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Abstract We propose a new mechanism of (geometric)
moduli stabilisation in type IIB/F-theory four-dimensional
compactifications on Calabi–Yau manifolds, in the pres-
ence of 7-branes, that does not rely on non-perturbative
effects. Complex structure moduli and the axion-dilaton sys-
tem are stabilised in the standard way, without breaking
supersymmetry, using 3-form internal fluxes. Kähler class
moduli stabilisation utilises perturbative string loop correc-
tions, together with internal magnetic fields along the D7-
branes world-volume leading to Fayet-Iliopoulos D-terms in
the effective supergravity action. The main ingredient that
makes the stabilisation possible at a de Sitter vacuum is
the logarithmic dependence of the string loop corrections
in the large two-dimensional transverse volume limit of the
7-branes.

1 Introduction

The String Theory landscape comprises an enormous num-
ber of vacua, however, not all of them are consistent with the
cosmological data and the relevant for particle physics effec-
tive N = 1 supergravity theories. Many of them are charac-
terised by anti-de-Sitter (AdS) minima, predicting a negative
cosmological constant, in contradiction with the existing evi-
dence of the accelerated expansion of the universe. In order
to obtain a consistent supersymmetric vacuum we must seek
string compactifications with a de Sitter (dS) minimum and
stabilise the various moduli fields which are ubiquitous in
string compactifications.

In type IIB string theory in particular, compactified on
a Calabi–Yau threefold, the complex structure moduli and
the axion-dilaton/ten-dimensional (complexified) string cou-
pling appear in the superpotential induced when 3-form
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fluxes are turned on and can be fixed in a supersymmetric
way [1,2].1 The Kähler class moduli on the other hand, such
as the Calabi–Yau volume, remain undetermined because –
being (1, 1) forms – they do not appear in the flux induced
superpotential. The resulting effective supergravity has con-
stant superpotential and, thus, a non-vanishing gravitino mass
term and vanishing scalar potential, due to the no-scale struc-
ture of the tree-level Kähler potential of the Kähler class
moduli that remain massless and undetermined. Their stabil-
isation requires their appearance in the superpotential and,
a usual way to realise it, is to include non-perturbative cor-
rections [5]. These are in general model dependent related,
for instance, to gaugino condensation of the gauge group of
D7-branes [6,7]. In the simplest case, to realise a sufficiently
large volume in a well controlled regime, a fine tuning of the
coefficients in the resulting superpotential generated by the
fluxes is required.

Moreover, higher order α′ corrections are taken into
account and break the no-scale structure of the Kähler poten-
tial [8]. One-loop corrections to the Kähler potential may
also be included [9–17]. In most cases, dS vacua can only
be obtained by ‘uplifting’ the vacuum energy in the pres-
ence of anti-D3 branes (D3-branes for short), which break
though supersymmetry explicitly (KKLT scenario [5]). This
situation can, in principle, be remedied if instead of D3-
branes, D-term contributions are taken into account in the
effective action [18–24], emerging from internal magnetic
fluxes along the D7-branes world volume. String realisa-
tions improving the KKLT scenario are also possible within
the so-called large volume scenario in Calabi–Yau compact-
ifications [25,26].

In the present work we take a different path and, work-
ing in the framework of type IIB/F-theory, we consider
possible contributions to the Kähler potential due to the
presence of space-time filling D7-branes. Recall that 7-

1 For an alternative stabilisation method, see [3,4].
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branes are fundamental objects in F-theory and certain con-
figurations of them determine the gauge symmetry of the
effective theory. Moreover, an important class of matter
fields resides on Riemann surfaces which can be inter-
preted as the intersection locus of D7-branes. In such con-
figurations, anomalous U (1) symmetries, associated with
intersecting branes, are frequently present and the result-
ing chiral spectrum of the four-dimensional theory usually
induces Fayet-Iliopoulos (FI) D-terms to the effective poten-
tial. The importance of introducing D-term contributions is
that these are always positive and can in principle uplift
the potential, generating a dS minimum with all moduli
fixed.

It turns out though that D-terms are not sufficient to
stabilise all moduli, at least when charged fields on D7-
branes have vanishing expectation values. The basic addi-
tional ingredient that comes in rescue is quantum corrections
to the Kähler potential stemming from the presence of the
D7-branes. For large transverse volume, as is the case of such
configurations, these corrections become crucial and can-
not be neglected. They display a logarithmic dependence on
the modulus associated with the transverse dimension [27].
The logarithmic dependence is quite general in the presence
of two large transverse dimensions, as shown for example
in [28]. Combining these effects with D-term contributions,
we show that all Kähler moduli can be stabilised in a dS
vacuum of broken supersymmetry.

