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Abstract The speed of gravitational waves provides us a
new tool to test alternative theories of gravity. The constraint
on the speed of gravitational waves from GW170817 and
GRB170817A is used to test some classes of Horndeski the-
ory. In particular, we consider the coupling of a scalar field to
Einstein tensor and the coupling of the Gauss—Bonnet term
to a scalar field. The coupling strength of the Gauss—Bonnet
coupling is constrained to be in the order of 10~!3. In the
Horndeski theory we show that in order for this theory to
satisfy the stringent constraint on the speed of GW's the mass
scale M introduced in the non-minimally derivative coupling
is constrained to be in the range 101> GeV > M > 2x10~%
GeV taking also under consideration the early times upper
bound for the mass scale M. The large mass ranges require
no fine-tuning because the effect of non-minimally derivative
coupling is negligible at late times.

1 Introduction

The detection of gravitational waves (GWs) by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) Sci-
entific Collaboration and Virgo Collaboration opens the win-
dow to study strong field gravitational physics and test alter-
native theories of gravity [ 1-6]. In particular, the recent detec-
tion of the GW170817 from the merger of a binary neu-
tron star [6] and the electromagnetic counterparts starts a
new era of multi-messenger GW astronomy. A gamma ray
burst GRB170817A was observed 1.74 £ 0.05 s later by
Fermi Gamma-Ray Burst Monitor [7] and the International
Gamma-Ray Astrophysics Laboratory [8]. If we assume that
the peak of the GW signal and the first photons were emitted
simultaneously, and the 1.74 s time difference is caused by
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the faster speed of GWs, then we get an upper bound on the
speed of GWs cgyp/c — 1 < 7 X 10716 [9]. If we assume
that the GRB signal was emitted 10s after the GW signal,
then we get a lower bound cgy/c — 1 > =3 x 10~15 9.
The precise measurement of the propagation speed of GWs
is a very powerful tool to test alternative theories of gravity
[10-20].

Recently there is a lot of activity studying scalar—tensor
theories [21] and one of them is the gravitational theory which
is the result of the Horndeski Lagrangian [22]. Horndeski
theories because they lead to second-order field equations
can be technically simple, and they prove consistent without
ghost instabilities [23]. In Horndeski theory the derivative
self-couplings of the scalar field screen the deviations from
GR at high gradient regions (small scales or high densities)
through the Vainshtein mechanism [24], thus satisfying solar
system and early universe constraints [25-32].

A subclass of Horndeski theories includes the coupling of
the scalar field to Einstein tensor. This term introduces a new
mass scale in the theory which on short distances allows to
find black hole solutions [33-37], while a black hole can be
formed if one considers the gravitational collapse of a scalar
field coupled to the Einstein tensor [38]. On large distances
the presence of the derivative coupling acts as a friction term
in the inflationary period of the cosmological evolution [39—
44]. Also, the preheating period at the end of inflation was
studied, and it was found that there is a suppression of heavy
particle production as the derivative coupling is increased.
This was attributed to the fast decrease of kinetic energy
of the scalar field because of its wild oscillations [45]. A
holographic application was performed in [46] where it was
shown that the change of the kinetic energy of the scalar field
coupled to Einstein tensor allowed to holographically simu-
late the effects of a high concentration of impurities in a real
material. The above discussion indicates that the coupling
of the scalar field to Einstein tensor alters the kinematical
properties of the scalar field.
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Assuming that the scalar field coupled to Einstein tensor
plays the role of dark energy and drives the late cosmological
expansion it was found [47,48] that the propagation speed
of the tensor perturbations around the cosmological back-
ground with Friedmann—Robertson—Walker (FRW) metric is
different from the speed of light ¢, so the measurement of
the current speed of GWs can be used to test the applica-
bility of this and Horndeski theories to explain the late time
accelerated cosmological expansion [13—16,49-51]. Due to
small deviation (on the order of 10~1%) of the current speed
of GWs from the speed of light, in Refs. [13,14,16] it was
argued that dark energy models that predict gy, # c at late
cosmological times are ruled out, and in Horndeski theory
the only viable nonminimal coupling to gravity has the con-
formal form f(¢)R. However, with the help of derivative
conformal or disformal transformations, some Horndeski and
beyond Horndeski theories can survive the speed constraint
[16,36,52,53].

