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Abstract We discuss the status of expansion by regions,
i.e. a well-known strategy to obtain an expansion of a given
multiloop Feynman integral in a given limit where some
kinematic invariants and/or masses have certain scaling mea-
sured in powers of a given small parameter. Using the Lee–
Pomeransky parametric representation, we formulate the cor-
responding prescriptions in a simple geometrical language
and make a conjecture that they hold even in a much more
general case. We prove this conjecture in some partial cases.

1 Introduction

If a given Feynman integral depends on kinematic invariants
and masses which essentially differ in scale, a very natu-
ral and often used idea is to expand it in powers of a given
small parameter. As a result, the integral can be written as
a series of factorized quantities which are simpler than the
original integral itself and it can be substituted by a suffi-
ciently large number of terms of such an expansion. The
strategy of expansion by regions [1] (see also [2] and Chap-
ter 9 of [3]) introduced and applied in the case of thresh-
old expansion [1] is a strategy to obtain an expansion of
a given multiloop Feynman integral in a given limit speci-
fied by scalings of kinematic invariants and/or masses char-
acterized by powers of a given small parameter of expan-
sion. For example, for a limit with two variables, q2 and
m2, where m2 � q2 and the parameter of expansion is
m2/q2, one analyzes various regions in a given integral
over loop momenta and, in every region, expands the inte-
grand, i.e. a product of propagators, in parameters which
are there small. Then the integration in the integral with
so expanded propagators is extended to the whole domain
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of the loop momenta and, finally, one obtains an expan-
sion of the given integral as the corresponding sum over the
regions.

Although this strategy certainly looks suspicious for math-
ematicians it was successfully applied in numerous calcu-
lations. It has the status of experimental mathematics and
should be applied with care, starting, first, from one-loop
examples, by checking results by independent methods.
Using the analysis in a toy example of an expansion of a
one-dimensional integral [4] presented in [2], Jantzen [5]
provided detailed explanations of how this strategy works by
starting from regions determined by some inequalities and
covering the whole integration space of the loop momenta,
then expanding the integrand and then extending integration
and analyzing all the pieces which are obtained, with the
hope that ‘readers would be convinced that the expansion by
regions is a well-founded method’. However, this interesting
and instructive analysis can hardly be considered as a base of
mathematical proofs. Let us realize that we are dealing with
dimensionally regularized Feynman integrals, i.e. integrals
over loop momenta of space-time dimension d = 4 − 2ε

which is considered as a complex regularization parameter.
Therefore it is not clear in which sense inequalities and lim-
its for these integrals are understood because the integrands
and the integrals are functions of d-dimensional loop and/or
external momenta so that they should be treated like some
algebraic objects rather than usual functions in integer num-
bers of dimensions. In practice, one usually does not bother
about such problems and performs calculations implicitly
applying some axioms for the integration procedure, and a
consistency of the whole calculation checked in some way
looks quite sufficient.

A well-known way to deal with dimensionally regularized
multiloop Feynman integrals is to use, for a given graph, the
corresponding Feynman parametric representation which up
to an overall gamma function and a power of (iπd/2) (which
we will always omit) takes the following form in the case of
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all powers ai of propagators 1/(− p2 + m2
l − i0)ai equal to

one:∫ ∞

0
. . .

∫ ∞

0
Un−(h+1)d/2Fhd/2−n

× δ
(∑

xi − 1
)

dx1 . . . dxn, (1)

where n is the number of lines (edges), h is the number of
loops (independent circuits) of the graph,

F = −V +U
∑

m2
l xl , (2)

andU andV are two basic functions (Symanzik polynomials,
or graph polynomials)

U =
∑
T∈T 1

∏
l �∈T

xl , (3)

V =
∑
T∈T 2

∏
l �∈T

xl
(
qT

)2
. (4)

In (3), the sum runs over trees of the given graph, and, in
(4), over 2-trees, i.e. subgraphs that do not involve loops and
consist of two connectivity components; ±qT is the sum of
the external momenta that flow into one of the connectiv-
ity components of the 2-tree T . The products of the Feyn-
man parameters involved are taken over the lines that do not
belong to a given tree or a 2-tree T . As is well known, one
can choose the sum in the argument of the delta-function
over any subset of lines. In particular, one can choose just
one Feynman parameter, xl , and then the integration will be
over the other parameters at xl = 1. The functions U and V
are homogeneous with respect to Feynman parameters, with
the homogeneity degrees h and h + 1, respectively.

The parametric representation in the case where propaga-
tors enter with general powers ai can be obtained from (1) by
including the overall factor Γ (a − hd/2)/(

∏
i Γ (ai )), with

a = ∑
ai , and the product

∏
i x

ai−1
l in the integrand. The

representation with negative integer indices ai = − ni can
be obtained from this one by taking the limit ai → − ni
where the pole at ai = − ni arising from xai−1

i is cancelled
by the pole of Γ (ai ) in the denominator. However, to make
the presentation simpler, we will consider only the case of
all the indices equal to one.

The expansion by regions was also formulated in the lan-
guage of the corresponding parametric integrals [6] (see also
[2] and Chapter 9 of [3]). One can consider quite general
limits for a Feynman integral which depends on external
momenta qi and masses and is a scalar function of kine-
matic invariants qi · q j and squares of masses and assume
that each kinematic invariant and a mass squared has certain
scaling ρκi where ρ is a small parameter. A non-trivial point
when applying the strategy of expansion by regions, either
in momentum space or in parametric representation, is to
understand which regions are relevant to a given limit. For

example, for the threshold expansion, these are hard, poten-
tial, soft and ultrasoft regions, as it was claimed in [1] and
further confirmed in practice in multiple calculations.

A systematical procedure to find relevant regions was
developed in Ref. [7] using Feynman parametric representa-
tion (1) and geometry of polytopes connected with the basic
functions U and F . This procedure was implemented as a
public computer code asy.m [7] which is now included
in the code FIESTA [8]. Using this code one can not
only find relevant regions but also obtain the correspond-
ing terms of expansion and evaluate numerically coefficients
at powers and logarithms of the given expansion parame-
ter. Although there is no mathematical justification of this
procedure, numerous applications have shown that the code
asy.m works consistently at least in the case where all the
terms in the function F are positive. An attempt to extend
this procedure and the corresponding code asy.m to some
cases where some terms of the function F are negative was
made in Ref. [9] where it was explained how potential and
Glauber regions can be revealed.1

We find it very natural to use Feynman parametric rep-
resentations and the geometrical description of expansion
introduced in Ref. [7] to mathematically prove expansion by
regions. In fact, for the moment, only an indirect proof of
expansion by regions, for limits typical of Euclidean space
(where one has two different regions which can be called
large and small) exists, – see the proof for the off-shell large-
momentum limit in [11] and Appendix B.2 of [2]. The point
is that, for limits typical of Euclidean space (for example,
the off-shell large-momentum limit or the large-mass limit),
one can write down the corresponding expansion in terms of
a sum over certain subgraphs of a given graph [12–14], and
there is a correspondence between these subgraphs and their
loop momenta which are considered large while the other
loop momenta are considered small.