The layout of this paper is as follows. In Sect. 2, we start
with a general overview of the moduli stabilisation problem,
we introduce the effective supergravity and present the lead-
ing quantum corrections, perturbative in α′ and in the string
coupling (Sect. 2.1). We discuss in particular their depen-
dence on the transverse volume of the D7-branes that grows
logarithmically at large distances. We then introduce the D-
term contributions to the effective potential (Sect. 2.2). In
Sect. 3, we work out the minimisation conditions and the
Kähler moduli stabilisation. We first present the simple exam-
ple of a single D7-brane which brings two moduli that can
be chosen to be the total volume of the Calabi–Yau man-
ifold and the volume transverse to the brane (Sect. 3.1).
We show how the latter can be stabilised using the loga-
rithmic loop corrections, but not the former. Full stabilisa-
tion in a dS minimum can be achieved only in the general
case of three intersecting D7-branes with corresponding D-
terms. Indeed, the total volume can be stabilised by the log-
arithmic corrections (Sect. 3.2), while all moduli are fixed
when D-terms are included, as shown in Sect. 3.3. Finally,
Sect. 4 contains our conclusions, while in the Appendix
we show why in the case of one D7-brane, one cannot
find a dS minimum in the whole parameter space of the
model.

2 General overview

In IIB string theory, appropriate 3-form fluxes generate a
superpotential given by [29]:

W =
∫

G3 ∧ � · (1)

In the above, the G3 flux is defined as G3 = F3 − SH3,
where F3, H3 are the Ramond-Ramond (RR) and Neveu-
Schwarz (NS) 3-form fluxes, S = C0 + ie−φ ≡ C0 + i/gs is
the axion-dilaton field associated with the ten-dimensional
string coupling gs , and � is the holomorphic Calabi–Yau
(3, 0)-form dependent on complex structure moduli za [30].
Clearly, the superpotential (1) depends on za and the axion-
dilaton S but it is independent of the Kähler class moduli,
as described for example in [31]. The conditions DaW = 0,
(where Da is the Kähler covariant derivative and the index
a runs over all moduli fields) fix all the complex structure
moduli and the axion-dilaton. A generalization of Eq. (1) in
the F-theory framework is straightforward [32,33].

A wide class of solutions towards the stabilisation of Käh-
ler class moduli rely on non-perturbative effects. This ingre-
dient allows the appearance of the Kähler moduli in the super-
potential and as a result, a potential is generated whilst their
masses are determined from the minimisation procedure of
the effective potential. The α′-corrections which generate
O(α′3) contributions to the Kähler potential, are also widely
used. In the present analysis, we will take a different path
and investigate the effects of string loop corrections to the
Kähler potential which displays a dependence on the trans-
verse volume of D7-branes, as well as the D-terms potential
depending on the world-volume of D7-branes.

To set the stage, we start with the Kähler potential. Ignor-
ing for the moment α′ or string loop corrections, it can be
written as a simple separable form

K0 = K0(Ti ) + K(S, za), (2)

where Ti are the Kähler moduli, S the axion-dilaton S =
C0 + ie−φ , and za the complex structure moduli respectively.
The two components of K are

K0(Ti ) = −
3∑

i=1

ln(−i(Ti − T̄i )) (3)

K(S, za) = − ln(−i(S − S̄)) − ln(i
∫

� ∧ �̄) · (4)

As can be readily seen, Eq. (3) satisfies the no-scale condition
∑

I,J=Ti

KI J
0 ∂IW∂JW = 3, (5)

and therefore the potential can be written as

V =
∑

I,J �=Ti

eK
(
DIWK−1

I J̄
DJ̄W

)
, (6)
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with DIW = ∂IW + W∂IK. In the simplest scenario,
the flux generated perturbative superpotential in Eq. (1) sta-
bilises the complex structure moduli and the axion-dilaton
field by using the supersymmetric conditions DiW = 0.
This leads to zero vacuum energy. Furthermore, because of
the no scale structure of the Kähler potential, the Kähler
moduli cannot be fixed from the supersymmetric minimi-
sation of the superpotential. In order to stabilise the Käl-
her moduli, quantum corrections are usually included so that
the no-scale invariance is violated and the total volume is
fixed.