In this work, we will perform a detailed analysis on
the effect of the latest observational results on the current
speed of GWs ¢y, to the Horndeski theories with the non-
minimally derivative coupling. From the early cosmological
evolution we know that the derivative coupling of the scalar
field to Einstein tensor alters the kinetic energy of the scalar
field [40] influencing in this way the dynamical evolution of
the Universe giving an upper bound to the mass scale cou-
pling. For the late cosmological evolution we will perturb the
FRW metric under tensor perturbations and we will show that
a subclass of Horndeski theory consisting of the usual kinetic
term and the coupling of the scalar field to Einstein tensor
is still viable provided that the mass scale M introduced in
the non-minimally derivative coupling is highly constrained
from the recent results on the speed of GWs. The result also
shows that no tuning on the parameter is needed to satisfy the
stringent constraints on the speed of GWs. For comparison
we also discuss bounds on the Gauss—Bonnet coupling from
the observational bounds on cgy.

The paper is organized as follows. In Sect. 2 we discuss
the Horndeski theory, and studying the speed of tensor per-
turbations we obtain bounds on the mass scale introduced
by the presence of the derivative coupling of the scalar field
to Einstein tensor. In Sect. 3 we discuss the bounds on cou-
pling « of the Gauss—Bonnet theory coupled to a scalar field.
Finally, in Sect. 4 are our conclusions.

2 The effect of the speed of gravitational waves in the
Horndeski theory

In this section we will briefly review the Horndeski theory,
we will discuss the speed of GWs in this theory and assuming
that the scalar field present in the Horndeski Lagrangian plays
the role of dark energy we will find a lower bound on the mass
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scale introduced in derivative coupling of the scalar field to
Einstein tensor.
The action of the Horndeski theory is given by [22],

S = /d4xa/_—g(L2 + L3+ Ly + Ls), 1)
where
Ly = K(¢,X), L3=—G3(¢, X)Te,

Ly = Ga(@. )R+ Ga.x [([0$)" = (V,Vu$) (V' V'9) .

1
Ls = Gs(¢, X)G,, VHV ¢ — 6G5,X[(D¢)3

—3(0¢) (Y, Vo) (VAV )
+2(VEV$) (V¥ V) (VEV, )],

with X = —V,oV*e/2, O¢p = V, VI, the functions
K, G3, G4 and G5 are arbitrary functions of ¢ and X, and
Gjx(¢,X)=0G;(¢,X)/dX with j =4,5.

This action is the most general one for scalar—tensor theory
with at most second-order field equations. If we take K =
G3 = G5 = 0 and G4 = Mp;/2, then we obtain Einstein’s
general relativity. If we take G3 = Gs =0, K = X — V(¢),
and G4 = f(¢), then we get scalar—tensor f(¢)R theories.
If we take G4 = Mp/2 + X/(2M?) or G4 = M} /2 and
Gs = —¢/(2M?), then we get the non-minimally derivative
coupling GMUV“¢V“¢/(2M2) with the mass scale M [54].

The stability of the Horndeski theory in the FRW back-
ground was studied in [55]. General conditions on the func-
tions appearing in the Horndeski Lagrangian were given for
the theory to be ghost free and stable under tensor perturba-
tions. While in the flat background, the propagation speed of
tensor perturbations is the same as the speed of light [56], in
the cosmological FRW background the propagation speed of
tensor perturbations in the Horndeski theory was found to be
[54]

62 . Gy — X (fb‘GS,X + G5,¢)
S Gy —2XGax — X (HPGs x — Gsg)

2

We are interested in the propagation speed of tensor pertur-
bations of the subclass of the Horndeski theory that consists
of the usual kinetic scalar field term and the coupling of the
scalar field to Einstein tensor given by the action

s:/mF Mg~ M = LG lviovie - vie)

8 B ) v el .
(3)

Perturbing the FRW metric as

ds* = —dt* +a* (1) (8 + hij) dx'dx/ 4
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and expanding the action (3) to the second order of the tensor
perturbations /;;, we obtain the quadratic action [44,48]