We would like to emphasize that in order to try to math-
ematically prove expansion by regions, it looks preferable
and mathematically natural to use a recently suggested rep-
resentation by Lee and Pomeransky (LP) [15] instead of the
well-known representation (1). Up to an overall product of
gamma functions, this representation has the form

G(ε) =
∫ ∞

0
. . .

∫ ∞

0
P−δdx1 . . . dxn, (5)

where δ = 2 − ε and

P = U + F. (6)

1 After our paper has been sent to the archive, a new approach (based
on Landau equations) to reveal regions corresponding to a given limit
has appeared [10]. Its authors show on examples that the potential and
Glauber regions can be revealed within their prescriptions.

123



Eur. Phys. J. C (2019) 79 :136 Page 3 of 12 136

One can obtain (1) from (5) by [15] inserting the relation
1 = ∫

δ(
∑

i xi − η)dη, scaling x → ηx and integrating
over η.

We believe that the prescriptions of expansion by regions
hold also for integrals (5) with a general polynomial P with
positive coefficients and not only for polynomials of the form
(6) where the two terms are basic functions for some graph.
The goal of our paper is, at least, to formulate prescriptions of
expansion by regions for general polynomials with positive
coefficients in an unambiguous mathematical language, to
justify how terms of the leading order of expansion are con-
structed and to draw attention of both physicists and mathe-
maticians who might find it interesting to prove it in a general
order of expansion.

In the next section we use the geometrical description of
expansion by regions on which the code asy.m [7] was
based. In this paper, we consider limits with two scales where
one introduces a small parameter as their ratio. Let us empha-
size that this can be various important limits which are typical
of Minkowski space, for example, the Sudakov limit or the
Regge limit (with |t | � |s| where s and t are Mandelstam
variables.) In this description, regions correspond to special
facets of the Newton polytope associated with the product
of UF of the two basic polynomials in (1). We immediately
switch here to prescriptions based on the LP [15] parametric
representation (5) and formulate prescriptions for a general
polynomial with positive coefficients, rather than polynomial
(6). Therefore, these prescriptions will be based on facets of
the corresponding Newton polytope. Of course, prescriptions
based on representation (5) are algorithmically preferable
because the degree of the sum of the two basic polynomi-
als is smaller than the degree of their product UF (used in
asy.m) so that looking for facets of the corresponding New-
ton polytope becomes a simpler procedure.2 Therefore, the
current version of the code asy.m included in FIESTA [8]
is now based on this more effective procedure.

Since we are oriented at mathematical proofs we want
to be mathematically correct. Let us realize that up to now
we did not discuss whether integral (1) or (5) can be under-
stood as a convergent integral at some values of d. Let us
keep in mind a situation where a Feynman integral is both
ultravioletly and infrared divergent so that increasing Re(ε)
regulates ultraviolet divergences and decreasing Re(ε) reg-
ulates infrared divergences. Such situations are not exotic at
all. However, in practical calculations of Feynman integrals
one usually does not bother about the existence of such a
convergence domain and/or tries to define the given integral
in some other way if such a domain does not exist. Well, after
calculation are made, one has a result which is a function of

2 In fact, this step is performed within asy.m with the help of another
code qhull. It is most time-consuming and can become problematic
in higher-loop calculations.

d = 4 = 2ε usually presented by first terms of a Laurent
expansion near ε = 0, and such a result is well defined!

In Sect. 3, we refer to some papers where attempts to define
Feynman integrals before calculations are made and com-
ment on how Feynman integrals are understood when they
are evaluated. Then we turn to parametric representation (5)
in Sect. 4 and explain how we can define this representation in
terms of convergent integrals. In Sect. 5, we explicitly show
that, in the case of Feynman integrals, i.e. where the poly-
nomial is given by (6), with two basic functions constructed
for a given graph, the two kinds of prescriptions based either
on the Feynman parametric representation or on the LP para-
metric representation are equivalent.

Equipped with our definition based on analytic regular-
ization, we then turn in Sect. 6 to the main conjecture, prove
it it in the leading order in a special situation and analyze
it in the leading order of expansion in the general situation.
In Sect. 7, we prove the main conjecture in the simple case,
where only one facet contributes. In Sect. 8, we summarize
our results and discuss perspectives.

2 The main conjecture

Let us formulate the main conjecture about expansion by
regions for integral (5) with a polynomial with positive coef-
ficients in the case of limits with two kinematic invariants
and/or masses of essentially different scale, where one intro-
duces one parameter, t , which is the ratio of two scales and is
considered small. Then the polynomial in Eq. (5) is a function
of Feynman parameters and t ,

P(x1, . . . , xn, t) =
∑
w∈S

cwx
w1
1 . . . xwn

n twn+1 , (7)

where S is a finite set of points w = (w1, . . . , wn+1) and
cw > 0. The Newton polytope NP of P is the convex hull of
the points w in the n+ 1-dimensional Euclidean space Rn+1

equipped with the scalar product v ·w = ∑n+1
i=1 viwi . A facet

of NP is a face of maximal dimension, i.e. n.

The main conjecture. The asymptotic expansion of (5) in
the limit t → + 0 is given by

G(t, ε) ∼
∑
γ

∫ ∞

0
. . .

∫ ∞

0

[
Mγ (P(x1, . . . , xn, t))

−δ
]

× dx1 . . . dxn, (8)

where the sum runs over facets of the Newton polytope NP

for which the normal vectors rγ = (rγ
1 , . . . , rγ

n+1) oriented
inside the polytope have rγ

n+1 > 0. Let us normalize these
vectors by rγ

n+1 = 1 and let us call such facets essential.
To describe operators Mγ we need, first, to introduce some
notation and a number of definitions.
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The symbol ∼ in (8) is the standard symbol of an asymp-
totic expansion. As it will be explained shortly, every term in
the right-hand side of (8) is homogeneous with respect to the
expansion parameter, t , so that one can sort out various terms
of the expansion according to their order in t and construct
the sum of first terms, up to order t N . Then, according to
the definition of the asymptotic expansion, the correspond-
ing remainder defined as the difference between the initial
integral and these first terms, is of order o(tn).