In addition, non-perturbative contributions originating
from gaugino condensation or instanton effects, involve
certain Kähler moduli in exponentially suppressed terms.
Including such terms, the superpotential obtains the form

W = W0 +
h1,1

+∑
i=1

�i e
−λi Ti · (7)

The implementation of the conditions DzaW = 0 put all
complex structure moduli and axion-dilaton at their minima,
and soW0, �i and λi are constants. The condition DTiW = 0
leads to a supersymmetric AdS minimum [5]. However, a
drawback of this scenario is that the minimum is achieved
only when the value of W0 is fine-tuned in order to balance
the non-perturbative effects. In addition, as can be seen from
(7), non-perturbative corrections are required for all 4-cylces
involved, whilst the inclusion of D3 contributions to uplift
the AdS minimum breaks supersymmetry explicitly.

A generalisation of the above scenario [25,26] improving
these deficiencies, is realised with an exponentially large vol-
ume, where in the simplest case of two Kähler moduli τb, τs
the Calabi–Yau volume takes the form V = τ

3/2
b − τ

3/2
s .

In the presence of non-perturbative corrections the Kähler
potential and superpotential are given by

KLV S = −2ln

(
τ

3
2
b − τ

3
2
s + ξ

)
, (8)

WLV S = W0 + �e−λτs . (9)

The gaugino condensation and the α′ correction ξ are nec-
essary to stabilise both τb and τs . However, as in the KKLT
case, a mechanism is required to uplift it to a dS minimum.

In the next subsections, we will present an alternative sce-
nario of Kähler moduli stabilisation which does not rely on
(uncontrolable) non-perturbative corrections in the superpo-
tential. The proposed mechanism is based on the observation
that the effective action receives logarithmic corrections in
the large (two dimensional) volume limit transverse to the
D7-branes [27].

2.1 Effective supergravity, dualities and quantum
corrections

We would like now to include the leading quantum correc-
tions in the effective action presented above. These are per-
turbative in α′ or in the string coupling correcting the Kähler
potential and the gauge kinetic functions. The former corre-
spond to a constant shift of the internal volume proportional
to the Euler number of the Calabi–Yau manifold, while the
latter can be important only in the presence of large trans-
verse volume of dimension less or equal than two, as in the
configuration of D7-branes that we consider in this work. In
this case, one loop corrections to localised effective action
terms in the open string channel grow logarithmically with
the transverse volume [27]. Since such corrections have been
computed explicitly in N = 1 type I orientifolds [37], we
will start by presenting them in this framework and then use
T-dualities to derive the corresponding expressions in type
IIB/F-theory context with intersecting D7-branes.

Let us consider type I strings on a product of three 2-torii
(
∏3

i=1 T
2
i ) with D9-branes and in general three types of D5-

branes extended in the three non-compact spatial dimensions
and along each one of the three T 2

i . The Kähler potential is

K = − ln(S − S̄) −
3∑

i=1

ln(Ti − T̄i ) + · · · , (10)

where the dots refer to contributions dependent on the com-
plex structure that we omit in the following. The imaginary
part of the various moduli are given by the inverse gauge
couplings of the D9 and D5i branes, upon compactification
in four dimensions:

ImS = 1

g2
9

= e−φv1v2v3 ImTi = 1

g2
5i

= e−φvi , (11)

with vi the volume of T 2
i in string units.

To go to the framework of type IIB/F-theory with three
types of D7-branes, one has to perform six T-dualities along
all six internal directions. The D9 then becomes D3 while
D5i becomes D7i transverse to T 2

i . Recall that under a single
T-duality R → 1/R the string coupling transforms as eφ →
eφ/R. It follows that under six T-dualities, the four moduli
S, Ti go to the inverse gauge couplings of the corresponding
D3 and D7i branes:

ImS → 1

g2
3

= e−φ ImTi → 1

g2
7i

= e−φV/vi (12)

with V = v1v2v3 the total internal volume and eφ is the 10-
dimensional string coupling gs = eφ . The Kähler potential
(10) then becomes

K → −2 ln(e−2φV) = − ln(S − S̄) − 2 ln V̂ (13)

where V̂ = e−3φ/2V .
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Corrections to the Kähler potential in type II strings (with
D-branes), are induced through corrections of the Einstein
graviton kinetic terms. The perturbative corrections in α′, ξ̂ ,
and the string one-loop corrections δ̂, both arise in the string
frame as corrections to the Einstein kinetic terms [34]:[
e−2φ(V + ξ̂ ) + δ̂

]
R (14)

where ξ̂ is of order α′3, arising at four loops in the Calabi–
Yau σ -model, and is proportional to the Euler number of the
Calabi–Yau manifold χ , ξ̂ = − [

