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Abstract We study the ground state instability of a strongly
coupled QFT with the z = 2 Schrödinger symmetry in a con-
stant electric field using probe branes holography. The system
is N f N = 2 hypermultiplet fermions at zero charge den-
sity in the supergravity Schrödinger background. We show
that the instability occurs due to Schwinger-like effect and
an insulator state will undergo a transition to a conductor
state. We calculate the decay rate of instability and pair pro-
duction probability by using the gauge/gravi t y duality. At
zero temperature for massive fermions, we suggest that the
instability occurs if the critical electric field is larger than the
confining force between fermions, which is proportional to an
effective mass. We demonstrate that, at zero temperature, the
Schrödinger background simulates the role of a crystal lat-
tice for massive particles. We also show that at finite ’t Hooft

coupling for particles with a mass higher than
√

λ
πβ

, in this
background, instability does not occur, no matter how large
the external electric field is, meaning that we have a perfect
insulator. Moreover, we derive Euler–Heisenberg effective
Lagrangian for the non-relativistic strongly correlated quan-
tum theory from probe branes holography in Schrödinger
spacetime.
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1 Introduction

The decay of false vacuum to true vacuum might be con-
sidered as a pair production mechanism. The Schwinger
pair production results an instability of the vacuum in QED
[1,2]. In the condensed matter systems ground state or vac-
uum could also experience instability in the same situation.
For example, the electric breakdown of an insulator, when
subjected to a high external electric field, could be consid-
ered as instability in vacuum. At the presence of an exter-
nal electric field, the decay of the ground state to ground
state in condensed matter physics is considered as the Zener
breakdown of the Mott (or band) insulator [3]. The revisited
version of Euler–Heisenberg effective Lagrangian in con-
densed matter physics is studied through the ground state
to ground state transition amplitude or the Zener tunneling
rate [4].

Generally, the Schwinger effect as a vacuum instability is
a non-perturbative phenomenon. In strongly correlated sys-
tems, calculating the Schwinger effect demands great effort.
The well-known toolbox for studying robust coupled sys-
tems in quantum field theories is AdS/CFT correspondence
or more generally the gauge/gravi t y duality. The original
AdS/CFT correspondence states that: The the AdS5 × S5,
as the near extremal solution of Nc coincident D3−branes,
is dual to 3 + 1 dimensional super-conformal field theory
with SU (Nc) gauge degrees of freedom. The gauge degrees
are shown by the adjoint representation of the SU (Nc). For
adding other degrees of freedom in addition to of gauge
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fields, we add N f D7−branes, see [5], and for the simplic-
ity, consider them as a probe (N f � Nc). This configuration
describes a QCD-like system [5]. In general, this means that
we add N = 2 hypermultiplet fermions (quarks) in funda-
mental representation to the background gauge theory. From
the gravity side, these fermions are the strings with one end
on D7 branes and the other on D3 branes. Dynamics of the
D3/D7 system is given by the DBI action of probe D7
branes. From the gauge/gravity dictionary, this action would
be an effective action of fermions in the boundary theory.
The vacuum instability of the supersymmetric QED(QCD)
is studied through probe brane holography in the AdS back-
ground in the [6]. Results are in agreement with Schwinger
pair production in QED after replacing ’t Hooft coupling λ

with the QED coupling constant, e2. We aim to generalize
this idea to QFT with the Schrödinger symmetry instead of
the conformal symmetry. The cold atoms system known as
fermions at unitarity is a famous example of a system with the
Schrödinger symmetry studied using holography in the [7],
see also [8–11].

By using null Melvin twist(NMT ) transformations [12],
or T sT [13] or the AdS geometry solution of the type I I B
supergravity, which has a dual QFT with conformal sym-
metry, the spacetime can be generated with the Schrödinger
symmetry which has a dual non-relativistic QFT. Follow-
ing [14], we study the DBI action of the probe D7 branes in
the Schrödinger background. From Legendre transformation
of the DBI action, we propose the effective action and Euler–
Heisenberg effective Lagrangian of the systems with strong
interaction with the z = 2 Schrödinger symmetry. The elec-
tric field on the probe branes will distance the two ends of a
string on the same D7-brane, and if it is larger than a critical
value, it will tear the string apart. In other words, meson dis-
sociates, instability occurs, and non-zero current produces.
In the gravity side, this means that the probe branes fall in
the background black holes. At non-zero charge density, this
always occurs in the AdS background see [15]. We check
this statement in the supergravity Schrödinger background.
On the other hand, the presence of the electric field on the
branes introduce world-volume horizon, to which we could
assign a temperature. This temperature is different from the
background Hawking temperature. Thus, we deal with a non-
equilibrium situation. Consequently, the occurrence of insta-
bility means that we switch from an equilibrium state to a
non-equilibrium one. We study the decay rate of this insta-
bility that might produce the fermion and anti-fermion pairs
through the Schwinger effect in the Schrödinger background.
Generally, the instability at the presence of a constant electric
field transforms us from an insulator state into a conductor
state. We study the breakdown of the vacuum (ground state)
of strongly coupled systems with the z = 2 Schrödinger sym-
metry at the presence of an external electric field via probe
branes holography.

