, the heat capacity is zero at this
point. The critical point corresponding to this thermodynamic
singularity is called the isolated critical point and is regarded
as the first example of a critical point with non-standard crit-
ical exponents as α = 0, β = 1, γ = 2 and δ = 3 [100,101]
which are different from those of vdW fluid with α = 0,
β = 1/2, γ = 1 and δ = 3. Since critical exponents deter-
mine the behavior of thermodynamic quantities near the criti-
cal point, so various critical exponents imply different behav-
iors in phase diagrams. As a result, in the case of hyperbolic
black holes, a stretched swallow-tail behavior (also referred
to as cusp-like behavior) in G − T diagram is observed for
pressures in the range P > Pc, in which Pc is the pressure at
the thermodynamic singularity. When theU (1) charge is con-
sidered, one additional critical point might emerge. Regard-
ing the charged case, if the value of U (1) charge is more
than a lower value (Q > Qb), there exist two critical radii
which the smaller one is always unphysical (the correspond-
ing black hole has a negative value for the temperature) and
the larger one can be physical. For the small enough charges
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Fig. 22 Spherical black hole in Lovelock gravity: P−r+ (left), T −r+
(middle) andG−T (right) diagrams; we have set k = +1, d = 8,q = 1,
and α = 0.01. Left panel: T < Tc (continuous lines), T = Tc (dotted

line) and T > Tc (dashed lines). Middle and right panels: P < Pc
(continuous lines), P = Pc (dotted lines) and P > Pc (dashed lines)

(i.e., 0 < Q < Qb), those critical points are created near the
isolated critical point, and the both of them could be physical
(rc1 and rc2 ). We observe that by increasing the value of the
electric charge (Q) the distance between the thermodynamic
coordinates of those points is increased in the extended phase
space. As a matter of fact, one can grow up the thermody-
namic quantities associated to the critical point by increasing
the U (1) charge and produce a first order phase transition at
high temperature and pressure for hyperbolic black holes.
Here, an interesting phenomenon emerges and persists in
higher dimensions (d ≥ 7). Our investigations show that the
reverse vdW phase transition is a characteristic feature of
Lovelock AdS black holes with hyperbolic horizon corre-
sponding to those larger critical points (this strange behav-
ior is already pointed out in [97,98,100]). As seen, Fig. 23
exposes the origin of the reverse vdW like behavior which
has been found in Sect. 4.1 for hyperbolic black holes in the
LM gravity. In Fig. 23, we observe the existence of inflection
point in the isothermal P − r+ diagrams, the subcritical iso-
bar of T − r+ plots, and the characteristic swallow-tail form
of G − T diagrams, but, in contrast to the behavior of vdW
fluid, in the opposite way. Therefore, we conclude higher
order curvature terms based on the Lovelock Lagrangian are
responsible for the reverse vdW phase transition.

It should be emphasized that the Lovelock equation of
state (4.10) has been obtained by the assumption of the Love-
lock coefficient condition (3.13). In the more general case
where Lovelock coefficients are independent, one may obtain
three critical points for black holes which indicate the appear-
ance of triple point [100].

4.3 Massive gravity: the phase transition revisited

In the context of massive gravity, the equation of state of
charged-AdS black holes is given as

P = d2T̃

4r+
− d2d3(k + m2c2

0c2)

16πr2+
− d2d3d4m2c3

0c3

16πr3+

− d2d3d4d5m2c4
0c4

16πr4+
+ q2

8πr2d2+
, (4.13)

in which we have used the zero higher curvature limit
(α → 0) of the LM equation of state (4.4) and the
shifted Hawking temperature is the same as before, i.e.,
T̃ = T − m2c0c1/4π . As seen, the topological factor (k)
in the RN-AdS equation of state (2.29) is replaced by the
combination (k + m2c2