ζ(3)/4(2π)3
]
χ [8,35,36],

and δ̂ is in general a function of moduli fields.
From the above form, it follows that the two corrections

can be accounted for by a shift of the Calabi–Yau volume V
and of the inverse 4d closed string coupling e−2φ4 = e−2φV:

V → V + ξ ; e−2φ4 = e−2φV → e−2φ4 + δ̂ (15)

It is now clear that the radiatively corrected Kähler potential
reads:

K = −2 ln
[
e−2φ(V + ξ̂ ) + δ̂

]

= − ln e−φ − 2 ln
(
V̂ + ξ + δ

)

= − ln(S − S̄) − 2 ln
(
V̂ + ξ + δ

)
, (16)

where V̂ is defined in (13) and

ξ = ξ̂ /g3/2
s = − ζ(3)

4(2π)3g3/2
s

χ; δ = δ̂g1/2
s . (17)

Note that a nonvanishing ξ in the large volume limit gives
rise to localised graviton kinetic terms in the internal Calabi–
Yau space at the points where the Euler number is concen-
trated. Indeed it remains finite in the large volume limit in
(14) leading to a localised Einstein action, on an effective
3-brane, studied in [34].

These localised graviton kinetic terms can generate one
loop corrections that grow logarithmically with the size of
the bulk in the presence of 7-brane sources [27]. Indeed, the
localised graviton vertices can emit closed strings propagat-
ing along all the six dimensions of the internal space. The
contribution of the relevant diagrams contains the exchange
of these closed strings in the bulk between a certain number
of graviton vertices from the 4d Einstein action localised in
the internal space and another boundary that can be a D-brane
or an orientifold plane. These diagrams correspond to local
tadpoles whose existence can be consistent with global tad-
pole cancellation. Each of branes/orientifold planes behave
as point-like sources in the corresponding transverse space.
The emitted closed string from the localised graviton ver-
tices carry in principle momentum along all the six internal
dimensions. However, the momentum along the directions
parallel to the worldvolume of brane/orientifold plane van-
ishes by conservation. It follows that the exchanged closed

strings carry only transverse momentum p⊥ which is not
conserved due to the presence of branes/orientifold planes
that break translation invariance in the transverse directions.
Thus the relevant diagram that contributes to δ, in the large
transverse volume V⊥ limit, takes the form:

δ ∼ 1

V⊥

∑
|p⊥|<Ms

1

p2⊥
F( 	p⊥); 	p⊥ =

(n1

R
, . . . ,

nd
R

)
, (18)

where F( 	p⊥) are the local tadpoles in the momentum space
and the summation (instead of integration) is because 	p⊥ are
discrete in the compact transverse space that we parameterise
its size as V⊥ ∼ Rd . The tadpoles arise from the distribution
of D-branes and orientifolds which act as classical point-like
sources in the transverse space. Considering for instance 2d

orientifolds located at the corners of a d-dimensional cube
formed by d dimensions of equal size πR and a brane at the
position 	y (plus its images), the local tadpole is given by:

F( 	p⊥) ∼
{

d∏
i=1

(
1 + (−)ni

2

)
− cos( 	p⊥	y)

}
. (19)

It follows that its contribution to the amplitude (18) would
contain an infrared divergence in the large transverse limit
when its co-dimension is less or equal to 2. The divergence
is linear in R for d = 1 and logarithmic for d = 2, while the
amplitude is finite for d > 2.

In conclusion, in the system with 7-branes and localised
graviton kinetic terms in the internal space, the effective two-
dimensional propagation of closed strings induce an infrared
divergence in the loop correction that goes logarithmically
when the co-dimension 2 transverse dimension is large [27].
Due to the infrared divergence, one could also expect it is the
dominant correction at that order in the string loop expansion.
One could thus write Eq. (18) as

δ = η ln u, (20)

where η is some model dependent constant and u is the mod-
ulus of the space transverse to a D7-brane.

We would like to emphasise again that the necessary con-
dition for the arguments of [27] is to have localised kinetic
terms in the internal space. Here we have to discuss sep-
arately the case of smooth Calabi–Yau manifolds and orb-
ifolds. As argued before, the presence of a non-vanishing ξ

at the string tree-level can induce at one loop level logarith-
mic corrections of the type Eq. (20). An explicit computation
however is rather difficult to be performed since it requires
quantising strings propagating in Calabi–Yau threefolds tak-
ing into account the perturbative in α′ correction (thus treat-
ing it exactly), and it is not within the scope of the present
work.