The contribution of a given essential facet is defined by
the change of variables xi → tr

γ
i xi in the integral (5) and

expanding the resulting integrand in powers of t . This leads
to the following definitions.

For a given essential facet γ , let us define the polynomial

Pγ (x1, . . . , xn, t) = P(tr
γ
1 x1, . . . , t

rγ
n xn, t)

≡
∑
w∈S

cwx
w1
1 . . . xwn

n tw·rγ

. (9)

The scalar product w · rγ is proportional to the projection of
the point w on the vector rγ . For w ∈ S, it takes a minimal
value for all the points belonging to the considered facet
w ∈ S ∩ γ . Let us denote it by L(γ ).

The polynomial (9) can be represented as

t L(γ )(Pγ
0 (x1, . . . , xn) + Pγ

1 (x1, . . . , xn, t)), (10)

where

Pγ
0 (x1, . . . , xn) =

∑
w∈S∩γ

cwx
w1
1 . . . xwn

n , (11)

Pγ
1 (x1, . . . , xn, t) =

∑
w∈S\γ

cwx
w1
1 . . . xwn

n tw·rγ −L(γ ). (12)

The polynomial Pγ
0 is independent of t while Pγ

1 can be rep-
resented as a linear combination of positive rational powers
of t with coefficients which are polynomials of x .

For a given facet γ , let us define the operator

Mγ (P(x1, . . . , xn, t))
−δ = t

∑n
i=1 r

γ
i −L(γ )δ

× Tt (Pγ
0 (x1, . . . , xn) + Pγ

1 (x1, . . . , xn, t))
−δ

= t
∑n

i=1 r
γ
i −L(γ )δ (Pγ

0 (x1, . . . , xn))
−δ + · · ·

where Tt performs an asymptotic expansion in powers of t
at t = 0.

Comments.

– An operator Mγ can equivalently be defined by intro-

ducing a parameter ργ , replacing xi by ρrγ
i xi , pulling an

overall power of ργ , expanding in ργ and setting ργ = 1
in the end. It is reasonable to use this variant when one
needs to deal with products of several operators Mγ .

– The leading order term of a given facet γ corresponds to
the leading order of the operator M0

γ :

∫ ∞

0
. . .

∫ ∞

0
[M0

γ (P(x1, . . . , xn, t))
−δ]dx1 . . . dxn

= t−L(γ )δ+∑n
i=1 r

γ
i

×
∫ ∞

0
. . .

∫ ∞

0
(Pγ

0 (x1, . . . , xn))
−δdx1 . . . dxn .

(13)

– In fact, with the above definitions, we can write down the
equation of the hyperplane generated by a given facet γ

as follows

wn+1 = −
n∑

i=1

rγ

i wi + L(γ ). (14)

– Let us agree that the action of an operator Mγ on an
integral reduces to the action of Mγ on the integrand
described above. Then we can write down the expansion
in a shorter way,

G(t, ε) ∼
∑
γ

Mγ G(t, ε) (15)

– In the usual Feynman parametrization (1), the expansion
by regions in terms of operators Mγ is formulated in a
similar way, and this is exactly how it is implemented in
the code asy.m [7]. The expansion can be written in the
same form (15) but the operators Mγ act on the product
of the two basic polynomials U and F raised to certain
powers present in (1). Now, each of the two polynomials
is decomposed in the form (10) and so on.

– It is well known that dimensional regularization might be
not sufficient to regularize individual contributions to the
asymptotic expansion. A natural way to overcome this
problem is to introduce an auxiliary analytic regulariza-
tion, i.e. to introduce additional exponents λi to power
of the propagators. This possibility exists in the code
asy.m [7] included in FIESTA [8]. One can choose
these additional parameters in some way and obtain a
result in terms of an expansion in λi followed by an
expansion in ε. If an initial integral can be well defined as
a function of ε then the cancellation of poles in λi serves
as a good check of the calculational procedure, so that in
the end one obtains a result in terms of a Laurent expan-
sion in ε up to a desired order. We will systematically
exploit analytic regularization below for various reasons.

– We consider the case of two kinematic parameters for
simplicity. In the general case, with several kinematic
invariants qi · q j and squares of masses, where each of
these variables, si , has certain scaling, i.e. si → ρκi si ,
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with ρ a small parameter, one can formulate similar pre-
scriptions. Then, the expansion is given by a similar sum
over facets of a Newton polynomial which is determined
for each choice of the variables si . (This is how the code
asy.m [7] works in this case.)

3 Convergence and sector decompositions

When formulating the main conjecture in the previous sec-
tion we did not discuss conditions under which integral (5)
is convergent. As is well known, dimensional regularization
is introduced for Feynman integrals, i.e. when polynomial is
given by (6), in order that various divergences become regu-
larized so that the integral becomes a meromorphic function
of the regularization parameter ε. Then one can deal with the
regularized quantity where divergences manifest themselves
as various poles at ε = 0. However, a given Feynman integral
can have both ultraviolet divergences which can be regular-
ized by increasing Re(ε) and (off-shell or on-shell) infrared3

as well as collinear divergences which can be regularized by
decreasing Re(ε). Then, typically, there is no domain of ε

where the integral is convergent. In numerous calculations,
one does not bother about this problem. Rather, various meth-
ods of evaluating Feynman integrals are applied and in the
end of a calculation, one arrives at a result which looks like
several terms of a Laurent expansion in ε.

Let us now remember that there is a mathematical def-
inition of a dimensionally regularized Feynman integral in
the case where both ultraviolet and off-shell infrared diver-
gences are present. Speer defines [16] such an integral4 as
an analytic continuation of the corresponding dimensionally
and analytically regularized integral, i.e. with all propagators
1/(−p2

l +m2−i0) replaced by 1/(−p2
l +m2−i0)1+λl , from

a domain of analytic regularization parameters λl where the
integral is absolutely convergent. Moreover, Speer proves
explicitly that such a domain of parameters λl is non-
empty.

3 We follow the terminology introduced in the sixties and seventies.
Ultraviolet (infrared) divergences arise from integration over large
(small) loop momenta. By off-shell infrared divergences we mean diver-
gences at small loop momenta in situations where external momenta are
not put on a mass shell. In particular, external momenta can be consid-
ered Euclidean (any partial sum of external momenta is space-like) (see
for example Ref. [16]), or a Feynman integral can be considered as a
tempered distribution with respect to external momenta (for example, in
very well-known papers on renormalization [17–20]). On-shell infrared
divergences appear when an external momentum is considered on a mass
shell, p2 = m2, in particular a massless mass shell. In the latter case,
collinear divergences can appear due to integration near light-like lines.
4 Without massless detachable subgraphs; this means that there are no
one-vertex-irreducible subgraphs with zero incoming momenta. The
corresponding integrals would be scaleless integrals.

