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Abstract We consider Einstein gravity with a negative cos-
mological constant endowed with distinct matter sources.
The different models analyzed here share the following two
properties: (1) they admit static symmetric solutions with
planar base manifold characterized by their mass and some
additional Noetherian charges, and (2) the contribution of
these latter in the metric has a slower falloff to zero than the
mass term, and this slowness is of logarithmic order. Under
these hypothesis, itis shown that, for suitable bounds between
the mass and the additional Noetherian charges, the solutions
can represent black holes with two horizons whose locations
are given in term of the real branches of the Lambert W
functions. We present various examples of such black hole
solutions with electric, dyonic or axionic charges with AdS
and Lifshitz asymptotics. As an illustrative example, we con-
struct a purely AdS magnetic black hole in five dimensions
with a matter source given by three different Maxwell invari-
ants.

1 Introduction

The AdS/CFT correspondence has been proved to be
extremely useful for getting a better understanding of
strongly coupled systems by studying classical gravity, and
more specifically black holes. In particular, the gauge/gravity
duality can be a powerful tool for analyzing finite tempera-
ture systems in presence of a background magnetic field. In
such cases, from the dictionary of the correspondence, the
black holes must be endowed with a magnetic charge corre-
sponding to the external magnetic field of the CFT. In light
of this constatation, it is clear that dyonic black holes are
of great importance in order to study the charge transport
at quantum critical point, particulary for strongly coupled
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CFTs in presence of an external magnetic field. For exam-
ple, four-dimensional dyonic black holes have been proved to
be relevant for a better comprehension of planar condensed
matter phenomena such as the quantum Hall effect [1], the
superconductivity-superfluidity [2] or the Nernst effect [3].
The study of dyonic black holes is not only interesting in
four dimensions, but also in higher dimensions where their
holographic applications have been discussed in the current
literature. For example, it has been shown that large dyonic
AdS black holes are dual to stationary solutions of a charged
fluid in presence of an external magnetic field [4]. In this
last reference, the AdS/CFT correspondence was used con-
versely and stationary solutions of the Navier-Stokes equa-
tions were constructed corresponding to an hypothetical five-
dimensional AdS dyonic rotating black string with nonvan-
ishing momentum along the string. We can also mention that
magnetic/dyonic black holes present some interest from a
purely gravity point of view. Indeed, there is a wide range of
contexts in which magnetic/dyonic solutions are currently
studied including in particular supergravity models [5,6],
Einstein-Yang-Mills theory [7] or nonlinear electrodynamics
[8]. Nevertheless, in spite of partial results, the problem of
finding magnetic solutions in higher dimension is an highly
nontrivial problem. For example, it is easy to demonstrate that
under suitable hypothesis, magnetic solutions in odd dimen-
sions D > 5 for the Einstein—-Maxwell or for the Lovelock—
Maxwell theories do not exist [9,10]. This observation is
in contrast with the four-dimensional situation where static
dyonic configuration can be easily constructed thanks to the
electromagnetic duality which rotates the electric field into
the magnetic field. In the same register, one may also sus-
pect the lack of electromagnetic duality and of the conformal
invariance in dimension D > 4 to explain the difficulty for
constructing the higher-dimensional extension of the Kerr—
Newmann solution.

The purpose of the present paper is twofold. Firstly, we
would like to present a simple dyonic extension of the five-
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dimensional Reissner—Nordstrom solution with planar hori-
zon. The solution will be magnetically charged by consid-
ering an electromagnetic source composed by at least three
different Maxwell gauge fields. Each of these U(1) gauge
fields will be sustained by one of the three different coordi-
nates of the planar base manifold. Interestingly enough, the
magnetic contribution in the metric has an asymptotically
logarithmic falloff of the form 1;’—2’ Nevertheless, in spite
of this slowly behavior, the thermodynamics analysis yields
finite quantities even for the magnetic charge. Since we are
working in five dimensions, we extend as well this dyonic
solution to the case of Einstein—-Gauss—Bonnet gravity. We
can also mention that the causal structure of the dyonic solu-
tion can not be done analytically. Nevertheless from different
simulations, one can observe that the solution has a Reissner—
Nordstrom like behavior. Indeed, depending on the election
of the integration constants, the solution can be a black hole
with inner and outer horizons or an extremal black hole or the
solution can have a naked singularity located at the origin.
On the other hand, we notice that the horizon structure of the
purely magnetic solution can be treated analytically. More
precisely, we will show that, as for the Reissner—Nordstrom
solution, the absence of naked singularity can be guaranteed
for a suitable bound relation between the mass and the mag-
netic charge. Moreover, in this case, the location of the inner
and outer horizons are expressed analytically in term of the
real branches of so-called Lambert W function. This latter is
defined to be the multivalued inverse of the complex func-
tion f(w) = we® which has an infinite countable number
of branches but only two of them are real-valued, see Ref.
[11] for a nice review. The Lambert W functions have a wide
range of applications as for example in combinatoric with
the tree functions that are used in the enumeration of trees
[12] or for equations with delay that have applications for
biological, chemical or physical phenomena, see e.g. [13] or
in the AdS/CFT correspondence as in the expression of the
large-spin expansion of the energy of the Gubser—Klebanov—
Polyakov string theory [14]. Just to conclude this parenthe-
sis about the Lambert W function, we also mention that this
function can be used in the case of the Schwarzschild metric
as going from the Eddington—Finkelstein coordinates to the
standard Schwarzschild coordinates