In orbifold compactifications of type IIB orientifolds, the
α′ correction ξ vanishes. Thus at the leading order in string
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loop expansion, graviton kinetic terms in Eq. (14) are ten-
dimensional and therefore the arguments of [27] do not apply.
However this is not the case at higher orders. The one loop
correction δ̂ receives moduli dependent contributions only
from N = 2 supersymmetric sectors depending on the mod-
uli of the corresponding fixed torus under the action of the
orbifold group [37]. For D7-branes transverse to the 2-torus
T 2, it is given by a sum over BPS states corresponding to
the open string winding modes where N = 2 vector mul-
tiplets and hypermultiplets contribute with opposite signs.
The result depends on the complex structure modulus of the
torus but not on its volume and does not contain any logarith-
mic correction, as expected from our general analysis above.
Thus, one loop corrections in the Kähler potential cannot
lead to logarithmic dependence, in agreement with one-loop
results in the literature for orbifolds (see for instance [10,37]).
On the contrary, the kinetic function of D7 gauge fields which
are localised in the transverse dimension receive large correc-
tions that grow logarithmically with the transverse volume,
which is calculated explicitly in [37]. Notice however, that
the one loop corrections [10] contain terms localised on the
transverse T 2 and thus two loop corrections are expected to
diverge logarithmically with its volume, following the argu-
ment above. In this case, the correction δ in Eqs. (17) and
(20) should have an additional factor of g2

s ln u.
In the following, we will consider a radiatively corrected

Kähler potential (16) with Eq. (20) δ = η ln u, :

K = − ln(S − S̄) − 2 ln
(
V̂ + ξ + η ln u

)
. (21)

2.2 D-terms in the presence of D7-branes

It has been suggested that magnetised branes along (1, 1)-
cycles of the internal compactification space can be used
to stabilise the Kähler moduli, as an alternative to non-
pertubative effects, at a de Sitter vacuum through the induced
D-terms [20–22]. The advantage of magnetic fluxes on D-
branes, as opposed to non-perturbative effects and D3-
contributions, is that these have an exact string description
at weak coupling (i.e. to all orders in α′) and can be stud-
ied within the standard effective supergravity. In this sub-
section we will discuss the D-term contributions from mag-
netised D7-branes in type IIB superstring theory. We will
assume that all complex structure moduli and the axion-
dilaton ten-dimensional (10d) field are fixed in a standard
way by appropriate 3-form fluxes at a vacuum preserving
N = 1 supersymmetry in four dimensions with weak string
coupling. Moreover, we shall consider zero vacuum expec-
tation values (VEVs) for all charged fields and restrict our
analysis to the Kähler moduli associated with the world- and
transverse-volumes of the D7-branes; they should all be con-
sidered large in string units for the consistency of the effective
supergravity description.

In usual D7-brane configurations representing supersym-
metric four-dimensional (4d) effective theories there are
stacks of branes associated with some non-abelian gauge
group while it is common that additional branes intersect
each other. A single D7-brane spans four compact dimen-
sions and forms a two-cycle intersection with any other non-
overlapping brane.

We now consider a IIB/F-theory framework with the pres-
ence of intersecting 7-branes. Stacks of D7-branes are asso-
ciated with gauge groups and we assume a D-brane config-
uration where some anomalous U (1) is present, induced by
a corresponding magnetic flux. A 4-cycle Kähler modulus
Ta associated with the world-volume of the magnetised D7-
brane acquires then a charge Q under the U (1) as a shift
symmetry along its real component: T a → T a + Qω, with
ω the transformation parameter (the appropriate topological
conditions for this, are discussed for instance in [24]). In gen-
eral, we also expect the existence of complex scalar fields φ J

carrying charges QJ .
The induced D-term has the generic form dictated by the

effective N = 1 supergravity [18,19,23,24]:

VD = g2
D7

2

(
i Q∂T aK(T a) +

∑
J

QJ | 〈φ J 〉 |2
)2

(22)

where the gauge coupling is fixed by the kinetic function:
1

g2
D7

= Im(T a) and φ J are scalar components of superfields

whose charges QJ are subject to anomaly cancellation con-
ditions (that are automatically satisfied in a consistent string
background) [21]. Although in general the VEVs of the scalar
fields are on-zero, for our present purposes we can ignore the
matter fields and write (22) as follows

VD = − da
2Im(T a)

(
∂T aK(T a)

)2
, (23)

in which da = Q2.2

In our convention, we denote the imaginary part of the
world-volume Kähler modulus Ta as τa . The whole 6-
dimensional volume can be expressed as sum of triple prod-
ucts of 2-cycle moduli:

V = 1

6
κabcv

avbvc, (24)

where κabc are the triple intersection numbers. In the frame-
work of 3 intersecting D7-branes, we take 2-cycle va as the
transverse volume modulus of each D7-brane with world-
volume τa :

va = V
τa

, (25)

2 See also argument in [23].
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and take κabc as εabc for simplicity. Then the volume can be
expressed as

V = v1v2v3 = √
τ1τ2τ3 (26)

3 Volume stabilisation from intersecting D7-Branes

In this section we investigate the implications of D7-branes
on the stabilisation of Kähler moduli. Starting with the sim-
plest case, we introduce only one D7-brane and observe that
this is not adequate to stabilise all moduli. Then, we proceed
with the inclusion of three intersecting D7-branes.