2 Review on probe branes in Schrödinger background

Consider a QFT with external conserved current operator Ja

which has the z = 2 Schrödinger symmetry. The z = 2
Schrödinger symmetry respect the Lifshitz scaling as

t → λ2t and x → λx. (1)

The holographic dual to this system could be generated by the
null Melvin twist(NMT) transformations of the D7 branes
as the probe in the background of D3 branes. Due to the
probe limit, the dynamics of the system is given by the DBI
action [14].

The DBI action is

SD7 ≡ −N f TD7

∫
dξ8e−Φ

√
det

(
[g + B]ab + (2πα′) Fab

)
,

(2)

where ξa are D7 worldvolume coordinates and

TD7 = 1

(2π)7gsα′4 . (3)

is D7 branes tension. The gab and Bab are the induced met-
ric and induced B field from the background on the probe
branes, respectively. Let embed the D7 branes in 10 dimen-
sion space–time as follows :

The dual theory would live on intersection of D3 and D7
branes at r = 0 which is denoted by the (x+, x−, x). As it
clear, there is a O(2) symmetry in (χ, θ) direction which
clarify the shape of D7 branes relative to the background.
Without loss of generality, we assume that χ = 0 and θ =
θ(r). We introduce following gauge field on the probe branes

Ax = Ebx
+ − 2b2Ebx

− + ax (r). (4)

So the Eq. (2) would be1

SD7 = −N
∫
dr

√−K (r) detMab, (5)

where

detMab ≡ gxx gα1α1

{
grr

[
(2πα′)2E2

β H1 + gxx H2

]

+(2πα′)2H2a
′2
x

}
, (6)

which we have defined

grr = 1

r2 f (r)
+ θ ′2(r),

1 Which we normalized it with volume of boundary theory, i.e.,
Volx+,x−,x,y .
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H1 = β2[r2 − β2 f (r) sin2θ(r)]
4r4K (r)

cos4θ(r),

H2 = − f (r) cos4θ(r)

16r4K (r)
. (7)

Before going further let us take a look at thesolution of Euler–
Lagrange equations of ax (r) and also θ(r) at the near bound-
ary. Considering zero expectation value for ax at the dual
boundary theory, we have [14,16]

ax (r) = 〈J x 〉
2(2πα′)2N r2 + · · · (8)

θ(r) = 2πα′mr + θ2r
3 + · · · (9)

where 〈J x 〉 is conserved current of charged fermions (or fla-
vors in the fundamental representation) in the dual boundary
field theory and m is representing the mass of the fermions.
It was shown that at the zero electric fields on the D7 branes
in the AdS background, there are two allowed embedding
for probe branes which could be classified by the ratio of
the flavors mass and the background temperature, (mT ). The
DBI action as the free energy of dual theory would tell us
which embedding is thermodynamically favorable [17,18].
For the large value of m

T the Minkowski embedding (ME)
and for small m

T the black hole embedding (BE) is favorable.
From a geometry point of view, the ME will happen if the
compact dimension of the probe D7 branes shrinks to zero
outside of the background event horizon. The BE embed-
ding, as its name is, will happen if the compact coordinates
fall into the background Blackhole. For the non-zero elec-
tric field on the probe branes, we also have another class
of embedding [17,20] which known as Minkowski embed-
ding with the horizon (MEH). At the non-zero electric field,
the probe D-branes would have the world-volume horizon
which, in general, differs from the background event horizon.
The same embeddings is allow in the Schrödinger space–
time. For example see Fig. 1.

It is clear that, from Fig. 1, in the small current region we
have two current J with the respect to the one m.2 These
two different current are illustrating the MEH and BE, for
more detail see [19]. To explain these embedding let us solve
Euler–Lagrange equation for ax (r):

∂L
∂a′

x
=〈J x 〉 → N K (r)(2πα′)2H2

gxx gα1α1√−K (r) detMab
= 〈J x 〉

(10)

Solving a′
x from Eq. (10) and then inserting it into the Eq. (5)

we get the on-shell action

SD7 = −N 2
∫ rH

0
dr K (r)gxx gα1α1 g

1
2
rr

√
V (r)

U (r)
(11)

2 For example, see A and B in Fig. 1.

Fig. 1 m-J curve for Eβ = 0.1 and T = 0.45015 and β = 1. the
maximum value is located at mmax = 1.31401

which we define

U (r) = 〈J x 〉2

(2πα′)2 H2
+ N 2K (r) gxx gα1α1

V (r) = gxx |H2| − (2πα′)2E2
β H1 . (12)

We could also define the effective action of the dual QFT3

by the Legendre transformation of the on-shell action [6],
which is

L = SD7 − a′
x
δSD7

δa′
x

= −
∫ rH

0
drg1/2

rr

√
V (r)U (r).