0c2) which suggests possible critical
behavior for black holes with non-trivial horizon topologies.
Clearly, the massive charged-AdS equation of state (4.13)
with signature P(±,±,±,±,+) admits phase transition for
black holes with spherical, Ricci flat and hyperbolic hori-
zon geometries [106]. In 4-dimensional spacetime, the crit-
ical point is obtained from the positive root of the equation
r2+(k +m2c2

0c2)− 6q2 = 0, in which we applied Eqs. (2.35)
and (4.13). Hence, there exists a critical horizon radius (rc)
when (k + m2c2

0c2) � 0. It should be noted that, like RN-
AdS black holes in Einstein gravity, the U (1) charge is nec-
essary to have critical behavior and phase transition in a 4-
dimensional spacetime. On the other hand, as indicated in
[107], in higher dimensional spacetimes (d � 5), the U (1)

charge is unnecessary for the appearance of criticality in mas-
sive AdS black holes since the third and the fourth massive
potential terms in the right hand side of Eq. (4.13) enrich the
phase space in a way that the equation of state of uncharged-
AdS black holes could possess critical point(s). Regarding
Eqs. (2.35) and (4.13), the critical point(s) of the massive
charged-AdS black holes can be obtained from the root(s) of
the following equation

d3(k + m2c2
0c2)r

2+ + 3d3d4m
2c3

0c3r+
+ 6d3d4d5m

2c4
0c4 − 4d5/2q

2r−2d4+ = 0. (4.14)
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Fig. 23 Hyperbolic black hole in Lovelock gravity: P − r+ (left),
T − r+ (middle) and G − T (right) diagrams; we have set k = −1,
d = 8, q = 1, and α = 0.01. Left panel: T < Tc (dashed lines),

T = Tc (dotted line) and T > Tc (continuous lines). Middle and right
panels: P < Pc (dashed lines), P = Pc (dotted lines) and P > Pc
(continuous lines)

This is a worthwhile and simple equation (which works in
all spacetime dimensions) to investigate critical point(s) of
charged and uncharged-AdS black holes in massive gravity.
Interestingly, the critical point(s) is independent of the first
massive coupling coefficient (c1). Considering the uncharged
case (q = 0) for the sake of simplicity, the critical point
equation (4.14) can be solved simply as

rc = −3d4m2c3
0c3 ±

√
(3d4m2c3

0c3)
2 − 24(k + m2c2

0c2)(d4d5m2c4
0c4)

2(k + m2c2
0c2)

.

(4.15)

It is obvious that there is (are) one or at most two positive
critical radii for the equation of state of (neutral) AdS black
holes in massive gravity. The conditions to have one positive
critical radius are as

rc = −3d4m2c3
0c3

2(k + m2c2
0c2)

> 0,
3d4m2c2

0c
2
3

8d5c4(k + m2c2
0c2)

= 1,

(4.16)

or as

rnrc = 6d4d5m2c4
0c4

k + m2c2
0c2

< 0, 3d4m
2c2

0c
2
3 > 8d5c4(k + m2c2

0c2),

(4.17)

in which rn is a negative definite root and rc is the positive
critical radius. In addition, in order to have two positive crit-
ical radii the following conditions must be satisfied

3d4m
2c2

0c
2
3 > 8d5c4(k + m2c2

0c2), rc1 + rc2

= −3d4m2c3
0c3

k + m2c2
0c2

> 0, rc1rc2 = 6d4d5m2c4
0c4

k + m2c2
0c2

> 0,

(4.18)

Consequently, by tuning the massive coupling coefficients
(ci ) according to Eqs. (4.15), (4.16), (4.17) and (4.18), one
can easily find one or two (physical) critical point(s) for all
types of topological black holes depending on the values of
ci ’s.