3.1 A single D7-brane

We start with a single space-time filling D7-brane and
assume that all the complex structure moduli and the axion-
dilaton are stabilised by fluxes. The Kähler modulus can be
divided into the world volume part of the D7-brane τ and
the transverse part u. Both τ and u are real 4-cycle volumes.
Then we can write the compactifacation volume V in terms
of the two Kähler moduli as follows:

V = τ
√
u. (27)

The no-scale structure is broken by perturbative corrections:
α′ world-sheet corrections and string loop corrections. The
Kähler potential now takes the general form:

K = −2 ln(τ
√
u + ξ + ηln(u)), (28)

The string loop correction term η ln(u) is of course valid in
the perturbative region:

|ηln(u)| < τ
√
u (29)

The corresponding F-term potential with a superpotentialW0

is:

VF = W2
0 (−8η + 3ξ + 3ηln(u))

(8η + 2τ
√
u − ξ − ηln(u))(τ

√
u + ξ + ηln(u))2

.

(30)

In the large volume expansion, we can compute the deriva-
tive with respect to u:

dVF (τ, u)

du
= −ηW2

0
3(−10 + 3ln(u))

4τ 3u5/2
+ O(η2) + O(ξ).

(31)

We find that for η being negative, the potential has a minimum
in the u direction. Thus, the string loop correction ηln(u) can
stabilise the transverse direction of the D7-brane. However,
for the volume part τ , the first derivative doesn’t show the
stabilisation. Indeed, in the appendix we show that even in
the presence of an uplifting D-term, there is no dS minimum
with just perturbative corrections for a single D7-brane.

3.2 Stabilisation of the total volume by three intersecting
D7-branes

In the same way, we can get the F-term potential for 2 non-
parallel D7-branes and find that there is always one Kähler
modulus which is not stabilised. Thus, in order to stabilise all
the Kähler moduli, we should consider that there exist at least
three non-parallel (magnetised) D7-branes. This corresponds
to 3 intersecting D7-branes which is quite general in string
model building. In the following, we neglect the α′ correction
and consider only the string loop correction. The general
Kähler potential can be written as:

K = −2ln

(
√

τ1τ2τ3 +
∑
i

2ηi ln

(V
τi

))
(32)

= −2ln

(
√

τ1τ2τ3+
∑
i

η′
i ln(τi )

)
, η′

a =
∑
i

ηi −2ηa .

(33)

Each τi corresponds to the world volume of one D7-brane
real 4-cycle. We calculate the first derivative with respect to
either τa :

dVF (τ1, τ2, τ3)

dτa

= W2
0

3(
∑

i �=a(8η′
i − 3η′

i ln(τi )) + 10η′
a − 3η′

a ln(τa))

4
∏

i �=a τ
3
2
i τ

5
2
a

+O(η′2). (34)

The minimisation condition from the three directions in
Eq. (34) then shows that a minimum only exists for the total
volume V if

η1 = η2 = η3 = ητ < 0. (35)

The other two directions, which can be thought of as the
ratios between τ1, τ2 and τ3, remain flat, since under the
condition (35), the Kähler potential and the corresponding F-
term potential only depend onV . Indeed, the Kähler potential
is:

K = −2ln(V + 2ητ ln(V)), (36)

and the F-part of the effective potential is

VF (V) = − 3ητW2
0 (2ητ +4V+4ητ ln(V)−V ln(V))

(V+2ητ ln(V))2(6η2
τ +8ητV+V2+ητ (4ητ − V)ln(V))

(37)

= ητW2
0

V3 (3ln(V) − 12) + O(η2
τ ) (38)

The first derivative of Eq. (37) shows that the minimum is
independent of the ητ parameter in the large volume limit:

dVF (V)

dV = −ητ

3W2
0 (3ln(V) − 13)

V4 + O(η2
τ ). (39)
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Fig. 1 The scalar potential of Eq. (37) for the choice W0 = 1

The potential (37) is plotted in Fig. 1.
At this minimum, the supersymmetric condition is not satis-
fied:

DVW0 |Vmin= ∂VK |Vmin W0 = −2W0

Vmin
+ O(ητ ) �= 0,

(40)

so supersymmetry is spontaneously broken. The minimum
is not stable due to the two undetermined directions and a
tiny deviation from condition (35) would destabilise the total
volume. We will discuss the stabilisation of the ratios in the
next section where the condition (35) is not necessary.