(13)

Obviously from the Eq. (12), U (r) and V (r) could be neg-
ative or positive. The real condition of the action force U
and V to change their signs at the same point where we call
it r∗(0 < r∗ < rH ). This point extracts from the following
equations:

U (r∗) = 0 →
[
gxx |H2| − (2πα′)2E2

β H1

]∣∣∣∣
r∗

= 0,

V (r∗) = 0 →
[ 〈J x 〉2

(2πα′)2H2
+ N 2K (r) gxx gα1α1

]∣∣∣∣
r∗

= 0

(14)

The r∗ is representing the world-volume horizon or horizon
of the open string metric, see Eq. (B.16) and also [21–23].
It could be assign a temperature to this effective horizon,
which is different from background Hawking temperature
T . This situation shows that we deal with a non-equilibrium
condition. In other words, the matter sector, which realize

3 In the vacuum or equilibrium case this would be free energy, but in
here we deal with non-equilibrium steady state, [20,24,25].
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by the probe D7 branes, has different temperature relative
to the background plasma, D3 branes. Therefore, in the dual
theory we deal with non-equilibrium steady state, [24,25].
Continue with the Eq. (14), we able to derive the nonlinear
DC conductivity, 〈J x 〉 = σ(Eβ)Eβ :

σ = N b cos3 θ(r∗)
4r2∗

√
r2∗ − b2 sin2 θ(r∗) f (r∗). (15)

Interestingly, as it clear from the Fig. 1, for the mass of
fermions greater than a maximum value, mmax , the current
〈J x 〉 is zero, and we have Minkowski embedding. The phase
transition could occur, and the state with 〈J x 〉 = 0 switches
to 〈J x 〉 
= 0 state or from ME to BE (or MEH), see [17,18] .

Let us forget about non-equilibrium condition and con-
sider L in the Eq. (13) as the Helmholtz free energy same as
the equilibrium thermodynamic. The heat capacity i.e.,

CV = −T
∂2L
∂T 2

∣∣∣∣
Eβ ,β

(16)

feels singularity exactly at the r∗ in Eq. (14), likes to the first
order phase transitions in ordinary thermodynamics.
For the zero electric fields, we do not have any world-volume
horizon or the singularity for heat capacity (16). One can
conclude that: At non zero temperature, the electric field
breaks the bond state of neutral charge pairs, which are
binding as mesons or Cooper pairs. Also at the zero back-
ground temperature, this phenomenon happens because of
the external electric field and existence of MEH. A transition
from the state with〈J x 〉 = 0 in the dual theory to the states
with 〈J x 〉 
= 0 can be considered as a change from false or
metastable ground state (or vacuum) to a true ground state.
Consequently, at the presence of the electric field an insu-
lator state 〈J x 〉 = 0 will suffer from the instability due to
the electrical breakdown. Although we will see that, on the
Schrödinger background, there is a situation to have a per-
fect insulator. In the next section we investigate the instability
which causes the phase transitions in schrödinger geometry
from type IIB supergravity.

3 Ground state instability

From the holographic point of view in the AdS background,
the imaginary part of an effective action, which shows vac-
uum to vacuum transition, has been studied in [6] for the
supersymmetric QCD (QED) systems. It would be interest-
ing if we could generalize this idea to other systems such
as condensed matter systems, by using gauge/gravity dual-
ity. Following [6], for a system with Schrödinger symmetry
such as cold atoms, we study the decay rate of the ground
state to ground state via probe branes holography. To do this

we put 〈J x 〉 = 0 in the Eqs. (13) or (11),4 which means that
the electric field is turned on and we have our probe branes
with Minkowski embedding yet. In other words we are study-
ing electric field effects on the insulator state which is a pair
of fermions bound together. In the condensed matter envi-
ronment the dielectric breakdown of band(or Mott) insulator
from the ground state to ground state transition was studied
in [3]. As repeatedly mentioned, living in an insulator state
means we have 〈J x 〉 = 0 so from Eq. (13) we will have:

L = −N
∫ rH

0
drK 1/2(r)

×
√
gxx grr gα1α1

[
gxx |H2| − (2πα′)2E2

β H1

]
. (17)

It is clear that the function under the square root in the Eq. (17)
can be a negative quantity at specific intervals. Therefore, the
effective action is a complex quantity and in general we have

L = i Im L
∣∣∣∣
rH

rI

+ Re L
∣∣∣∣
rI

0
(18)

The rI (0 < rI < rH ) is obtained from the following equa-
tion

[
gxx |H2| − (2πα′)2E2

β H1

]
rI

= 0. (19)

Definitely, at the zero electric fields, we will have rI = rH .
Complex effective action is a symbol of having an instabil-
ity of the system which means that the system lives in the
false vacuum or false ground state. In a Quantum theory, the
vacuum to vacuum amplitude is provided by

〈0|U (t)|0〉 ∝ exp(i L V t)

where U (t) is unitary time evolution operator of the system
and V is a volume of the space and |0〉 stands for a ground
state.In general we have

L = ReL + i
Γ

2
. (20)

Therefore, the non-zero imaginary part of effective action,
same as Eq. (18), is proportional to the amplitude of decay
rate of the vacuum. As previously discussed, at the presence
of an external electric field decay of the unstable vacuum to
the stable vacuum can be interpreted as the Schwinger-like
pair production in the Schrödinger geometry.5 In the follow-
ing sections, we study the imaginary and the real part of the
effective action for the massless and massive charge carriers

4 For 〈J x 〉 = 0 , Eq. (13) is a same as Eq. (11).
5 Instead of vacuum we repeatedly use ground state due to the non-zero
chemical potential μ which in the dual theory related to the number
operator of a Schrödinger algebra.
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in the Schrödinger background and compare our result with
the relativistic one in the AdS background.