The plan of the paper is organized as follows. In the
next section, we present our toy model for dyonic solutions
which consists on the five-dimensional Einstein—Gauss—
Bonnet action with three different Abelian gauge fields. For
this model, we derive a dyonic black hole configuration as
well as its GR limit. A particular attention will be devoted to
the purely magnetic GR solution for which a bound relation
between the mass and the magnetic charge ensures the exis-
tence of an event horizon covering the naked singularity. In
this case, the inner and outer horizons are expressed in term
of the two real branches of the Lambert W functions. We will
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establish that this mass bound is essentially due to the fact
that the magnetic charge has a slower falloff of logarithmic
order to zero than the mass term in the metric function. Start-
ing from this observation, we will present in Sect. 3 various
examples of black holes sharing this same feature with elec-
tric, axionic or magnetic charges and with AdS and Lifshitz
asymptotics. In Sect. 4, we extend the previous solutions to
general dyonic configurations with axionic charges. Finally,
the last section is devoted to our conclusion and an appendix
is provided where some useful properties of the Lambert W
functions are given.

2 Five-dimensional dyonic black hole solution

InRefs. [9,10], ithas been proved that, under suitable hypoth-
esis, magnetic black hole solutions for Einstein-Maxwell
action in odd dimensions D > 5 can not exit. As we will
show below, a simple way of circumventing this obstruction
is to consider more than one Maxwell gauge field. The fact
of considering various Abelian fields in order to construct
dyonic black holes in five dimensions have already been
considered, see Refs. [15] and [16]. More precisely, we will
establish that the Einstein gravity eventually supplemented
by the Gauss-Bonnet term since we are working in D = 5
can admit dyonic black hole solutions for an electromagnetic
source given at least by three different Maxwell invariants. In
order to achieve this task, we consider the following action

Slg, Ail
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R—-2A «
+ —<R2 — 4R, R"

2 2

3
1
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where the F(;y,,’s are the three different Maxwell field
strengths associated to the U(1) gauge fields A; for I =

{1, 2, 3} and « represents the Gauss—Bonnet coupling con-
stant. The field equations obtained by varying this action read

3
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where the variation of the Gauss-Bonnet term is given by
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Fig. 1 Plot of the metric function F(r) in the GR-limit (2.4), where
the left panel corresponds to the electric solution for A = —1 and
Q. /1231 =2/ /3, while the right panel is the dyonic situation with the
same values of A and Q. /| X3, together with Q,,, /| ¥3| = 0.1. For both

In one hand, it is known that the field Eq. (2.2) with one
Maxwell invariant / = 1 admits electrically charged black
holes [17] generalizing the solution of Boulware—Deser [18].
On the other hand, it is simple to prove that the magnetic
extension of the Boulware—Deser solution can not exist [9,
10]. Nevertheless, as shown below, the presence of two extra
Maxwell invariants renders possible the magnetic extension
of the Boulware—Deser solution but only in the case of flat
horizon. In fact a dyonic solution with flat horizon of the field
Eq. (2.2) is found to be

2
ds®> = —F(r)dt* + m +r de, ;
F(r)
= r 17 14 oA 16aM dor | B0y i)
4 I P P
(2.3)
Q. (o
Al =— dt + ——xp dx3,
2302 [y
Q. Om
= - dl ——— d ’
A 22512 * DI
Qe Qm
Ay = — dt + ——x1 dxa,
2|25)r2 | 23]

where M, Q, and Q,, are three integration constants corre-
sponding respectively to the mass, the electric and the mag-
netic charge and |X3] is the finite volume of the compact
3—dimensional flat base manifold. Various comments can be
made concerning this dyonic solution. Firstly, in the absence
of the magnetic charge 9,, = 0, the solution reduces to the

cases, the naked singularity solution is represented by a blue dashed-
dotted line, the extremal black holes with a black dashed line and the
solution with inner and outer horizons by a red continuous line

electrically extension of the Boulware—Deser solution [17]
even if there are three different Maxwell invariants. This is
because each of these three invariants contributes in the same
footing for the full solution, and hence one could have switch
off two of them from the very beginning. The GR limitox — 0
of the solution concerns only the upper branch of the solution
and yields to the metric function given by

rZA 2M Qz

Fa(r) = — 2 _ _
ox(r) 6 332 2(%5 2

Q,Zn Inr
|2312r2°

2.4)

while the Abelian gauge fields remain identical. Computing
the Kretschmann invariant, one notices that the dyonic solu-
tion in the Einstein—Gauss—Bonnet theory or its GR limit has
a singularity located at the origin.