To prove this statement Speer uses the Feynman para-
metric representation of so analytically and dimensionally
regularized Feynman integral

(iπd/2)h
Γ (n + ∑

λi − hd/2)∏
i Γ (1 + λi )

×
∫ ∞

0
. . .

∫ ∞

0

∏
i

xλi
i Un+∑

λi−(h+1)d/2Fhd/2−n−∑
λi

× δ
(∑

xi − 1
)

dx1 . . . dxn, (16)

and performs an analysis of convergence of (16) using sector
decompositions. The goal of historically first sector decom-
positions [16,17] was to decompose a given parametric inte-
gral into sectors (subdomains) and then introduce new (sec-
tor) variables in such a way that the singularities of the two
basic polynomials U and F become factorized, i.e. in the
sector variables they take the form of a product of the sec-
tor variables raised to some powers times a function which
is analytic and non-zero at zero values of the sector vari-
ables. As a result, the analysis of convergence reduces to
power counting of the sector variables and each sector con-
tribution of the analytically and dimensionally regularized
integral (16) can be represented as a linear combination of
products of typical factors 1/(ε+∑′

i λi ) where ε = (4−d)/2
and the sum is taken over a partial subset of parameters λi .
After this, the singularities with respect to the regularization
parameters are made manifest and it becomes clear that inte-
gral (16) is a meromorphic function. Speer suggests [16] to
analytically continue this function to the point where all the
λ-parameters are zero and thereby define dimensionally reg-
ularized version of (1) even if there is no domain of ε where
(1) is convergent.

Both Hepp [17] and Speer [16] sectors are introduced
globally, i.e. once and forever. In fact, the Speer sectors5

correspond to one-particle-irreducible subgraphs and their
infrared analogues. These sector decompositions were suc-
cessfully applied for proving various results on regularized
and renormalized Feynman integrals.

Global sector decompositions for Feynman integrals with
on-shell infrared divergences and/or collinear divergences
are unknown. Binoth and Heinrich were first to construct
recursive sector decompositions [22–24]. The first step in
their procedure was to introduce the set of primary sec-
tors corresponding to the set of the lines of a given graph,
Δl = {(x1, . . . , xn) | xi ≤ xl , i �= l}, the sector variables
are introduced by xi = yi xl , i �= l. The integration over
xl is then taken due to the delta function in the integrand and
one arrives at an integral over unit hypercube over yi .

After primary sectors are introduced each sector integral
obtained is further decomposed into next sectors, according

5 A variant of the Speer sectors is described in [21]; it is implemented
in the code FIESTA [8].
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to some rule (strategy), and so on, until a desired factorization
of the integrand in each resulting sector is achieved, i.e. it
takes the form
∫ 1

0
. . .

∫ 1

0
f (y1, . . . , yn−1; ε)

n−1∏
i=1

yai+bi ε
i dyi . (17)

Here yi are sector variables in a final sector and a function
f is analytic in a vicinity of yi = 0 and is also analytic in ε.
(Remember that the number of integrations is n − 1 because
one of the integrations was taken due to the delta function.)
Let us emphasize that such a factorization has a similar form,
both in the case of Hepp and Speer sectors and in final sectors
within some recursive strategy.

To make singularities in ε explicit, one applies pre-
subtractions in yi at zero values, i.e. for each integration with
negative integer ai , one adds and subtracts first terms of the
Taylor expansion,

∫ 1

0
ya+bεg(y) =

−1−a∑
k=0

g(k)(0)

k!(a + k + bε + 1)

+
∫ 1

0
ya+bε

[
g(t) −

−1−a∑
k=0

g(k)(0)

k! tk
]

. (18)

Therefore, when a terminating strategy is applied, a given
dimensionally regularized Feynman integral is represented
as a linear combination of convergent parametric integrals
with coefficients which are analytic functions of ε.

There are several public codes where various strategies
of recursive sector decompositions are implemented [8,25–
28]. In the case, where the basic polynomial F is positive,
Bogner and Weinzierl [28] presented first examples of strate-
gies which terminate, i.e. provide, after a finite number of
steps, a desired factorization (18) of the integrand in each
final sector.

When recursive sector decompositions are applied in prac-
tice, using a code for numerical evaluation, one does not care
that, generally, there is no domain of parameter ε where initial
integral (1) is convergent. However, in the case of Euclidean
external momenta, one could remember about the Speer’s
definition [16] and use it to prove that this naive way is right.
Indeed, starting from the analytically regularized parametric
representation (16) and using some terminating strategy one
can arrive at a factorization in final sector of the form (17),
where the exponents of the final sector variables ai + biε
obtain an additional linear combination of parameters λi .
Then one can use the same procedure of making explicit
poles in the regularization parameters by a generalization
of (18). As a result one can observe that starting from the
Speer’s domain of parameters λi where the given parametric
integral is convergent one can continue analytically all the
terms resulting from the sector decomposition and the pro-
cedure of extracting poles just by setting all the λi to zero.

However, extensions of the Speer’s prescription to sit-
uations with on-shell infrared divergences and/or collinear
divergences are not available. We are now going to provide
such an extension. To do this we will use the LP parametric
representation (5), rather than (1) and introduce an auxiliary
analytic regularization, i.e. turn from (5) to

Γ (d/2)

Γ ((h + 1)d/2 − n − ∑
λi )

∏
i Γ (1 + λi )

×
∫ ∞

0
. . .

∫ ∞

0
P−δ

∏
i

xλi
i dx1 . . . dxn, (19)

where now we keep all the factors. Although δ = 2 − ε and
λi are, generally, considered as complex parameters, we will
later consider them real, for simplicity.

In the next section, we will first derive conditions of con-
vergence of integral (5) and then conditions of convergence
of integral (19). We will prove that there exists a non-empty
domain of λi where the integral is convergent. Then, simi-
larly to how this was done by Speer for Feynman integrals at
Euclidean external momenta [16], we will formulate a defi-
nition of integrals (5) at general δ = 2 − ε which, in particu-
lar, gives a definition of dimensionally regularized Feynman
integrals with possible on-shell infrared and collinear diver-
gences.

4 Convergence of the LP representation

Let π(S) be the projection of the set S on the hyperplane
wn+1 = 0, let π(NP ) be the projection of NP on the same
hyperplane, and π(γ ) be the corresponding projections of
essential facets. It turns out that it is reasonable to turn to a
more general family of integrals (5) by assuming that P is
given by (7) where the set S is a finite set of rational numbers.
The following proposition holds.