4 Ground state instability for gapless systems

For the embedding with θ(r) = 0 in the bulk gravity side
we would have massless charge carriers in the dual boundary
theory. Since at the zero mass we deal with the scale invariant
theory,6 this configuration resembles the gapless systems in
the condensed matter systems.7 For the θ(r) = 0 Eq. (7)
reduce to

H1 = β2

4r2K (r)
, H2 = − f (r)

16r4K (r)
. (21)

Hence, from the Eq. (19) we find that

rI = κ rH (22)

which we have defined that

κ =
(

1 + 4(2πα′)2E2
ββ2r4

H

)−1/4

= (
1 + 16E2

β

|μ|
π2T 4λ

)−1/4
.

(23)

In the last term we apply Eq. (A.12) and (2πα′)2 = 2π2λ−1.
Clearly κ < 1 so as already mentioned we have complex
effective action with: 0 < rI < rH . If we restore the Eβ with
E/2β, Eq. (22) will coincide with rI for massless flavors in
the AdS background, see [6].

4.1 Decay rate of ground state for the gapless systems

As previously discussed, the imaginary part of an effective
action is related to the decay rate of the systems from false
vacuum to the true vacuum. From Eqs. (18) and (17) for the
massless bonded fermions we get that

Im L = −N
∫ rH

rI

dr

8 r5

√
− f (r) + (2πα′)24β2E2

β r4

f (r)

= − N
8κ2r4

H

(
1 − κ4

8κ2 π

)
.

(24)

After replacing κ from Eq. (23), we will find that

Im L = Nπ

64
(2πα′)24β2E2

β. (25)

6 At the zero temperature.
7 In condensed matter physics it was suggested that Kondo insulators
are gapless, see [38].

Remembering that N = N f TD74π2 and also

λ = Nc g
2
QFT 2πgs = g2

QFT TD7 = 1

(2π)7gsα′4 ,

(26)

from Eq. (20), we get that

Γ = N f Nc

32π
4β2E2

β = N f Nc

16π |μ| E
2
β. (27)

This is similar to the pair production amplitude from
Schwinger instability in QED, see [1]. The Eq. (27) is the
same as AdS result in [6], if we replace Eβ = E/2β and
N f = 1. The reason for the similarity result between rela-
tivistic and non-relativistic Schwinger instability is that they
have the same bulk mechanism of instability; the electric
field will tear apart strings with both ends on the same probe
brane. So finally we could say that for the Eβ 
= 0 the sys-
tem always will decay from 〈J x 〉 = 0, an insulator state, to
〈J x 〉 
= 0 or a conductor state. This result, as Eq. (27) shows
it, is independent of the background temperature. Therefore,
at zero background temperature, we also will have the ground
state instability, and the Minkowski embedding will switch
to the other embedding with non-zero current which is MEH.
Moreover, it is evident from Eq. (27) that it does not matter
how small the electric field is, the ground state of massless
fermions is always unstable because of the electric field. At
the next section, we will see that the ground state in the elec-
tric field for the massive fermions behaves entirely different
to the one for massless fermions.

4.2 Euler–Heisenberg action for the gapless systems

It was shown that the real part of the effective action
would produce the Euler–Heisenberg effective action of the
QED(SQCD), [6]. In the Schrödinger background from Eq.
(17), the real part of the effective action for massless embed-
ding would be

Re L = − N
8κ2r4

H

∫ κ

0
dx

1

x5

√
κ4 − x4

1 − x4

= − N
8κ2r4

H

⎛
⎝

√
πκ3Γ

(
5
4

)
2F1

( 1
4 , 1

2 ; 7
4 ; κ4

)
2Γ

( 7
4

)
⎞
⎠ .

(28)
For small κ or μ E2

β < λ T 4 we have

Re L = N
(
c1 + c2|μ| E2

β ln

(
E2

β |μ|
λT 4

)

+O
⎛
⎝

(
E2

β |μ|
λT 4

)2
⎞
⎠

⎞
⎠ (29)
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where c1 and c2 are numeric constant. Again if we redefine
E = 2βEβ the similar result to the relativistic gapless sys-
tems will produce, see [6] and references therein. The real
part of the effective action depends on the background tem-
perature. We could find a difference between the real effective
action in the conducting phase 〈J x 〉 
= 0, Eq. (13), and in
the insulator phase, Eq. (29), which would be a positive and
finite quantity:

Re Linsulator − Re LConductor ∝ Cβ2E2
β (30)

where C is a positive numeric constant. Thus we could pre-
sume that the energy difference is also finite so the real part
of the effective action for zero current is meaningful, see
also [6].