According to Eqs. (4.15), (4.16), (4.17) and (4.18), when
all the massive coupling coefficients are simultaneously pos-
itive (negative) definite, there exists one critical radius and
can be determined using Eq. (4.17). In order to have two
critical points, one should consider some specific signs for
the massive couplings (ci ) based on Eq. (4.18). When the
combination (k + m2c2

0c2) is positive, two critical points
can be found assuming that c3 < 0 and c4 > 0, and when
(k +m2c2

0c2) < 0, one has to assume c3 > 0 and c4 < 0. In
the both cases, the massive coupling coefficients must satisfy
the constraint 3d4m2c2

0c
2
3 > 8d5c4(k + m2c2

0c2).
The existence of two critical points for (neutral) AdS black

holes is possible when the spacetime dimensions are more
than five (d � 6) and an interesting phenomenon emerges
which is called the RPT (for more details see [108]). The
inclusion of nonlinear electromagnetic fields can increase the
number of critical point(s) [93], and as a result, in the con-
text of Born–Infeld-massive gravity [109], the RPT appears
in 4-dimensions and the so-called triple point in spacetime
dimensions more than five (d � 5). It should be noted these
considerations were done in the canonical ensemble.

4.4 LM gravity: RPTs and triple points

This section is devoted to studying the possibility of the
appearance of the RPT and triple point in the phase structure
of the LM AdS black holes. In the previous section, we indi-
cated that under certain conditions the equations of state of
topological black holes in pure massive gravity (without non-
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Fig. 24 RPT of spherical black holes: P − r+ (left), T − r+ (middle)
and G − T (right) diagrams; we have set k = 1, d = 10, q = 0,
m = 0.1, c0 = 1, c1 = −9, c2 = −2, c3 = −1, c4 = 0 and α = 0.01.
Left panel: Tc2 < T < Tc1 (continuous line), T = Tc1 (dotted line)
and T > Tc1 (dashed line). Middle panel: Pc2 < P < Pc1 (continuous
lines), P = Pc1 (dotted lines) and P > Pc1 (dashed lines). Right panel:
Ptr < P < Pz (continuous lines), P = Pc1 (dotted lines) and P > Pc1

(dashed lines). Critical data: (Pc2 = 2.74376, rc2 = 0.131663, Tc2 =
1.74384), (Pc1 = 4.47518, rc1 = 0.249414, Tc1 = 1.83107), (Ptr �
3.93852, Ttr � 1.76669), and (Pz � 3.96314, Tz � 1.76709). Note:
The values of Gibbs free energies in the G−T diagram (continuous and
dashed lines) have been slightly shifted up to avoid isobaric curves over-
lap with each other. The corresponding behavior of the heat capacity
near the virtual triple point (Ptr ) is depicted in Fig. 11

trivial electromagnetic fields like BI electrodynamics) may
have up to two critical points and thus exhibit vdW and RPTs
which the latter corresponds to three-phases behavior. In
Sect. 4.2, we showed Lovelock (un)charged-AdS black holes
with spherical horizon can exhibit vdW and RPTs. Also, for
the Lovelock (un)charged-AdS black holes with the hyper-
bolic horizon, the reverse vdW like behavior is observed
which can be accompanied by a (normal) vdW phase tran-
sition. Consequently, since there are many thermodynamic
variables in the extended phase space of the LM AdS black
holes, one expects these black holes may enjoy a vast range
of thermodynamic behaviors which found in the other grav-
itational theories similar to those in usual thermodynamics.
Here we intend to examine these possibilities.

First, we consider Ricci flat black holes (k = 0) in the
LM gravity. In this case, the effect of higher curvature terms
(encoded in the Lovelock coefficient, α) vanishes since α is
always coupled to the topological factor k. As a result, using
Eq. (4.18), one can find the RPT in spacetime dimensions
d � 6 for the neutral black holes [108].