Proposition 1 The integral (5) is convergent if and only if
A = ( 1

δ
, . . . , 1

δ

) ∈ R
n is inside π(NP ).

Proof (1) Let us begin with the necessary condition. It is
clear that the convergence of integrals

∫ ∞

0
. . .

∫ ∞

0

⎛
⎝ ∑

w∈π(S)

cwx
w1
1 . . . xwn

n

⎞
⎠

−δ

dx1 . . . dxn

with positive cw follows from the convergence of the integral

∫ ∞

0
. . .

∫ ∞

0

⎛
⎝ ∑

w∈π(S)

xw1
1 . . . xwn

n

⎞
⎠

−δ

dx1 . . . dxn

and vice versa. In particular, this means that the integral
G(t) defined by (5) for any t > 0 and the integral G(1) =∫ ∞

0 . . .
∫ ∞

0 (P(x, 1))−δ dx1 . . . dxn are both convergent or
both divergent. Let us introduce notation P̃(x) = P(x, 1).
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Let us assume that the statement is not true, i.e. that the
integral G(1) is convergent but the point A is outside the
interior of the polytope π(NP ). Let us, first, consider the case
where A is outside π(NP ). Since π(NP ) is a convex set, there
exist a plane p1w1 + · · ·+ pnwn + p0 = 0 such that π(NP )

and A are on its opposite sides. One can choose a plane such
that all pi �= 0. Let p1w1 + · · · + pnwn + p0 < 0 for all the
points w of the polytope and let p1

1
δ

+ · · · + pn
1
δ

+ p0 > 0,
or p1 + · · · + pn > −δp0.

Let us turn to the new variables xi = y pii in the integral
G(1). We obtain

G(1) =
n∏

i=1

|pi | ·
∫ ∞

0
. . .

∫ ∞

0

n∏
i=1

y pi−1
i

×
⎛
⎝ ∑

w∈π(S)

cw y p1w1
1 . . . y pnwn

n

⎞
⎠

−δ

dy1 . . . dyn .

(20)

Let us turn to hyperspherical coordinates. The new integra-
tion variables are r ∈ [0,+ ∞), α1, . . . , αn−1 ∈ [0;π/2].
To ensure the convergence of G(1) we need convergence of
the integral over the variable r , i.e.∫ ∞

0

r p1+···+pn−n · rn−1dr(
P̃(r, α1, . . . , αn−1)

)δ
. (21)

The polynomial P̃(r, α1, . . . , αn−1) consists of terms
r p1w1+···+pnwn with coefficients depending on sin αi and
cos αi , and these coefficients are almost everywhere posi-
tive. Therefore, in order to have convergence at +∞, one
should have

δ max
w∈π(S)

(p1w1 + · · · + pnwn) − (p1 + · · · + pn) > 0.

Since for all w ∈ π(S) we have p1w1 + · · · + pnwn < −p0

p1 + · · · + pn > −δp0, the left-hand side of this inequality
is negative and we come to a contradiction.

Let us now consider the case, where the point A is at
the boarder of the set π(NP ). Since G(1) is a continuous
function of δ then the convergence of the integral as some δ

leads to the convergence in a sufficiently small vicinity, i.e.
once can find an external point ( 1

μ
, . . . , 1

μ
) of the polytope

π(NP ), where the integral
∫ ∞

0 . . .
∫ ∞

0 (P̃(x))−μdx1 . . . dxn
is convergent so that we come to a contradiction. �

(2) Let us turn to the sufficient condition. Let K be the set
of vertices of a convex polytope which lies inside π(NP ).
To prove the sufficient condition, let us, first, show that if the
integral

∫ ∞
0 . . .

∫ ∞
0 (P̃(x))−δdx1 . . . dxn is divergent then the

integral

∫ ∞

0
. . .

∫ ∞

0

(∑
w∈K

xw1
1 . . . xwn

n

)−δ

dx1 . . . dxn

is also divergent.

Here are two simple properties following from the com-
parison criterion of integrals:

(a) Let Q1 and Q2 be polynomials with positive coefficients.
If the integral

∫ ∞

0
. . .

∫ ∞

0
(Q1(x) + Q2(x))

−δ dx1 . . . dxn

is divergent then the integrals

∫ ∞

0
. . .

∫ ∞

0
(Qi (x))

−δ dx1 . . . dxn

are also divergent.
(b) If a polynomial Q(x) with positive coefficients contains

terms xw1
1 . . . xwn

n and xu1
1 . . . xunn , then the convergence

of the following two integrals is equivalent:

∫ ∞

0
. . .

∫ ∞

0
(Q(x))−δ dx1 . . . dxn

and

∫ ∞

0
. . .

∫ ∞

0

(
Q(x) + xβ1

1 . . . xβn
n

)−δ

dx1 . . . dxn,

where βi = wi + z(ui − wi ), z ∈ [0, 1],

The property (a) is obvious. The property (b) follows from
the following inequalities

xw1
1 . . . xwn

n + xu1
1 . . . xunn < xw1

1 . . . xwn
n

+ xu1
1 . . . xunn + xβ1

1 . . . xβn
n

= xw1
1 . . . xwn

n (1 + xu1−w1
1 . . . xun−wn

n

+ (xu1−w1
1 . . . xun−wn

n )z). (22)

If xu1−w1
1 . . . xun−wn

n ≤ 1 then the right-hand side of (22) is
less or equal to

xw1
1 . . . xwn

n (2 + xu1−w1
1 . . . xun−wn

n )

≤ 2(xw1
1 . . . xwn

n + xu1
1 . . . xunn ). (23)

If xu1−w1
1 . . . xun−wn

n ≥ 1, then the right-hand side of (22) is
less or equal to

xw1
1 . . . xwn

n (1 + 2xu1−w1
1 . . . xun−wn

n )

≤ 2(xw1
1 . . . xwn

n + xu1
1 . . . xunn ). (24)

Let B be the set of vertices of π(NP ). Using (a) and the
condition of divergence of the integral
∫ ∞

0
. . .

∫ ∞

0
(P̃(x))−δdx1 . . . dxn
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we obtain divergence of the integral

∫ ∞

0
. . .

∫ ∞

0

(∑
w∈B

xw1
1 . . . xwn

n

)−δ

dx1 . . . dxn .

Let us choose an arbitrary convex polytope inside π(NP ),
with the set of vertices K, and consider various lines
through pairs of vertices of this polytope. Let us denote
by H the set of points of intersection of these lines
with the facets π(NP ). Applying then several times prop-
erty (b) we obtain that the convergence of the integral∫ ∞

0 . . .
∫ ∞

0

(∑
w∈B xw1

1 . . . xwn
n

)−δ dx1 . . . dxn is equivalent
to the convergence of a similar integral with the sum over the
set B ∪ H, and, therefore to the convergence of the integral
with the sum over the set B ∪ H ∪ K.