5 Ground state instability for the gapped systems

By the gapped systems we mean that we would deal
with massive charge carriers. For simplicity we consider
massive fermionic degrees of freedom at the background
medium(plasma) with zero temperature. As already dis-
cussed, for massive flavors we have θ(r) 
= 0.8 With this
assumptions the induced metric on the probe D7 branes, with
Table 1 embedding, is

ds2 = M(r)

r2

(
−M(r)dx+2

r2 + 2dx+dx− + dx2 + dy2
)

+ 1

M(r)

(
dr2/r2 + ds2

α

)
(31)

where M(r) = 1+(2πα′m)2r2 and ds2
α = (σ 2

1 +σ 2
2 +σ 2

3 ).9

Form = 0, the metric Eq. (31) would have z = 2 Schrödinger
isometry. With a little bit of work we recover the Eq. (17)
with

H2 = −1

16r4 , H1 = β2(1 − (2πα′m)2β2)

4r2M(r)
. (32)

The instability condition i.e., Eq. (19), simplifies to

1 −
4(2πα′)2β2E2

β

(
1 − (2πα′m)2β2

)
r4
I

M2(rI )
= 0. (33)

Note: For (2πα′m)2β2 < 1 we could always define a
real effective electric field Ẽ such that Ẽ2 = 4β2E2

β(1 −
(2πα′m)2β2); therefore, we could rewrite the Eq. (33) as

8 We consider the distance between D3 and D7 branes such that
sin θ(r) = 2πα′m.
9 This is quit similar to ds2

S3 .

Table 1 D3 − D7 embedding

x+ x− x, y r α1 α2 α3 θ χ

D3 × × ×
D7 × × × × × × ×

1 − (2πα′)2 Ẽ2

M2(rI )
= 0. (34)

This equation will give us rI , which looks similar to
the result in the AdS background for QCD like systems:

r2
I =

√
2πα′ Ẽ − (2πα′m)2 . (35)

The new electric field Ẽ has dimension of the relativis-
tic electric field. Clearly we would have real rI if the
electric field has a larger value than the critical value
which is Ẽc = 2πα′m2.10 So the critical electric field Ec

is

Ec = 2πα′m2√
1 − β2(2πα′m)2

. (36)

or we could define a non relativistic critical electric field Ec
β

as follows

Ec
β = 2πα′m2

2β
√

1 − β2(2πα′m)2
. (37)

If we compare the critical value of electric field in Eq. (36)
with the relativistic one which is Ec = 2πα′m2 [6], we see
that11

Esch
c > E AdS

c , (38)

which means that in the non-relativistic systems the external
electric field must be stronger than its relativistic counter-
part to pairs production happen or instability occurs.12 By
defining the effective mass m∗ as :

m2∗ = m2√
1 − β2(2πα′m)2

,= m2√
1 − π2m2

μλ

(39)

10 We should note that Ec = 2πα′m2 is the critical electric field in the
AdS background, see [6].
11 Note that we considered (2πα′m)2β2 < 1 or in term of μ and λ,
m2

λ
<

|μ|
π2 .

12 We must notice that electric field in the relativistic theory has a
different scale dimension in comparison to theory with Schrödinger
symmetry, so we compare 2βEc

β = Esch
c and E AdS

c .
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from the Eq. (36) (or Eq. (37)), we will have

ESch
c = 2βEc

β = 2πα′m2∗. (40)

This is the same as the relativistic critical electric field which
the mass of fermion m has been replaced by the effective
mass m∗. Consequently, the geometric distinction between
AdS and Schrödinger space–time has been changed to the
difference in masses of charge carriers in the dual theory.
Therefore, we could propose that the potential between two
fermions or quarks with a distance of l from each other, in
the Schrödinger space–time Eq. (A.5), would be:

V (l) =
√

2π√
λ

m2∗
2β l

. (41)

This result is nontrivial, but due to the compact coordinate
x−, would make sense.13 In the solid-state physics, moving
an electron inside a crystal lattice would be the same as its
motion in the vacuum if we use effective mass for the elec-
tron instead of the electron’s mass; the similar behavior is
observed in here. Due to the effective mass, we could assume
that the compactification along the x− brings the same
physics as a periodic potential brings to the study of the band
structure in a crystal lattice at solid-state physics. It should be
clear that from Eq. (39), this is significant effect at the finite
’t Hooft coupling λ and for large ’t Hooft coupling, m∗ = m;
therefore, we are reduced to the result in the AdS background.