The causal structure of the dyonic solution is quite
involved and can not be treated analytically as in the
case of the four-dimensional Reissner—Nordstrom dyonic
solution. Nevertheless, it is quite simple to see that the
GR solution (2.4) with A < 0 and without magnetic
charge, has a Reissner—Nordstrom like behavior in the
sense that for M > 3%|Qe|% (—A)%/4%|E3|%, the solu-
tion describes a (extremal) black hole while the case M <
331Q,|3 (—A)3 /43|3;3]5 will yield a naked singularity. The
dyonic GR solution has also a similar behavior which can be
appreciated only by means of some simulations reported in
the graphics below. In the next subsection, we will see that in
the purely magnetic case, the causal structure of the solution
can be analyzed analytically (Fig. 1).

To conclude this section, we mention that the GR dyonic
solution (2.4) satisfies the dominant energy conditions.

@ Springer
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Indeed, it is simple to see that the energy density u, the radial
pressure p, and the tangential pressure p; given by

3 2.2 2]
/"l‘ - 2|E3|2r6 [er + Qe ’
1 2.2 2
pr=-i =gz (@2 +3¢2]. 2.5)
verify the dominant energy conditions
w=0, —pu=pr<p —H=p=p (2.6)

2.1 Purely magnetic GR solution

For « — 0 and Q, = 0, the purely magnetic GR solution
(2.4) becomes

dr? 3
2 2 2 § : 2
dS = —F(V)dt + m + r < dxi .

F(r)z_rz_A_ M anlnry
6 31%30r2 | X372
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In order to study the variations of the metric function F, it is
useful to define

3
h(x) = 6|3 r*F(r) = —A|23|2x—§Q,2n Inx—4M| %3],
with x = r*. (2.8)

For negative cosmological constant A < 0, we have
limy— o A(x) = lim,_,o+ A(x) = oo and the function &
392
—2A|%30%°
zeros of the function / that will give as well the location of

the horizons for the metric function F through (2.8) is of the
form (6.2). Hence, its corresponding discriminant as defined
in Eq. (6.3) is given by

has a global minimum at x = The equation for the

78M|23\
397,

A 2A|%3)?
= ——2¢
302

Since we are considering the negative cosmological constant
case A < 0, the discriminant is negative, and as mentioned
in the appendix, the equation 4 (x) = 0 will have two real
roots only if A €] — % O[. This condition in turn requires
that the mass M must satisfy the following bound relation

302 302
1—1 ——=m = .
~ 8] [ “(—2A|23|2) Mo

For M satisfying such bound, the metric function F has
an inner (Cauchy) horizon r_ and an outer (event) horizon
r+ whose locations are expressed in term of the two real
branches of the Lambert W functions, Wy and W_; as

(2.9)

(2.10)

@ Springer

_ Wo(d)  2M|z3) W (A aMizg|
s 2 4 2
3Qm s r+ = e 3Qm s

@2.11)

r—=e¢e

with A given by (2.9). In contrast with the four-dimensional
magnetic Reissner—Nordstrom solution (or even the dyonic
configuration), the bound (2.10) does not restrict the mass M
to be positive. In fact, for Q2 > —2A|23|26/3, the bound
My < 0, and hence the singularity at the origin can still be
covered by an horizon even for a solution with a negative
mass. On the other hand, for M saturating the bound (2.10),
namely M = M orequivalently A = — %, one ends up with
an extremal black hole with r; = r_. Finally, for M < M,
the solution will have a naked singularity. To be complete, we
also mention that the energy density, the radial and tangential
pressure of the purely magnetic GR solution are given by
(2.5) with Q, = 0, and hence the magnetic solution satisfies
as well the dominant energy conditions (2.6).

3 Other examples of black holes with Lambert W
function horizons

In the previous section, we have shown that purely magnetic
black holes of five-dimensional Einstein gravity with 3 dif-
ferent Abelian gauge fields exist provided a certain bound
relation between the mass and the magnetic charge. In addi-
tion, the location of the horizons can be expressed thanks to
the real branches of the Lambert W functions. In this sec-
tion, we will present few examples enjoying these same fea-
tures (bound for the mass and horizons expressed in term of
the Lambert W functions) with different Noetherian charges
(electric, dyonic, magnetic or axionic) and different asymp-
totics (AdS or Lifshitz). In order to achieve this task, it is
clear from the previous analysis that the Noetherian charges
in the metric must have a slower falloff of logarithmic order
in comparison to the mass term. In what follows, we will
present four different such solutions: an AdS dyonic black
hole in five dimensions, an AdS electrically charged solu-
tion in odd dimension and two Lifshitz black holes with a
magnetic and axionic charge in arbitrary dimension. These
configurations are particular solutions of the following gen-
eral D—dimensional action

S[g. ¢, A, A, ¥jl = /de«/_—g L,

R—2A 1 1,
== — J0ued"d — e O (Fu F™)?