Hence, the integral

∫ ∞

0
. . .

∫ ∞

0

( ∑
w∈B∪H∪K

xw1
1 . . . xwn

n

)−δ

dx1 . . . dxn

is divergent and, therefore, according to property (a), the
integral with the sum over K is also divergent.

Now, let the point A = ( 1
δ
, . . . , 1

δ
) belong to the interior

of the polytope NP , and let integral (5) be divergent. Let us
choose an n-dimensional hypercube lying inside the polytope
and containing the point A such that its facets are parallel to
the axes. The set of the vertices of the hypercube is K and,
according to the statements above, the integral

∫ ∞

0
. . .

∫ ∞

0

(∑
w∈K

xw1
1 . . . xwn

n

)−δ

dx1 . . . dxn

is divergent. On the other hand, since K are the vertices of
the chosen hypercube, there are positive rational q and l such
that this integral can be represented as

∫ ∞

0
. . .

∫ ∞

0

n∏
i=1

(
xqi

(
1 + xli

))−δ

dxi

=
(∫ ∞

0
(xq(1 + xl))−δdx

)n

=
(

1

l
B

(
1 − δq

l
,
δ(q + l) − 1

l

))n

. (25)

Since the point A is inside the hypercube, we have q < 1
δ

<

q + l and the integral is convergent so that we come to a
contradiction. �

Suppose now that the condition of Proposition 1 does not
hold, i.e. the point A = ( 1

δ
, . . . , 1

δ

)
is not inside π(NP ).

Then we introduce a general analytic regularization and turn
to integral (19). We have

Proposition 2 The integral (19) is convergent if the point(
1+λ1

δ
, . . . , 1+λn

δ

)
∈ R

n is inside π(NP ).

Proof The proposition can be proven by the change of vari-
ables xi → x1/(λi+1)

i in (19). We then obtain 1/
∏n

i=1(1+λi )

times the following integral∫ ∞

0
. . .

∫ ∞

0
P̄−δdx1 . . . dxn, (26)

where

P̄(x1, . . . , xn, t) =
∑
v∈S̄

cvx
v1
1 . . . xvn

n tvn+1 , (27)

with S̄ = {(v1, . . . , vn, vn+1 | vi = wi/(1 + λi ),

i = 1, . . . , n; vn+1 = wn+1}. Using the convex property of
the polytopes NP and NP̄ we arrive at the desired statement.

The function P̄ is no longer a polynomial but we assume
this possibility in Proposition 1. Now, it is clear that we can
adjust parameters λi using a blowing-down or blowing up
(with −1 < λi < 0 or λi > 1) to provide convergence by
putting 1+λi

δ
between the left and the right values of the i-th

coordinates of π(NP ). �

Let us formulate this statement as an analogue of the

Speer’s theorem [16].

Corollary 1 The integral (19) is an analytic function of
parameters λi in a non-empty domain.

This domain exists for any given δ ≡ 2−ε. Now we define
the integral (5) as a function of ε as the analytic continuation
of the integral (19) from the convergence domain of param-
eters λi to the point where all λi = 0 by referring to sector
decompositions in the same way as it was outlined in the
previous section.

It suffices then to explain how sector decompositions can
be introduced for the LP integrals. If we are dealing with a
Feynman integral, with Eq. (6), we turn to (1) so that we can
apply standard terminating strategies. If this is a more general
integral, with a positive polynomial P one can reduce it to
integrals over unit hypercubes, for example, by the following
straightforward procedure. Make the variable change xi =
yi/(1 − yi ) to arrive at an integral over a unit hypercube.
In order to avoid singularities near yi = 1, decompose each
integration over yi in two parts: from 0 to 1/2 and 1/2 to 1
and change variables again in order to have integrations over
unit hypercubes. As a result, one arrives at integrals to which
terminating strategies [28] can be applied.

5 Equivalence of the new and the old prescriptions

Up to now, the code asy.m [7] included in FIESTA [8] was
based on prescriptions formulated in Sect. 2 but with the use
of the representation (1) and the corresponding product UF
of the two basic functions, rather than with the use of (5). Let
us prove that the two prescriptions are equivalent.
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Let us keep in mind that the functions U and F are
homogeneous in the variables xi , with different homogeneity
degrees.

Proposition 3 Let U and F be two homogeneous functions
of the variables xi with different homogeneity degrees such
that theNewton polytopeNU+F forU+F has dimension n+
1. Equivalently,NUF has dimension n. Then there is a one-to-
one correspondence between essential facets of NU+F and
essential facets ofNUF . This correspondence is obtained by
the projection on the hyperplane orthogonal to the vector
{1, . . . , 1, 0} which we will denote by v0.

Proof Let Γ be an essential facet of NU+F . It has dimension
n. Since NU and NF have dimension not greater than n this
means that if Γ does not intersect with one of them it should
contain the other Newton polytope whose dimension is n.
Then, due to homogeneity, its normal vector is proportional
to v0 but this cannot be the case for an essential facet. Hence
Γ has a non-empty intersection with both Newton polytopes.

Let us analyze intersections ΓU and ΓF of the facet Γ with
NU and NF , correspondingly. The hyperplane generated by
Γ has dimension n and can be defined as a vector sum of
the hyperplane generated by ΓU , the hyperplane generated
by ΓF and some vector which connects a point of ΓU and
a point of ΓF . Therefore, the vector sum of the hyperplane
generated by ΓU and the hyperplane generated by ΓF has
dimension n − 1.

Furthermore, both hyperplanes are orthogonal to the vec-
tor rΓ and to the vector v0, therefore they are also orthogo-
nal to rΓ

0 , the projection of the vector rΓ on the hyperplane
orthogonal to v0.

Now it suffices to show that rΓ
0 corresponds to a facet

of NUF . Indeed, the minimal values of scalar products of
points of this polytope with the vector rΓ

0 is achieved from
the pairwise sums of the points of the facets of ΓU and ΓF .
The linear space spanned by these points can be generated by
the vector sum of the hyperplanes spanned over the sets ΓU

and ΓF but we have just shown that this space has dimension
n − 1, i.e is a facet.

Now let us turn to the inverse statement. Let Γ be a facet
of NUF . Its normal vector rΓ is orthogonal to v0. Let us
consider the sets νU and νF consisting of points with the
minimal scalar product with rΓ

0 of NU and NF , respectively.
The sum of the hyperplanes spanned on νU and νF coin-

cides with the hyperplane spanned on Γ . Therefore, it has
dimension n − 1.