5.1 Decay rate: imaginary part of the effective action

The effective action for the gapped system or massive
fermions, from Eqs. (17) and (18), for the electric field higher
than the critical electric field, i.e.,Eβ > Ec

βc, has imaginary
term which is given by

Im L = −N
∫ ∞

rI
dr

1

8r5

√
−1 + (2πα′)2 Ẽ2r4

M(r)2 (42)

This is the quite same effective action that was found in the
AdS background in which E is replaced by Ẽ . With subse-
quent changes

r2

r2
I

= 1 + x, ε = Ẽc

Ẽ
= 2πα′m2∗

2βEβ

,

Equation (42) changes to

Im L=N (1 − ε)5/2(2πα′)2 Ẽ2

16

∫ ∞

0
dx

√
x(2 + x + εx)

(1 + x)3(1 + εx)
(43)

13 It would be interesting to find this potential from the Wilson loop
calculation, but for finite quark mass there exist difficulties. For the
fermions with a large mass see [26–28].

for large electric field respect to Ẽc we could use the ε expan-
sion which would give us following result

Im L = N π

64
(2πα′)2 Ẽ2

⎛
⎝1 + π

4

Ẽc

Ẽ
Log

Ẽc

2Ẽ
− 1

3π

(
Ẽc

2Ẽ

)3

+O
⎛
⎝

(
Ẽc

2Ẽ

)4
⎞
⎠

⎞
⎠ , (44)

This quantity is the same as the relativistic result from AdS
background, see [6]. Expanding imaginiary term of the effec-
tive action relative to the small π2m2

|μ|λ , and also replacing E =
2βEβ , the decay rate or pair production probability will be

ΓSch = −π
N f Ncm2

λ|μ| E2
(

1 − m2

8
√

λE

)

+
(

1 + m2π2

λ|μ|
)

ΓAdS + · · · (45)

where

ΓAdS =N π

32
(2πα′)2E2

⎛
⎝1 + π

4

Ẽc

E
Log

Ẽc

2E
− 1

3π

(
Ẽc

2E

)3

+O
⎛
⎝

(
Ẽc

2E

)4
⎞
⎠

⎞
⎠ . (46)

It is explicit that for the zero mass, or infinite ’t Hooft cou-
pling the Eq. (45) will reduce to the decay rate in the zero
temperature AdS background, i.e., Eq. (46). For the massless
particles in the zero temperature AdS spacetime, we know
that the DBI action for the probe D7 branes does not change
under NMT transformations, see [14], but the DBI action
for the massive particles will change under the NMT trans-
formations, so the result in Eq. (45) make sense. It is clear
that if the particle’s mass goes to zero, we will get back to
AdS result, due to the same effective action. The dependence
of the imaginary part of the effective action to ’t Hooft cou-
pling also is shown in [29] for chiral mesons at the presence of
external electromagnetic fields, see also [30,31]. Other terms
in Eq. (45), which differ from AdS, might be considered as
a dipole interaction that inherently exists in the dual theory
of this Schrödinger spacetime which is originated from type
IIB supergravity, see [26] and references therein.

5.2 Euler–Heisenberg action: real part of the effective
action for gaped systems

As already mentioned the real part of the effective action
is related to the Euler–Heisenberg action. For the massive
particles at zero temperature from Eq. (18) we will have

Re L = −N
∫ rI

0
dr

1

8r5

√
1 − (2πα′)2 Ẽ2r4

M(r)2

123
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= N (1 − ε)5/2(2πα′)2 Ẽ2

16

∫ 1

0
dy

√
y(2 − y − εy)

(1 − y)3(1 − εy)
(47)

where we have defined y = 1 − r2

r2
I
. Again, this is similar

to real part of effective action in AdS background [6]. For
small ε i.e., Strong electric field Ẽ relative to Ẽc, the critical
electric field, the finite part14 of the (47) would be

Re L = NcN f

32π2 Ẽ2

(
3 + ln 2 + ln

Ẽ2
c

Ẽ2
+ Ẽ2

c

Ẽ2
+ π Ẽc

E

)
.

(48)

Clearly if we insert Ẽ = Eβ√
2|μ|

√
1 − π2m2

|μ|λ and Ẽc =
2πα′m2 in Eq. (48), or Ẽc

Ẽ
= 2πα′m2∗

E , there would be correc-
tion terms, compared to the outcome in the AdS spacetime,
in term of π2m2

|μ|λ which are relevant at the finite ’t Hooft cou-
pling. However, at the zero mass, we will have the same
Euler–Heisenberg effective Lagrangian which is found in
the AdS background. At zero temperature for the massive
neutral charge carriers, there are also two different situations
that the effective action is not a complex quantity, and always
remains real at the presence of an external electric field. In
other words, the Minkowski embedding 〈J x 〉 = 0 is a sta-
ble solution, and the electric field is not strong enough to
break the bond between neutral charge pairs. One of them
will exist if we have an electric field below the critical elec-
tric field, i.e., Ẽ ≤ Ẽc. This real effective action lives in
both AdS background and Schrödinger background. Stable
bound state: From the Eq. (33), we will have real effective
action regardless of the electric field if we suppose that

1 − (2πα′ m)2β2 < 1 or
m2

λ
>

|μ|
π2 . (49)