1 n 1D72 .
—7 2w T = 5 D e 0"y
=1 =1

3.1)

L

In this action, we leave open the possibility of having a non-
linear Maxwell term (F,, F*”)? where F,, = 0, A, —0,Ap.
Such nonlinearity has been shown to be fruitful to obtain
charged solutions in different gravity contexts, see e.g. [19—
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25]. As in the previous example, in order to sustain a mag-
netic charge, we will also add some extra Abelian gauge
fields F(j)w = 0 Ay — WAy, for I = {1,2,...,n}.
We justify the presence of axionic fields v/; from the fact
that we are looking for solutions with planar base manifold,
and as shown in the fourth example or in the next section, the
axionic fields perfectly accommodate an ansatz of the form
Y = Ax; where the x; are the planar coordinates of the base
manifold (3.2). This particular ansatz for the axionic fields
also provides a simple mechanism of momentum dissipation
[26], and in this case the holographic DC conductivities (elec-
trical, thermoelectric and thermal) can be expressed in terms
of the black hole horizon data [27,28]. For examples, the DC
conductivities of dyonic black holes with axionic fields have
been computed recently in Refs. [29-31]. Finally, we note
that the model considered here (3.1) also allows a possible
coupling of the electromagnetic fields A, 4 and the axionic
fields v; to a dilaton field ¢.
The field equations associated to the action (3.1) read

1 o
G/w + Agu.u = (3M¢3v¢ - Eg//,vaad’a ¢)

+q & (F,, FOP)™ IFWF”—g“ﬂeW (FopFr)!

n
1
+ E 19 <]'—(1)/w]'—(1)3 - Zguvf(l)apfflﬁ))
=1

D-2
+ Z efi? ( wjhj — guva Wﬁ“ﬁ”})
j=1

o (24(Foy P ) = 0

v

nv\ _
Vi (e F ) =0,
v

R
3 2 P )
I1=1

and we look for a static ansatz with a planar base manifold
of the form

ds®> = —N?(r)F(r)dt* + (3.2)

+r22dx

In what follows, we will derive four classes of solutions of
the previous field equations, and their analysis will only be
considered in the case of a negative cosmological constant
A <O.

3.1 Electrically charged AdS black holes for nonlinear
Maxwell theory in odd dimension

This case will correspond of setting ¢ = A; = 1; = 0in
(3.1) and the Maxwell nonlinearity ¢ is of the form g = —1.
As shown in Ref. [32], there exists a purely electric solutlon
with logarithmic falloff, and this solution, in order to be real,
must be restricted to odd dimension D = 2k + 1 with k > 1.
Hence the Maxwell nonlinearity is ¢ = k and the metric

function and the electric potential are given by

rZA 2M
Fry= CkQk—1) 2k — DSy 1|r2k_2
o un [EDRF T, ] Inr
=2 [ k| Zok—1] r2k=2’
- =D
N(r)_l, AO——[m] Inr. (33)

Here M is the mass, O, is the electric charge and | Xy 1|
denotes the finite volume element of the compact (2k —
1)—dimensional base manifold.

As for the previous magnetic solution, the equation deter-
mining the zeros of the metric function F can be put in the
form (6.2) by substituting x = ¥ and in this case, the dis-
criminant (6.3) is given by

2 Mk
[Xok—1|Ae B

A=-—"—, with B =(-2)2Qk-1)
2k
—D*@)' Q77T
x [— | k1l (3.4)
k| Xok—1]
We note that, because of the presence of the term (—Z)k_z,

the sign of the discriminant will depend on the parity of the
integer k. Indeed, for even k or equivalently for odd dimen-
sions D = 5 mod 4, the discriminant is positive, and hence
the solution is a black hole for any value of the mass M, and
there is a single horizon located at

_Wod) M
rpb =e 2k B

Nevertheless, in this case, it is simple to see that the energy
density is always negative, and consequently the energy con-
ditions do not hold. On the other hand, for odd k or equiv-
alently for odd dimensions D = 3 mod 4, the solution will
be a black hole provided that the mass satisfies the following
bound relation with the electric charge

B B

M>—— [l— n(—)} (3.5)
2k A Zok—1]

In this case, the inner and outer horizons are given by

r_—=e W%EA)_%, ry = e W7211<(A)_%’ (36)
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and the dominant energy conditions (2.6) are satisfied with

220k — 1) [(—l)k(2)1_erTfk'
n= ,

r2k k| Xok—1|

2k
) _ 22 Tentote g
pr=—Uu, Pr = 72k k| 2ok—1] . .