Let the scalar product of rΓ
0 and the points of νU be u0

and the scalar product of rΓ
0 and the points of νF be f0.

Furthermore, let the scalar product of v0 and points of νU be
u1 and the scalar product of v0 and points of νF be f1 The fact
that the scalar product is fixed follows from the homogeneity,
and we know than u1 �= f1.

Let us find such a vector r = rΓ
0 + {α, . . . , α, 0} that its

scalar product with points of νU and νF is the same. To do
this we solve the equation u0 + xu1 = f0 + α f1, so that
α = ( f0 − u0)/(u1 − f1).

Let Γ be the face of NUF spanned over points having
the minimal product with r . The hyperplane spanned over
Γ is the sum of hyperplanes spanned over νU and νF and
some vector connecting a point of νU and a point of νF .
The dimension of the sum of first two hyperplanes is n − 1
however the connecting vector does not belong to this sum
since it is not orthogonal to v0. Therefore Γ is a facet ofNUF

and r = rΓ . �


6 The leading order

Let us, first, assume that the conditions of Proposition 1 hold.
We have

Proposition 4 If the point A = ( 1
δ
, . . . , 1

δ

) ∈ R
n is inside

π(Γ ) for some facet Γ then the leading asymptotics of the
integral (5) is given by Eq. (13), i.e.

G(t, ε) ∼ MΓ G(t, ε) ≡ t−L(Γ )δ+∑
i r

Γ
i

×
∫ ∞

0
. . .

∫ ∞

0

( ∑
w∈Γ ∩S

cw yw1
1 . . . ywn

n

)−δ

dy1 . . . dyn

(28)

when t → +0, where ri and L(Γ ) are defined in Sect. 2.

Proof Let us observe that for w ∈ Γ we have wn+1 =
−∑n

i=1 r
Γ
i wi + L(Γ ), and, since NP is a convex set, we

have wn+1 > −∑n
i=1 r

Γ
i wi + L(Γ ), for w ∈ S\Γ , i.e.

wn+1 = −∑n
i=1 r

Γ
i wi + L(Γ ) + κw,Γ , where κw,Γ > 0.

If we change variables xi = tr
Γ
i · yi in the integral (5) we

obtain

F(t) = t−L(Γ )δ+∑n
i=1 r

Γ
i

×
∫

. . .

∫
(Φ(y, t))−δdy1 . . . dyn, (29)

where

Φ(y, t) = φ(y) +
∑
S\Γ

cw yw1
1 . . . ywn

n tκw,Γ ,

φ(y) =
∑
Γ ∩S

cw yw1
1 . . . ywn

n . (30)

Let us observe that Φ−δ(y, t) is a positive continuous
function of n + 1 variables which is non-decreasing at any
fixed y with respect to t when t → +0. Moreover, we have
Φ−δ(y, t) → φ−δ(y), and the integral

∫ ∞
0 . . .

∫ ∞
0 φ−δ(y)dy

is convergent because the point A = ( 1
δ
, . . . , 1

δ
) belongs to

the interior of π(Γ ) (according to Proposition 1).
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Then, using a theorem about the continuity of an integral
depending on a parameter, at t → +0 we obtain

∞∫

0

. . .

∞∫

0

Φ−δ(y, t)dy →
∞∫

0

. . .

∞∫

0

φ−δ(y)dy (31)

so that we arrive at (28). �

If the condition of Proposition 1 does not hold we can

use Proposition 2 and adjust an analytic regularization to
provide convergence. Let Γ be an essential facet. Then, like
in the proof of Proposition 2, we can adjust parameters λi
by putting 1+λi

δ
between the left and the right values of the

i-th coordinates of π(Γ ). After this, we can follow the same
arguments as in the proof of Proposition 3 and obtain the
following generalized version.

Proposition 5 Let G(t; ε) be integral (5) with a polynomial
(7) and let Γ be an essential facet. Then one can adjust ana-
lytic regularization parameters λi , i.e. to turn to the integral
G(t; ε; λ1, . . . , λn) defined by (19), by satisfying the con-

dition
(

1+λ1
δ

, . . . , 1+λn
δ

)
∈ π(Γ ), so that the contribution

of this facet to the expansion of G(t; ε; λ1, . . . , λn) will be
leading and have the form (up to a coefficient independent
of t)

t−L(Γ )δ+∑n
i=1(λi+1)rΓ

i

∫ ∞

0
. . .

∫ ∞

0

n∏
i=1

yλi
i

×
( ∑

w∈Γ ∩S

cw yw1
1 . . . ywn

n

)−δ

dy1 . . . dyn (32)

when t → + 0.

Let us emphasize that the projection π(NP ) of the Newton
polytope can be covered by the corresponding projections
π(γ ) of essential facets. The intersection of any pair π(γ1)

and π(γ2) of projections of the facets has dimension less than
n. Therefore, the contribution of one of the facets can be made
leading by adjusting analytic regularization parameters. We
can refer again to sector decompositions in order to prove
that the contribution of each facet is a meromorphic function
of parameters ε and λi so that then we can expand a result
for this contribution in the limit of small λi up to a finite part
in λi keeping possible singular terms in λi , and then expand
in ε at ε → 0.

We can use this procedure as an unambiguous definition
of the leading contribution of a given facet, i.e. we can clar-
ify the prescriptions in Sect. 2 and define it as the expanded
analytic continuation of the contribution described in Propo-
sition 5 in the two successive limits, λi → 0 and ε → 0.
However, it is necessary to specify how the limit λi → 0 is
taken. At least two practical variants were in use: (1) take
the limits λi → 0 for i = 1, 2, . . ., or in some other fixed

order, keeping expansion up to λ0
i ; (2) choose, λi = piλ1,

i = 2, 3, . . ., where pi is the i-th prime number and then
take the limit λ1 → 0. The second variant was systemati-
cally used, in particular, in Refs. [29,30]. In both cases, the
definitions depends on the order of parameters λi but final
results for the whole expansion should be independent of this
choice if the initial integral is convergent at λi = 0.

Now, we can compose the sum
∑
i

M0
i G(t, ε, λ1, . . . , λn), (33)

where each term is convergent in the corresponding domain
of λi and where it is the leading term of the whole expansion.
Let us refer again to theorems on sector decompositions [28]
which make manifest the analytic structure with respect to the
regularization parameters (ε, λ1, . . . , λn) in order to claim
that each term can be continued analytically to a sufficiently
small vicinity of the point (ε, 0, . . . , 0). Let us assume that, at
a given ε, the initial integral is analytic. (This can be checked
with sector decompositions.) In particular, this happens if
at this ε, the initial integral is finite. Then it turns out that
the limit of (33) at λi → 0 gives the leading order terms in
accordance with our main conjecture so that it looks like we
have justified it. However, here we implied that the operations
of expansion and analytic continuation commute. We believe
that this is indeed the case and hope that this property can be
proven.