Considering Eq. (49), the effective mass in Eq. (39) will be an
imaginary quantity. This does not have a relativistic or AdS
counterpart. Interestingly this condition does not depend on
the electric field; therefore it does not matter how large the
electric field is, at the regime of Eq. (49), the effective action
is always a real quantity. If we replace ’t Hooft coupling λ

with e2, to extract QED-like results following [6], one could
say that for the neutral charge pairs with the mass-to-charge
me
e ratio larger than 1√

2π β
we have permanent or perfect

insulator. In this case, the effective action is an addition of the
two real quantity, Eqs. (42) and (47). If one does not accept
the existence of perfect insulator at any circumstances, one
can put the upper limit for the fermion’s mass, and say that
the insulator ground state will decay to the conductor ground

14 After regularization.

state. For the massive particles at non-zero temperature, due
to the analytic difficulties, we need numerical calculations,
but naively from Eq. (15) we could argue that the conductivity
might always be zero, so current 〈J x 〉 could be zero if

r2∗ − b2 f (r∗) sin2 θ(r∗) = 0. (50)

Nevertheless, the r∗ and θ(r∗) depend on the electric field
and mass of the fermions, see Eq. (14) and see also [19].
Hence, we can find a critical electric field which depends
on the mass of the particles and background temperature.
Therefore it can be concluded that at non-zero temperature,
a perfect insulator will not exist according to this argument,
and the insulator state will decay to the conductor state.

6 Conclusion and summary

We study the breakdown of the vacuum (ground state) of
strongly coupled systems with the z = 2 Schrödinger sym-
metry at the presence of an external electric field via probe
branes holography. By using the holographic argument, the
decay rate of the ground state to the stable ground states,
which causes the Schwinger pair production, is calculated in
a finite ’t Hooft coupling. From the gravity side of the duality,
there are three embedding classes: Minkowski embedding
(ME) which exists if the probe brane closes off the back-
ground event horizon, black hole embedding (BE) which
exists if the probe branes fall into the background black
hole, and Minkowski embedding with the horizon (MEH)
which exists at the presence of the non-zero electric field. For
both BE and MEH, we have the non-zero current 〈J x 〉 
= 0,
and thus the system in the boundary quantum theory lives in
the conductor state. For ME, the current is zero, and at the
boundary theory, we have an insulator state. We might con-
sider the string with both ends at the same brane as mesons,
Cooper pairs or a bonded electron–hole. In this study, we
investigate instability at the presence of the constant exter-
nal electric field when we have 〈J x 〉 = 0 or the insula-
tor state in the Schrödinger background. For the massless
particles or gapless systems in the Schrödinger spacetime,
both the real and imaginary parts of the effective action look
similar to the effective action in the AdS background. For
the massive fermions, the decay rate from the insulator to
the conductor would be the same as the AdS results if we
recall the effective mass m∗ instead of the mass m and elec-
tric field with E(1 − π2m2

|μ|λ )1/2. For an electric field greater
than the critical electric field, which is proportional to the
square of the effective mass, the ground state or insulator
will decay to other ground states or conductors. We show
that the false vacuum would be faded out if there is an upper
bound for the mass of the massive particles. In other words,
the bond between fermions–anti-fermions or quarks-anti-

123
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quarks will not break by the electric field if we have particles

with the mass larger than
√

λ |μ|
π

. Therefore, the system lives
in the insulator phase forever. The effective action in here
looks similar to the relativistic one [6], if the electric field is
replaced by E(1 − π2m2

|μ|λ )1/2.
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Appendix A: Schrödinger spacetime

The near horizon limit of non-extremal D3 branes solution in
type I I B superstring theory which is AdS5 Schwarzschild
times S5 (with AdS radius L) is

ds2 = L2

r2

(
dr2

f (r)
− f (r)dt2 + dy2 + dx2

)
+ L2ds2

S5 ,

(A.1)

Here f (r) = 1 − r4

r4
H

which tell us that black hole’s hori-

zon located at rH . The radial coordinate is r , and bound-
ary located at r = 0 and field theory lives on (t, y, x)
which y is singled out because we need to do null Melvin
twist (NMT) operation along with it. The metric (A.1) has
I SO(1, 3) × SO(6) isometry at extremal limit. The holo-
graphic dual of this geometry15 is N = 4 superconformal
SU (Nc) gauge theory in the large Nc limit and large ’t Hooft
coupling(λ = Ncg2

YM ).16 We could write the S5 metric as a
Hopf fibration over CP2, with χ the Hopf fiber direction

ds2
S5 = (dχ + A)2 + ds2

CP
2 (A.2)

where A gives the Kähler form J of CP2 via dA = 2J . To
write the (A.2) explicitly, we introduce CP

2 coordinates α1,

15 there is also five form RR field.
16 At zero temperature or extremal limit we have supersymmetry. At
non zero temperature, we have a thermal state in a dual field theory
where supersymmetry is broken.