M3 . 1 N
S= ?m/cﬁxdtcﬁ [(1 — i} — —3 L+ 1) (i) ] ,
©)

where I' = ¢*/(2M>M3)). From the action (5) we derive
the equation of motion for GWs

r . 1+ V2hl'j

A ey A o

=0. (©6)

Under the transverse-traceless gauge, the Fourier compo-
nents of tensor perturbations A4;; (X, t) is

hij(x, 1) = f &’k [h,f (1) &5 + (@) s;] exp (ik - ),
@)
where k' sfj =e;, =0,¢ ,sf/. = 24,y , and the superscript

“s” stands for the “+” or “x” polarizations. Substituting Egs.
(7) into (6), we get

J 2 2
r cs k
] 8 h = 0. (8)

he +3HR |1 —
et "[ 3H(1—1T) a>

The propagation speed for both polarization states is

By =1t ©)
This result can also be obtained from the general formula
of the Horndeski theory given in Eq. (2) choosing G4 =
M3/2 + X/(2M?) or G4 = M3 /2 and Gs = —¢/(2M?).
For the Horndeski theory, it was argued that the precise
measurement on the speed of GWs ¢g,, = 1 requires
G4,x = Gs,p = Gs x = 0, and only the conformal coupling
f(®)R is allowed [13,14,16]. At late times, since the effect
of the non-minimally derivative coupling G, V*¢V ¢ ~
H?$?/M? is negligible compared with the canonical kinetic
term ¢ due to the decrease of the Hubble parameter H as the
Universe expands, the speed given by Eq. (9) can be close to
1. Instead of requiring that G4 x = G54 = Gs5x = 0, we
show that a large mass range for the coupling M is allowed
to satisfy the stringent constraint on the speed of GWs with
negligible but nonzero deviation.
Using the the upper bound on the speed of of GWs [9]

fw _ 1 <7x 1078, (10)
C

we obtain,

0<I <7x107'°, (11)

This constraint is much less stringent than the classical con-
straint I < 2/3 x 10~29 derived from the constraint on
the Parameterized Post-Newtonian (PPN) parameter o3 =
6I" <4 x 10720 [57].

Using the constraint (11) we will obtain a lower bound
on the mass scale M of the derivative coupling. If we take
the scalar field as dark energy and use the observational con-
straint 1 + w = ¢52/p¢ = q32/(3M1§1H02.Q¢) ~ 0.2 and
2, = 0.3, then we get the contribution of the canonical
kinetic energy as

(ﬁZ r M2
=5 00T (12)
0

A+ w)(1—2)
2 - 6MEH?

Combining Eqgs. (11) and (12), we get the constraint on the
coupling constant M

H2
0 —15

For the theory with the coupling of a scalar field to Einstein
tensor, the PPN parameters are [57]

B=1+6I" y=14+3I" «ay =12I", ap =3T, (14)
a3z =6I", & =15I", ;3=3I", §=01=0=0.
The stringent constraint coming from a3 = 61" < 4 x 10720
[58,59], substituting this result into Eq. (12), we get

HZ
0 —19

This constraint is much stronger than Eq. (13). If we use the
constraint (13), we get the lower bound on the coupling M
as M > 2 x 1073 GeV. In the New Higgs inflation [47], the
non-minimally derivative coupling enhances the friction of
the expansion and the high friction limit requires M < 10"
Gev [44] while in [60] limits on M are also discussed during
the reheating period. Therefore, the mass scale introduced
in the derivative coupling is 10!> GeV > M > 2 x 10™%
GeV.!

This result is interesting and it shows that the coupling
of the scalar field to Einstein tensor has a complete differ-
ent behaviour compared to a scalar field minimally coupled
to gravity. While the kinetic energy of a minimally coupled
scalar field practically does not understand the cosmolog-
ical evolution, the kinetic energy of scalar field coupled to
Einstein tensor changes as the Universe expands. At the infla-
tionary epoch it can drive inflation with steep potentials while

! This lower bound of the mass M allows the sound speed squared of
the tensor perturbations to reach the observational bounds of the GWs in
the model discussed in [61] making in this way the model of unification
of dark matter with dark energy in Horndeski theory viable.