It is clear that one has to choose the same way of taking
the limit λi → 0 for all the facets. Possible individual sin-
gularities in λi should cancel in the sum of contributions of
different facets. Then λi → 0 and we are left with expansion
in ε. Of course, the order of contributions to the expansion
is measured in powers of t when the limit λi → 0 is already
taken. The true leading order of the expansion is given by a
sum of contributions of some essential facets which can be
called leading.

7 General order for one essential facet

Let us consider a simple situation with one essential facet.
For Feynman integrals, this can be, for example, an expan-
sion in the small momentum limit, where a given Feynman
graph has no massless thresholds. Then one can refer to gen-
eral analytic properties of Feynman amplitudes and claim
that the Feynman integral is analytic up to the first threshold
so that if can be expanded in a Taylor series at zero external
momenta. Of course, there is only one essential facet in the
corresponding Newton polytope associated with the polyno-
mial P in (5) and the limit looks trivial. However, our goal is
an integral with an arbitrary polynomials with positive coef-
ficients, so that the situation with one essential facet should
not be qualified as trivial. We have the following

123



Eur. Phys. J. C (2019) 79 :136 Page 11 of 12 136

Proposition 6 If there is only one essential facet Γ in the
Newton polytope then

F(t)

∼
∫ ∞

0
. . .

∫ ∞

0
[MΓ (P(x1, . . . , xn, t))

−δ]dx1 . . . dxn (34)

when t → +0.

Proof Let us start from Eq. (29). The second term in the
brackets tends to zero at t → +0, so that one can obtain
a series in powers of t by expanding this expression with
respect to the second term, according to the prescriptions
formulated in Sect. 2. This is, generally, not a Taylor expan-
sion. Rather, this is an expansion in powers of t1/q where q
is the least common multiple of the rationals κw,Γ .

The coefficients at powers of t in the resulting sum in the
integrand have the following form (up to constants):

E(y1, . . . , yn)

=
n∏

i=1

y

m∑
j=1

u j
i k j

i

(∑
Γ ∩S

cw yw1
1 . . . ywn

n

)−m−δ

, (35)

where m = 0, 1, 2, . . . are powers of the Taylor expansion
with respect to the second term, k j are non-negative inte-

gers,
∑m

j=1 k j = m, and the points u j = (u j
1, . . . , u

j
n),

j = 1, . . . ,m belong to the projection of π(S\Γ ) on the
plane wn+1 = 0.

Let us define ũi = ∑m
j=1 u

j
i k j . Taking into account the

convex property of the set π(NP ), the property of k j and the
fact that there is only one essential facet Γ , we can conclude
that the point 1

m (̃u1, . . . , ũn) is an internal point of π(NP ).
Let us prove, using Proposition 2, that the convergence prop-
erty of the integral (35) of E(y1, . . . , yn) is equivalent to the
condition that the point A = 1

m+δ
(̃u1 + 1, . . . , ũn + 1) is

inside π(NP ). Let us assume that this is not true, i.e. A is
not an internal point of π(NP ). Then there should exist a
hyperplane

∑n
i=1 piwi + p0 = 0 such that π(NP ) and A

belong to the different sides from this hyperplane, or on this
hyperplane.

We have the following four conditions

1. The inequality
∑n

i=1 piwi + p0 ≤ 0 holds for w ∈
π(NP ).

2. The relation 1
δ+m

∑n
i=1 pi (̃ui + 1) + p0 ≥ 0 holds for

the point A.
3. The condition of convergence of the initial integral is

1
δ

∑n
i=1 ci + c0 < 0.

4. The relation
∑n

i=1 pi (
1
m ũi − w̃i ) < 0 holds for some

point w̃ ∈ π(NP ) because 1
m (̃u1, . . . , ũn) is an internal

point of the convex set π(NP ).

Using these four conditions we arrive at the following
chain of inequalities:

0
2.≤

n∑
i=1

pi (̃ui + 1) + p0(δ + m)

=
n∑

i=1

pi ũi +
n∑

i=1

pi + p0δ + p0m

3.
<

n∑
i=1

pi ũi + p0m
4.
< m

n∑
i=1

pi w̃i + p0m

= m

(
n∑

i=1

pi w̃i + p0

)
1.≤ 0. (36)

As as result, we come to a contradiction so that the inte-
grals of E(y1, . . . , yn) are convergent. This means that (34)
is true. One can represent this expansion by introducing an
auxiliary parameter, ρ, into the second term in the square
brackets in Eq. (29) and perform an expansion in ρ at ρ → 0
and setting ρ = 1 in the end. �


8 Summary

We advocated the Lee–Pomeransky representation (5) [15]
as a means to describe and to prove expansion by regions.
Starting from the prescriptions of expansion by regions which
were earlier implemented in the code asy.m [7] included in
FIESTA [8] and now reformulated with the use of the LP
representation (5) we clarified these prescriptions and made
first steps towards their justification.

– We performed an analysis of convergence of the LP rep-
resentation, proved a generalization of the Speer’s theo-
rem for integrals (5) and presented a general definition
of dimensionally regularized integrals (5).

– We presented a direct proof of equivalence of expan-
sion by regions for Feynman integrals based on the stan-
dard Feynman parametric representation (1) and the LP
representation (5). This change is now implemented in
FIESTA [8] so that revealing regions is now performed
in a much more effective way just because the degree of
polynomial P = U + F in (5) is less than the degree of
the product of the polynomials UF .

– We proved our prescriptions for the contribution of the
leading order for each essential facet.

– We proved our prescriptions in the general order in the
simple situation with one essential facet.

Let us emphasize that the use of an auxiliary analytic reg-
ularization is very natural to explicitly define dimensionally
regularized integrals (5). However, its use for the definition
of individual contributions of facets to the expansion in a
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given limit is even more important because, otherwise, these
terms can be ill-defined.

We believe that the commutativity of the expansion proce-
dure with the operation of analytic continuation with respect
to the regularization parameter can be proven so that this will
give a justification of the prescriptions at least in the lead-
ing order of expansion. Another possible scenario would be
to prove the prescriptions in a general order of expansion
by constructing a remainder with the help of the operator∏

i (1−Mni
i ) with appropriately adjusted subtraction degrees

ni . The problem would be divided into two parts: justifying
the necessary asymptotic estimate of the remainder where an
auxiliary analytic regularization is not needed and obtaining
terms of the corresponding expansion where, generally, an
analytic regularization is necessary.
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