There is a similar form to Eq. (36) in the classical large
volume scenario. The equation of motion of the small cycle
τs from Eq. (9) leads to

τs ∝ ln(V) ∝ ln(τb). (41)

3.3 D-term uplifting and ratios stabilisation

In order to stabilise the ratios and find a dS vacuum, we
introduce D-terms emerging from a magnetic flux on each
D7-brane. These depend on the corresponding world volume
modulus τa :

VDa = da
τa

(
∂K

∂τa

)2

= da
(V + 2η′

a)
2

τ 3
a (V + ∑

i η
′
i ln(τi ))2 (42)

= da
τ 3
a

+ O(ηi ). (43)

For simplicity, we still use the condition (35) to calculate the
minimum. Notice that it is not a necessary condition once D-
terms are included from all three D7-brane stacks, leading
to a global minimum for all the Kähler moduli.

We choose τ1, τ2 and V as the 3 independent dynamical
variables. The sum of the F-term potential (38) and D-term
potentials (43) in the large volume limit becomes:

Vsum = ητW2
0

V3 (3ln(V) − 12) + d1

τ 3
1

+ d2

τ 3
2

+ d3τ
3
1 τ 3

2

V6 . (44)

The minimisation conditions of τ1 and τ2 lead directly to

τ 3
1 =

(
d2

1

d2d3

) 1
3

V2

τ 3
2 =

(
d2

2

d1d3

) 1
3

V2. (45)

Substituting these expresssions into the minimisation condi-
tion of V we get:

ητW2
0 (13 − 3ln(V)) = 2(d1d2d3)

1
3 V. (46)

There are two conditions that must be satisfied in order to get
a dS minimum.

• The first is that there should exist two real solutions of
Eq. (46) where the smaller one corresponds to a minimum
and the larger one corresponds to a maximum. Indeed, by
doing a change of variables in Eq. (46), we get:

zez = 2e
13
3 (d1d2d3)

1
3

3ητW2
0

; z = 13

3
− ln(V). (47)

The first equation above has two solutions for z negative
while the function zez has a minimum at z = −1. Thus,
the right hand side should be between −e−1 and 0 that
requires:

− 3e− 16
3

2
� −0.007242 <

(d1d2d3)
1
3

ητW2
0

< 0. (48)

The smaller solution V0 of Eq. (46) is:

V0 = e
13
3 −W

[
2e

13
3 (d1d2d3)

1
3

3ητW2
0

]

, (49)

in which W is the Lambert W-Function.
• The second condition is that the potential should be pos-

itive at the minimum. Using Eqs. (45) and (46), we can
express the potential at the minimum in a simple form:

Vmin
sum = ητW2

0

V3
0

+ (d1d2d3)
1
3

V2
0

> 0 (50)

Solving it numerically gives a new constraint

(d1d2d3)
1
3

ητW2
0

< −0.006738, (51)
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Fig. 2 Sum of the F- and D-term contributions to the potential (37)
and (42) in terms of ln(V) and ln(τ3) with the choice W0 = 1, ητ =
−0.4, d1 = d2 = 0.00375, d3 = 0.0018. The blue area corresponds to
V = 10−8 plane

which is consistent with the inequalities (48) and together
lead to

− 0.007242 <
(d1d2d3)

1
3

ητW2
0

< −0.006738. (52)

Within this range, we can get approximately the order of
magnitude of the volume V0:

ln(V0) � 5, (53)

which corresponds to a Grand Unification Theory (GUT)
scale compactification volume.

We show an example in Fig. 2, in which we take d1 = d2,
thus τ1 = τ2 at minimum according to Eq. (45).

4 Conclusions

Moduli stabilisation in string theory is a long standing issue
and despite the significant progress that has been made dur-
ing the last two decades, the proposed solutions are still far
from being conclusive. The main ingredients of the existing
scenarios are backgound fluxes, string loop-corrections and
non-perturbative effects.