Investigation shows the LM AdS black holes with spher-
ical horizon may have up to three physical critical points for
charged and uncharged cases. In order to observe the reen-
trant behavior of phase transition for spherical black holes,
we have adjusted the massive coupling coefficients to pro-
duce two critical points (referred as rc1 and rc2 ) according to
Eq. (2.35) and plotted P − r+, T − r+ and G − T diagrams
in Fig. 24. As a result, a virtual triple point (Ttr , Ptr ) and
another critical point (Tz ,Pz) emerge in the phase space. In
addition, the behavior of the heat capacity associated to the
reentrant and small/intermediate/large phase transitions are

depicted in Figs. 11 and 12 near the (virtual) triple point.
As seen, by monotonic decreasing the temperature, the black
hole system undergoes a RPT for the certain range of pres-
sure (Ptr < P < Pz). By another tuning, we arrive at one
triple point (Ttr , Ptr ) and two physical critical points (asso-
ciated with rc1 and rc2 ). This situation is depicted in Fig. 25
in which the Gibbs free energy is displayed near the criti-
cal points for various pressures. It should be mentioned that
there is a lower value for the U (1) charge (Qb), where for
Q > Qb, one of the critical points disappears. Hence, in the
case of charged-AdS black holes, the analogue of the triple
point and solid/liquid/gas phase transition can be found only
for small enough values of the electric charge, Q.

The phase structure of hyperbolic black holes is really rich
and drastically different from those of spherical and Ricci
flat horizons. In both charged and uncharged cases, three
(physical) critical points can be found for hyperbolic black
holes. Interestingly, the analogue of triple point does not exist
in the phase structure of these black holes. In fact, besides
the existence of the two critical points corresponding with
two distinct first order transition, we arrive at an additional
reverse vdW phase transition associated to the third critical
point in the phase space. This situation is illustrated in Fig. 26
which is a generic feature of this model and persists in all
dimensions. This is the first example of such phase struc-
ture which is not possible for spherical and Ricci flat black
holes.

We could not find any evidence related to the existence
of four critical points in this model. The existence of four
critical points may be potentially possible when the phase
space of the spherically symmetric AdS black holes in LM
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Fig. 25 Analogue of triple point in spherical black holes: G − T dia-
grams; we have set k = 1, d = 7, q = 0, m � 5.98, c0 = 1,
c1 � −3.98, c2 � 12.8, c3 � −12.02, c4 = 13.63 and α � 9.08.
Left panel: Pc2 < P < Pc1 (continuous line), P = Pc1 (dotted line)
and P > Pc1 (dashed line). Middle panel: Ptr < P < Pc2 (continuous
line), P = Pc1 (dotted line) and P > Pc1 (dashed line). Right panel:

P � Ptr < Pc2 (continuous line), P = Pc1 (dotted line) and P > Pc1

(dashed line). Critical data: (Pc1 = 1.35184, rc1 = 2.23576, Tc1 =
7.27288), (Pc2 = 1.126321, rc2 = 5.54664, Tc2 = 7.22339) and
(Ptr � 1.11248, rtr � 4.04561, Ttr � 7.18510). The correspond-
ing behavior of the heat capacity near the triple point (Ptr ) is displayed
in Fig. 12

Fig. 26 Hyperbolic black holes with three critical points: G − T dia-
grams; we have set k = −1, d = 7, q = 0, m � 5.52, c0 = 1,
c1 � 12.8, c2 � 16.9, c3 � −19.9, c4 � 1.42 and α � 2.71.
Left panel: P < Pc1 (continuous line), P = Pc1 (dotted line) and
P > Pc1 (dashed line). Middle panel: P < Pc2 (continuous line),

P = Pc2 (dotted line) and P > Pc2 (dashed line). Right panel:
P < Pc3 (dashed line), P = Pc3 (dotted line) and P > Pc3 (con-
tinuous line). Critical data: (Pc1 = 68565.2, rc1 = 0.09863, Tc1 =
0.44008), (Pc2 = 5.03994, rc2 = 4.18428, Tc2 = 77.2272) and
(Pc3 = 11.7248, rc3 = 3.33423, Tc3 = 107.841)

gravity is enriched by adding nonlinear U (1) gauge fields in
the theory.