3.2 Five-dimensional AdS dyonic black holes and
particular stealth configuration

In five dimensions, the previous solution can be magnetically
charged in such a way that the magnetic charge also appears
in the metric function with a slower falloff of logarithmic
order in comparison to the mass. The corresponding model
that sustains such solution is given by the action (3.1) by
setting ¢ = v; = 0 and by considering n = 3 extra gauge
fields A; as well as the nonlinear Maxwell term with the
exponent g = 2. In this case, the dyonic solution which can
also be viewed as an electric extension of the solution (2.7)
is given by the ansatz (3.2) with

A 2 1 2 210,13
Foy= Dol Mz_n_zr sz_ IQeI4 ’
6 R1D<] e [ PO LT 3N
N(r) =1,
Om Qm
Al = —xpdxz, A = ——x3dxq,
|23 |23
1
3
Az = &xl dxy, Ay= —&Mlnr.
23] 4%30)3

Before proceeding as before, we would like to point out that
the point defined by
5 3
R
|23]2
is very special in the sense that the metric function reduces
to the Schwarzschild AdS metric with a flat horizon. This
in turn implies that the field equations at the point (3.8) can
be interpreted as a stealth configuration [33] defined on the
Schwarzschild AdS background since both side (geometric
and matter part) of the Einstein equations vanish separately,
ie.

(3.8)

w

G + Mg =0 (}'(I)W}'( ,);’) (3.9)
I1=1

3

_%guv Z (f(l)apfff;)

=1
1
+2Fu0 F,” (Fap FF) — 28 (Fap Fef)?

Note that such stealth configuration but for a dyonic four-
dimensional Reissner—Nordstrom black hole was known in
the case of an Abelian gauge field coupled to a particular
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Horndeski term [34] or for a generalized Proca field theory
[35].

Outside the stealth point, the discriminant associated to
the zeros of the metric function F is given by

_ _8M 2 2 %
A=ZDeT A with A= sz _ 22| -
4 Z3P @)z,
(3.10)

Since, we are only considering the negative cosmological
constant case, we conclude that:

(i) For A < 0, that is for

5 3

2%|Qml2

Qe > ——,
xR

the solution has a single horizon located at

_Wo@ _ am
rp=e 4 %A

but the solution does not satisfy the dominant energy
conditions neither the weak energy conditions since the
energy density yu = 237‘3 is always negative.

(i1) For A > 0, that is for

5 3
231Qpy|2
1
|23]2

1Qe| <

)

the solution represents a dyonic AdS black hole only if

313514 3A
1—1 —_—
M= [ “(—mﬂ’

and in this case, the solution is shown to satisfy the
dominant energy conditions (2.6).
(iii) Finally, for A = O that is for

5 3
22]Q,,|2
[Qel =—ml,
| 232

the solution represents a black hole stealth dyonic con-
figuration on the Schwarzschild AdS background where
the horizon is located at

(i)
rp, = .
—A[X3]
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3.3 Purely magnetic Lifshitz black hole with dynamical
exponentz = D — 4

We now turn to derive examples with a different asymptotic
behavior characterized by an anisotropy scale between the
time and the space, the so-called Lifshitz asymptotic. This
anisotropy is reflected by a dynamical exponent denoted usu-
ally by z and defined such that the case z = 1 corresponds
to the AdS isotropic case. Note that Lifshitz black holes
have been insensitively studied during the last decade, see
for examples Refs. [36—40].

In order to obtain Lifshitz black holes, we consider the
action (3.1) without axionic fields ¥; = 0 and with the stan-
dard Maxwell term ¢ = 1. Note that the presence of the
Maxwell term is mandatory to ensure the Lifshitz asymptotic
of the solution. In even (resp. odd) dimension, the solution
will be sustained by n = 1 (resp. n = 3) extra gauge field(s)
A;. Inboth case, a purely magnetic Lifshitz black hole with
dynamical exponent z = D — 4 is found through the ansatz
(3.2) with

2M
F(r) = rt—
(D = 2)|Zp—s|r?P=
9
TiEppro—s M
N(@r) =rP—3,
D-5 _ —r
Ag = [P o = VD7D (3 1)
2D —3) : :
30 &
29
Ay =55 Z (x2i—1dx2i — X2idx2i 1) ,
2|¥p-2| =

for even dimension,

3
O
Aol Z ergkxydxg
D=2 e
D-3

«/6 Qm d
6 pal ;22 (x2idx2i 11 — X2i+1dx2;)

for odd dimension with I = {1,2,3}. Here |Xp_»]|
denotes the finite volume element of the compact (D —
2)—dimensional base manifold and ¢; ;¢ is defined as

1 for any even permutation of (1, 2, 3),
—1 for any odd permutation of (1, 2, 3),
0  otherwise.

€1JK =

In this case, the coupling constants of the problem must take
the following form

A=—(D-3)2D-17) A——z,/D—_2
N T D-5

D -5

o] =) =a3 = — D—2"

Proceeding as in the two previous examples, one notes that
the discriminant is always negative, and hence the existence
of horizons is again ensured provided that the mass satisfies
the following bound

2
Mo (D-2Q

Q2
>————|1—In L .
4(D = 3)|Xp-2l [ <2(D—3)|ED—2|2>]
(3.12)

For this lifshitz solution with dynamical exponent z =
D — 4, the energy density and the radial/tangential pressures
are given by

3 (D —2)Q2

M—(D—S)(D—3)+W

(D—-2)(D-5)

+T
1

 Zp a0
x (2D =3)(D = 9)[Tp2 PP + (D -2)Q}).