α2, α3, and θ and define the SU (2) left-invariant forms

σ1 = 1

2
(cos α2 dα1 + sin α1 sin α2 dα3) ,

σ2 = 1

2
(sin α2 dα1 − sin α1 cos α2 dα3) ,

σ3 = 1

2
(dα2 + cos α1 dα3) , (A.3)

so we could write the metric of CP2 as follows

ds2
CP

2 = dθ2 + cos2 θ
(
σ 2

1 + σ 2
2 + sin2 θ σ 2

3

)
, (A.4)

and A = cos2 θ σ3. The full solution also includes a nontriv-
ial five-form, but it’s shown in refs. [13,32,33] that five-form
will be unaffected by the NMT or TsT.
After the null Melvin twist operation [26], we get the follow-
ing metric17

ds2 = L2

r2

(
dr2

f (r)
− f (r)

L2r2K (r)
dx+2 + 2

K (r)
dx+dx−

+1 − f (r)

2K (r)

(
dx+

√
2βL

− √
2βLdx−

)2

+ dx2

)

+ L2

K (r)
(dχ + A)2 + L2ds2

CP
2 , (A.5)

where

f (r) = 1 − r4

r4
H

, K (r) = 1 + β2r2

r4
H

, (A.6)

The solution also includes the Kalb-Ramond two-form B
field

B = − L2

2r2K (r)
(dχ + A) ∧

(
(1 + f (r))

dx+

L
+ (1 − f (r)) 2β2Ldx−

)
(A.7)

and also a dilaton

Φ = −1

2
log K (r). (A.8)

The zero temperature metric will be produced from the Eq.
(A.5) by rH → ∞, which is

ds2 = 1

r2

(
dr2 − 1

r2 dx
+2 + 2dx+dx− + dx2

)

+ (dχ + A)2 + ds2
CP

2 , (A.9)

Where we set L = 1, just for simplicity. As you see there is
no β in this metric. There is also B field with no dependence

17 The T sT transformation [12] also gives us similar result but a little
bit different. In [26] although the SUSY is broken but 8 supercharges
have been remained while in TsT [12] whole SUSY is broken.
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on β. If we do a compactification on S518 the (A.9) will
be a Schrödinger metric which is introduced in [7,34,35] for
gravity dual part of non-relativistic CFT. In the [7] was shown
that the Schrödinger geometry

ds2 = 1

r2

(
dr2 − 1

r2 dx
+2 + 2dx+dx− + dx2

)
(A.10)

in which x+ is a time coordinate in the dual field theory
and for compact x−, could be a dual to the free fermions
or fermions at unitarity and in [35] was discussed the cold
atom aspects. The (A.9) or (A.10) will be preserved with the
following scale transformations

x+ → λ2x+ x− → λ0x− r → λr x → λx (A.11)

β is a dimensionful parameter which has units of length and
the x+ has the dimension of square of length i.e., [L]2 and x−
has no dimensions. In the Schrödinger space–time the x− is
a compact dimension so at the boundary r = 0 we have 2+1
dimension theory. The isometry generator along x− is a dual
to numeber operator N in dual theory. At finite temperature
i.e., (A.5), there would be a momentum along x−(P−). So the
quantum state in the dual theory has finite number density N
or chemical potential [33,36,37]. As mentioned in [33,36,
37] the temperature and the chemical potential of the dual
quantum field theory, which is due to U (1) symmetry along
x− compact direction and not charge carriers, would be

T = 1

πrHβL
μ = − 1

2β2L2 . (A.12)

One of the fascinating feature of zero temperature schrödinger
space–time is that a flavor quark would feel a drag force [28]
and also one of the interesting comment about a Schrödinger
metric (A.10) is that this geometry has a SL(2, R) asymptotic
symmetry [39].

Appendix B: Effevtive metric

DBI action integrand is given by

det(gab + Aab) (B.13)

where we define Aab = Bab + 2πα′Fab. The Aab is an
antisymmetric tensor therefore we always have:

det(gab + Aab) = det(gab − Aab) . (B.14)

18 ds2
S5 = (dχ + A)2 + ds2

CP
2 .

So we able to find:

det(gab + Aab) = √
det(gab + Aab) det(gab − Aab)

= √
det gab

√
det (gab − Aacgcd Adb)

= √
det gab

√
det g̃ab, (B.15)

where we introduce effective metric as : g̃ab = gab −
Aacgcd Adb .
For example, from Eqs. (4) and (A.7) we would have

g̃++ = g++ + gα2α2 B2+α2
+ gα3α3 B2+α3

+ (2πα′)2F2+x g
xx ,

(B.16)

g̃−− = g−− + gα2α2 B2−α2
+ gα3α3 B2−α3

+ (2πα′)2F2−x g
xx ,

(B.17)

g̃rr = grr + (2πα′)2F2
r x g

rr , (B.18)

g̃+− = g+− + B+α2 B−α2g
α2α2 + B+α3 B−α3g

α3α3

+ (2πα′)2F+x F−x g
xx . (B.19)

The horizon of g̃ab will meet the reality constraint on DBI
action i.e., r∗ in Eq. (14). So we could assign a geometric
meaning to the external electric field. For a more detailed
discussion please see [23].
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