5 Concluding remarks

The effects of massive and Lovelock gravities are encoded in
the deformation parameters m and α, respectively. In Love-
lock massive (LM) gravity, one can simply recover the out-
comes of Einstein (by α,m −→ 0), Lovelock (by m −→ 0)
and massive (by α −→ 0) theories of gravity. Considering
LM gravity, in this paper, we introduced topological black
hole solutions and then analyzed thermodynamic properties

and critical behavior of AdS black holes in the extended phase
space. The asymptotic behavior of the black hole solutions
may be (A)dS or flat, and by computing the thermodynamic
quantities, we have shown they satisfy the first law of ther-
modynamics.

Next, by treating the cosmological constant as a thermody-
namic variable (pressure), we extended the thermodynamic
phase space and proved the massive coupling and Lovelock
coefficients, as well as cosmological constant, are required
for consistency of the extended first law of thermodynamics
with the Smarr formula. In addition, we examined thermal
stability in the extended phase space thermodynamics of the

123



Eur. Phys. J. C (2019) 79 :227 Page 31 of 34 227

LM AdS black holes in the canonical ensemble (where the
quantities P , Q, ci and α are held fixed), and showed the
qualitative behavior of heat capacity for AdS black holes
with different horizon topologies. In this regard, we mainly
focused on the topology of event horizons and showed in
what regions the topological black holes are thermally sta-
ble.

In LM gravity, critical behavior and phase transition occur
for all types of AdS black holes (with spherical, Ricci flat and
hyperbolic topologies for event horizon) in contrast to Ein-
stein gravity which only admits phase transition for spheri-
cally symmetric ones. For Ricci flat black holes, phase tran-
sition originated only from the interacting terms of massive
gravitons and the effect of higher curvature terms vanishes.
Interestingly, we found that there is a lower value for the
graviton mass parameter, referred to asmb, in which no phase
transition takes place in the regionm < mb. This is one of the
remarkable characteristics of massive gravity. For hyperbolic
black holes, two radically different first order transitions are
observed: (i) a (normal) vdW like behavior, and (ii) reverse
vdW like behavior. The reverse behavior of vdW phase tran-
sition completely comes from the higher curvature terms of
Lovelock Lagrangian which is not seen in Gauss–Bonnet
gravity (as indicated in [100,141], Gauss–Bonnet black holes
with hyperbolic horizon do not admit physical phase transi-
tion). The reverse behavior predicts that hyperbolic black
holes could experience first order phase transition at high
temperature and pressure, which is a novel effect. Moreover,
it was shown that the inclusion of higher curvature terms
(based on Lovelock Lagrangian) affects the criticality. In
fact, for LM AdS black holes with hyperbolic horizon topol-
ogy, depending on the chosen parameters, there is always
an upper limit for the value of Lovelock coefficient (αu) in
which no phase transition could happen for α > αu . In the
case of spherical black holes, this statement no longer holds
and we observe criticality in the range 0 < α < ∞. Consid-
ering tables, we found that the universal ratio, i.e. Pcvc

Tc
, is a

function of spacetime dimensions (d), topological factor (k),
graviton mass parameter (m) and strength of higher curvature
terms (captured with Lovelock coefficient, α).

In addition, the vdW, reentrant and analogue of solid/liquid/
gas phase transitions were found in the extended phase space
of (un)charged-AdS black holes with the spherical horizon.
But, in the case of hyperbolic black holes, reentrant and
small/intermediate/large phase transitions were not found.
Indeed, the reverse vdW phase transition in the phase space
of hyperbolic black holes is accompanied with one or two
distinct (standard) vdW phase transitions. To our knowledge,
this is the first example of such a phase structure. These pieces
of evidence show that the generic features of different theo-
ries of gravitation can be summed into a unique model to pro-
duce more complex structures for the thermodynamic phase
space of black holes.
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