1
R P )

E(r),

Pr=HK

x (20 = 3)(D = 9)[Tp2 2P 4202 ),

and since
(D —2)(D —=5)F(r)
pr + I'L = r2 )
(=)D -5F(r)  (D-4HQ
bt — K= 2 IS p_n|2r2(D=3)"

one can notice that the dominant energy conditions (2.6) are
satisfied outside the event horizon, that is for F'(r) > 0.

3.4 Axionic Lifshitz black hole with dynamical exponent
z=D—-2

We now consider the action (3.1) with a source only given
by the axionic fields y; and with the standard Maxwell term
g = 1 in order to sustain the Lifshitz asymptotic. In this
case, an axionic Lifshitz black hole solution with dynamical
exponent z = D — 2 is found to be

@ Springer
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2M
F(r)y=r—
= T D= mp P
%
[Zp_a[2r2D-Y In(r).
N@r) =rP=3,
Ao= | P73 o0 6 - v
2(D —2) ’ :
(3.13)
Q o
w,-(xj)z—lED“Z'xj, with j = {1,2,..., D —2},

where now Q, denotes the axionic charge. The coupling con-
stants must be chosen such as

A=—-(D-2)2D-5), A= 2,/D_2
- 9 - D_37
D=3

As for the previous case, the discriminant is negative and the
mass parameter must satisfy the following bound with respect
to the axionic charge in order to avoid naked singularity

Q2 Q2
_=a 11 da . 3.14
M= 4|Xp_s] [ ! (2(D - 2)|ED—2|2)] G4

As in the previous Lifshitz case, the dominant energy con-
ditions (2.6) are satisfied outside the event horizon with

(D —2)Q2
2|2D_2|2r2(D—2)

E(r),

n=(D—=2)(D—-3)+

(D-2)(D -3)
+2r—2
1

|Zp_2|2r2(P=2)

x (2D = 3)(D = DI Ep 2P

Pr =K

+(D ~2)Q2),

1
T Ep P

x (200 =3)(D = 2)[Tp2 PP + 1),

(D —2)(D—3)F(r)
pr +H/ = 7'2 )
(D=2)(D=3)F{r)
Pr— === ) -

(D —3)Q2
|Zp_a2r2P=2)"

We now compute the DC conductivity oy, of this solution
which can be expressed in term of the black hole horizon data
[27,28] thanks to the presence of the axionic fields homoge-
nously distributed along the coordinates of the planar base. In
order to achieve this task, we will follow the prescriptions as

@ Springer

given in these last references by first turning on the following
relevant perturbations!

8Ag = —Et +ay (r), 88 = r*huy (1),
8gray = 2l (r),  8Y1 = x1(r),

where E is a constant. The perturbed Maxwell current given
by J = \/—ge*® F™1 is aconserved quantity along the radial
coordinate. A straightforward computation along the same
lines as those in [27,28] yields a DC conductivity o, given
by
3| _p . 2AD=2(D=3)Tpofr) "
ﬁ . =r, Q% .
As it should be expected in the absence of the axionic charge,
the expression of the DC conductivity oy, will blows up.
Just to conclude this section, we would like to mention
that the Lifshitz solutions presented here can be extended to
the so-called hyperscaling violation black holes by adding an
extra gauge field as done in Refs. [41-44]. In these last ref-
erences, the thermoelectric DC conductivities of the hyper-
scaling violation black holes were also computed.

Opc =

4 More general dyonic-axionic solutions in arbitrary
dimension

The solutions derived previously can accommodate extra
Noetherian charges but in this case the location of the hori-
zons is more involved and can not be treated as before with
the help of the Lambert W functions. Nevertheless, for com-
pleteness, we report in this section more general solutions,
each of them having a dyonic and an axionic charge. In order
to achieve this task, we consider a slightly different action
than the one defined by Eq. (3.1). Indeed, we will add an
extra Maxwell term without any nonlinearity g = 1 since it
is known that electrically charged Lifshitz black holes require
the introduction of at least two Maxwell terms [45]. We then
consider the following D—dimensional action

SLguv @: Aty Ay Vil = dex NETZA

_R-2A 1

L
2 2

1 n 1D—2
—e%? Z Z}—(I)p.vf(l;l; + 5 Z 8MI//]'8M1//]‘ )
=1 j=1

with Fiyun = 0u Ay — dwA) fori = {1, 2} and n extra
gauge fields that will sustain the magnetic charge, F (1), =
auA(I)v — aU.A([)M for I = 1,...n with n = 1 in even

! For simplicity, we only consider perturbations along one of the planar
coordinate x;.
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dimension and n = 3 in odd dimension. The field equations
read

G + A = (V¥ — 321 909779)

2
1
Ai Ai 14
+ § : (6 ¢F(i)//«‘TF(i)uo — g 8mve ¢F(i)<7ng))
i=1

D-2
1
“ Y (i = 580007
j=1

1 n n
= 28w Y Frop i + ¢ Y Fuyo Fyy
= =

i wy\
Vi (F) =0,

Vi (et Fl) =0,
Uy =0,

2
Aiy.
D¢— E (Zle)\l(pF(i)o'ng;O)
i=1

D 2

Z]:(I)uv (1)+ ZBMW/B Vi) =0,

—ae”