The key point towards a convincing solution is to imple-
ment a realistic dynamical mechanism which generates a
scalar potential and provides masses to the various mass-
less scalar fields emerging in string compactifications. In
this work, we have studied this problem in the framework
of IIB/F-theory compactifications and we have proposed a

new geometric mechanism which dispences with the use
of non-perturbative effects. We have considered configura-
tions, where the main ingedients are intersecting D7-branes
equipped with internal magnetic fluxes which have an exact
description to all orders in α′, and we have investigated their
implications on the stabilisation of the Kähler moduli. More
concretely, assuming that the VEVs of the complex struc-
ture moduli and of the axion-dilaton field are already fixed
by supersymmetry conditions, we examined the modifica-
tions of the Kähler potential arising from perturbative α′ and
loop corrections. Elaborating on the essential features of D7-
branes in the configuration of the compact space, we con-
cluded that in the transverse large volume limit of dimension
two, the effective action receives loop corrections which are
logarithmically divergent. In effect, the Calabi–Yau volume
in the Kähler potential receives corrections which display
logarithmic dependence on the size of the transverse to the
D7-branes directions. This is in contrast to the α′ correc-
tion which induces just a shift to the volume by a constant
parameter ξ .

In addition, magnetised D7-branes, have significant impli-
cations on the stabilisation of the Kähler moduli and, at the
same time, they can naturally ensure the existence of a dS
minimum. More precisely, magentised D7-branes are asso-
ciated with anomalous U (1) symmetries which are also a
source of D-terms, that depend on the world-volume of the
corresponding D7-branes. These contributions to the effec-
tive potential can stabilise the ratios between each world-
volume modulus and the total volume and, thus, they work
as an uplift mechanism to realise de-Sitter minima. To show
this we have computed the scalar potential and performed
a detailed analysis, where we found that in the case of one
D7-brane the logarithmic shift of the volume stabilises only
the modulus of the transverse space. Stabilisation of the total
volume is achieved only in the presence of at least three inter-
secting D7-branes, which span all six dimensions of the com-
pact space. Interestingly, in this scenario, non-perturbative
corrections are not necessary.

The realisation of this geometric stabilisation mechanism
and the uplifting is a viable scenario in F-theory [38] where
intersecting 7-branes are a natural phenomenon which also
has additional attractive features beyond the present context.
For instance, one could use the F-theory model building [39]
to realise the Standard Model.
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Appendix

The D-term potential from a U (1) magnetic flux on a single
D7-brane has the form:

VD = d
u

τ(τ
√
u + ξ + ηln(u))2

. (54)

The corresponding scalar potential is:

V = W2
0 (−8η + 3ξ + 3ηln(u))

(8η + 2τ
√
u − ξ − ηln(u))(τ

√
u + ξ + ηln(u))2

+d
u

τ(τ
√
u + ξ + ηln(u))2

. (55)

In order that the scalar potential has a dS minimum, one
necessary condition is that for the direction along V = τ

√
u,

there exists a dS minimum when u is a constant. It is the
same for the direction along τ since they only differ by a
factor of

√
u which is a positive constant. We can thus write

the potential in terms of V and take the other parameters
including u as constants:

V (V) = a

(V − b)(V − c)2 + e

V(V − c)2 (56)

= (a + e)V − be

V(V − b)(V − c)2 (57)

The potential should be positive when V → +∞. So (a+
e) should be positive. Since we only consider the existence
of a dS minimum, independently of the overall normalisation
of the potential, we can divide it by (a + e) and define a new
parameter f = be

a+e . The potential now becomes:

V (V)

a + e
= V − f

V(V − b)(V − c)2 (58)

and has three singularities at 0, b and c. The dS minimum
should lie in the branch outside these three singularities.
Thus, we define a new parameter

g = max(0, b, c), (59)

and only consider the region:

V > g. (60)

First, consider the case that f > g; we find that the potential
becomes negative in the range g < V < f , which means
there is no dS minimum. We turn to the case f ≤ g and
calculate the first derivative with respect to V:

dV (V)

dV /(a + e)

= 1

V(V − b)(V − c)2 − V − f

V2(V − b)(V − c)2

− V − f

V(V − b)2(V − c)2 − 2(V − f )

V(V − b)(V − c)3 . (61)

Suppose b is the largest singularity b = g. The first derivative
becomes:

dV (V)

dV /(a + e) = f − b

V(V − b)2(V − c)2

− V − f

V2(V − b)(V − c)2

− 2(V − f )

V(V − b)(V − c)3 . (62)

Note that all the terms above are negative in the region f ≤
g < V . Thus, there is no minimum in this region. The same
results hold for 0 or c to be the largest singularity g. Thus, no
dS minimum exists in the physical region of the parameter
space.
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