A general Lifshitz dyonic-axionic solution with arbitrary
dynamical exponent z of the field equations is given by

Fory = 2 22 M
(r)=r"— (D—-2— Z)r2z72 - rztD—4
Q2
+ 2(z+D—4)
(D—2)(z+ D — 4G
P2
(D=4 - 1)
together with
—1
N — Z*l7 A — < Z+D72dt’
(ry=r (e ‘/—z+D—2r
0
A = — dt,
@ (z+ D — 4)re+D—4
Uit =k, e = p/OIED, “2)
f 2P
Ap = —— Z (x2i—1dx2i — X2idx2i 1) ,
i=1
in even dimensions,
p 3
Amy = 5 Z €17k xjdxg
JK=1
N D=3
6
t< P > (aidxaigy — x2ip1dx)
i=2

in odd dimensions

provided that the coupling constants are tied as follows

(z+D—-2)(z+ D —-3)
5 )

D -2 z—1
A= —2 , M=—a=2 .
z—1 D—-2

Note thatin the AdS limitz = 1, the dilaton field ¢ disappears
as well as the Maxwell potential A1), which is precisely
responsible to sustain the Lifshitz asymptotic z # 1. The
thermodynamical variables of the solution can be computed
using the Hamiltonian formalism [46] yielding

A =—

1
M = 5 (D =2)M[Xp-2l,

8—27'[7' |Z]_) 2| (4-3)

with the electric, magnetic and axionic potentials and charges

r4—D—z
=0|Xp,y, &, =(-r ,
Q. = 0|¥p 2| e <z—4+D>Q

D -2 Ded—
Q= ISpalP, By =- (D__H> b=t p
Qj = —|Zp-2lA, (4.4)
D 2— 5
J D 2_Z’ 9 Ly e ey .

It is a simple exercise to check the consistency of the first
law

D2
AM =TdS + ©,dQ, + ©,dQu + Y V;(n)dQ;,
j=1
4.5)
where the temperature is given by
N(r)F'(r)
= —7 =—|(D-2 : 4.6
4 r=rj 4 ( + Z)rh ( )
02 p2 2
- (D — 2)r5+2D76 - rl§+2 - E :

It is clear that from the expression of the metric function,
the cases z = D—4and z = D —2 must be treated separately.
In fact, for z = D —4, one yields a metric function involving
a logarithmic magnetic contribution

2
_ 2 0
FO == 5651 302D a0
2 2
5 ) = 3355 @7
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and the remaining fields are given by (4.2) with z = D — 4.
The thermodynamical quantities computed by means of the
Euclidean method [46] read

1
M = 7D - 2)M|Xp-2l,

Q2 P2
3D—10 _D—2
(D — 2)rh ry

1 D—4
T= - |:2(D 3Pt -

22 }
5|
T

S =2mr)*|Tpal,

Q= 0IEpal. G=—2 o 4y
2D - 4yr;
Qm = |Zp-2lP, Dy = —(D —2)In(ry) P,
2
A s
Qj = —|Zp-alr, V()= 5
conj={1,2,...,D—2}.
Finally, the solution with z = D — 2 is given by
M 0?
— 2 _
FO=r =505 30— -3ro9
P2 A2 In(r
+ ) “4.9)

2,2(D=4) — ;2(D-3)"

with (4.2), and the thermodynamic parameters associated to
the solution are

1
M= E(D —2)M|Xp-2|,

r—_L 2D —2)rP 7% — %
am (D —2)rpP~
p2 A2 i|
D Db |
rh rh
S =2mrP?Sp-al,
0
Q. = OlXp-2l, d, = S . 2(D-3)° (4.10)
2D = 3)r;
(D-2)P
Qn =I|Zp2lP, Pp=—5—.
2ry
Qj = —IZpalr,  Wi(m) = Aln(m),

conj={1,2,...,D—2}.
In both cases, thatis forz = D —4 and z = D — 2, it is easy
to see that the first law (4.5) holds.
5 Conclusion
Here, we have presented a dyonic extension of the five-

dimensional Boulware—Deser solution for the Einstein—
Gauss—Bonnet theory. The emergence of a magnetic charge

@ Springer

is shown to be possible for a flat horizon and by consider-
ing at least three different Maxwell invariants. The magnetic
contribution in the metric function has a logarithmic falloff
but still yields to finite physical quantities. As usual, one of
the two branches has a well-defined GR-limit with a mag-
netic logarithmic falloff term. For suitable bounds between
the mass and the magnetic charge, the purely magnetic GR
solution can be shown to admit an inner and outer horizons.
These latter are given in terms of the two real branches of the
Lambert W functions. We have noticed that this bound’s mass
was due to the fact that the magnetic charge in the metric has a
slower falloff of logarithmic order than the mass. Exploiting
this observation, we have derived other examples of solutions
sharing these same properties for different models and differ-
ent asymptotics. For example, we have obtained an electri-
cally charged AdS black hole solution in odd dimension for
a nonlinear Maxwell theory with a single horizon in dimen-
sions D = 5 mod 4 and with two horizons in D = 3 mod 4.
Interestingly enough, a dyonic configuration with logarith-
mic falloff of the electric and magnetic charges was also
derived in five dimensions. Depending on the strength of the
electric charge with respect to the magnetic charge, the solu-
tion can have one or two horizons, and in this latter case, the
mass must satisfy a certain bound. Moreover, for a precise
relation between the electric and the magnetic charges, the
solution turns out to be a stealth dyonic configuration defined
on the Schwarzschild AdS background. For the asymptotic
AdS solutions, we have remarked that our black hole solu-
tions presenting an inner and outer horizons always satisfy
the dominant energy conditions (2.6) while these conditions
even in their weak version do not hold for our solutions with
a single horizon. This can be explained by the fact that the
metric functions in our set-up were of the following form

Fir — 2Ar? 2M
"= S (D-1)(D—-2) (D—2)|Ep_,[rP-3
N1
—rD—I_f, G.1)

where A represent the additional Noetherian charge with
slower falloff of logarithmic order than the mass M. The cor-
responding discriminant associated to the zeros of the metric
function F (6.3) is given by

2A ___2(D-DM
A= " JTODEp LN,
(D -2)N

Now, since we are considering the AdS case, it is clear that
for N' < 0, the discriminant will be positive and, hence the
solution will represent a black hole with a single horizon for
any value of the mass M. On the other hand, for N' > 0,
one has A < 0 and consequently the solution will be a black
hole provided that the mass satisfies the following bound

(D —2)|EpolV [1 ! ((D—Z)N)}
—In( ==

M>—05"1 YN
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and in this case, the solution presents two horizons. On the
other hand, the energy density, the radial and tangential pres-
sures are given generically by

_(D-2N N

- 5,D-1 Pr=—M, pl:2rD_19

and hence it is evident that the dominant energy conditions
(2.6) will only be satisfied for the solutions with A" > 0. It
seems to be physically acceptable that solutions without any
restrictions on the mass do not satisfy the dominant or the
weak or even the null energy conditions. On the other hand,
our examples of black holes with a bound’s mass verify the
dominant energy conditions. It will be interesting to explore
more deeply this relation between the lack of restriction on
the mass with the absence of energy conditions.

We also mention that a necessary condition to obtain AdS
black holes with an Ansatz of the form
ds®> = —F(r)dt* + dr? +r2(dx? + ...dx3_,)

F(r) 1 T---4Xp_3),

with a metric function given by (5.1) is that the energy
momentum tensor of the matter source 7, satisfies T, +
(D — 2)Tl.i = 0 without summation for the planar indices i.
Indeed, in this case, the consistency of the Einstein equations
T/ +(D— 2)Tl.i +(D—1)A = Oyields to anonhomogeneous
Euler’s differential equation of second-order

_ /" _ _ / _ 22
(D-)F"  (D-QD-5F  (D-2)(D-37F

2 2r 2r2
=—(D - DA,

whose characteristic polynomial has a double root given by
r~P+3 and hence the general solution of this Euler’s equation
is given by Eq. (5.1).

‘We have also presented two other examples with Lifshitz
asymptotics with fixed values of the dynamical exponent with
a magnetic charge and an axionic charge. The emergence of
such asymptotic solutions is essentially due to the presence
of dilatonic fields. Note that there also exist Lifshitz black
holes with a logarithmic falloff in the case of higher-order
gravity [47]. Finally, for completeness, we have extended
the previous solutions to accommodate a dyonic as well an
axionic charge in arbitrary dimension.
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6 Appendix: The Lambert W functions

The Lambert W functions are a set of functions that represent
the countably infinite number of solutions denoted by Wy (z)
of the equation

weV =z, 6.1)

for a given z € C. There are only two real-valued branches
of the Lambert W functions that are denoted, by convention,
Wo and W_; with Wy : [—1, 00[ - [—1,00[ and W_; :
[—é, 0[ — ] — oo, —1[ with the convention that Wo(—%) =
W_1 (—%) = —1. The Lambert W functions appear for the
resolution of the equations of the form

a#0, b#0.

Indeed, by defining w = In(x), the equation (6.2) becomes
ae® + bw + ¢ = 0, which is equivalent after some basic
algebraic manipulations to (6.1) with W = —w — 7 and

z = A, where the discriminant is defined by

ax +bln(x) +¢c =0, (6.2)

a <
A= —e b,
b

It is then clear that

(6.3)

(1) fA>0o0rA = —%, the equation (6.2) admits a unique
solution in R given by

x = e Wod)—5 (6.4

(i) IfA €]— é 0O[, the equation (6.2) has two real solutions
given by

7W0<A)f‘;" —Woi (A=

Xy =e Xp=c¢e (6.5)

(iii) Finally, if A < —é, the equation (6.2) does not admit
real roots.
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