@ Springer
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as the Universe expands its contribution to the cosmological
evolution is less important and at the late cosmological epoch
is negligible, so GWs propagate at the speed of light at late
times.

3 The effect of the speed of gravitational waves in the
Gauss—Bonnet theory

Another non-trivial extension of GR which gives second
order differential equations is the Lovelock theory [62],
which apart from the Einstein—Hilbert term also includes
higher order curvature terms. The simplest case is the Gauss—
Bonnet theory which is a second order Lovelock theory which
however in four dimensions is a topological invariance. If
however it is coupled to a scalar field then a scalar—tensor
theory is generated from the action [63],

ffd“ [ “Prix-— V(¢)+f;¢) }

(16)
where

RGB = R* — 4R, R™ + Ryvep RM"P, (17)
and we have also included a scalar potential V (¢).

It is interesting to notice that the Gauss—Bonnet theory
coupled to a scalar field in four dimensions can be generated
from the general Horndeski action (1) [54,64] making the

following identifications of the functions involved

K@, X)=X—-V(@)+ " (#) X* (3 —InX), (18)

Gs (¢, X) = f 2(¢)X(7 —3InX), (19)
2 "

Ga(h, X) = 7” + f 2(¢)X 2 —1nX), (20)

Gs (¢, X) = @ yx 1)

2

Then we can use the general formula for the propagation of
gravitational waves Eq. (2) for the functions (18)—(21) and
we get

2 _ME2XS @+ IS @) o
o My + Hf' (@)

The role that the Gauss—Bonnet tern coupled to a scalar
field plays in the late cosmological evolution has been exten-
sively studied [65-77]. In this work we will use a specific
model discussed in [77]. In this model by choosing the scalar
potential as

@ Springer

1
V(p) = [—§ +56- &x)] g(@) — poe VP, (23)

where « and § are model parameters. An exact solution of
the gravitational field equations ¢ = 3./BIna was found
with the coupling function of the scalar field to be

8(3 — 4a)d¢p
— o [ TP 24
@) “/ 3/Be(@) @9
where
) = Gt ( (8a + 27,8)¢>
8@) = P\ 3 3)
Oa ~3m 415 o5)
200 +278 -9

and A is an integration constant, o is the present value of the
energy density for matter. Note that if the coupling strength
o = 0 we do not have the Gauss—Bonnet coupling. From the
solution, we get the current value of the ratio of the energy
densities between dark energy and matter,

R4e A0 + 27 —9) — 3p0(20a + 27p)
2m 30020 + 278 —9) ’

(26)
and the current equation of state parameter for dark energy
AQ0x + 278 — 9)?

3(da — 3) (c(200+278 — 9)—3p0(20a + 278))
27

Wde = —

If we take the current value of the ratio $24./$2,, to be 7/3
[78], then we obtain the integration constant A,

(200 + 2708 — 63)po
200 +278 —9

; (28)

and the current equation of state parameter for dark energy

63 — 200 — 2708

. = — 29
e 63 — 84a (29)
Using Eq. (22) the speed of GWs is
32002 + 6a(908 — 11)
2
=1- . 30
Cgu 45 + 16002 — 180a 30)
Using the bound on the speed of GWs [9]
B3x107P <22 1 <7x10716, (31)

c

and the constraint —1.1 < wg, < —0.9 [78], we get the

range on the model parameters o and 8 as shown in Fig. 1.
The results in Fig. 1 show that for a range of values of

the parameter 8, the coupling strength of the Gauss—Bonnet
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Fig. 1 The constraint on the coupling constant « and the model param-
eter

term is in the order of 10~13. For the inflationary model with
V(p) ~ ¢?/2 and f(¢) = —8ag?/2, the absolute value
of the coupling strength « is constrained to be less than the
order of 0.01 [72]. For the power-law inflation with both
exponential coupling and potential, the coupling strength is
constrainedtobe —1x 107 < & < 4x107*[73]. Therefore,
the constraint from the speed of GWs is much stronger.

4 Conclusions

The first measurement of the speed of GWs by GW 170817
and GRB170817A bounds the deviation of the speed of GWs
from the speed of light to be no more than one part in 101,
so it provides the evidence that cg,, = c. Using these obser-
vational result we can test alternative theories of gravity for
their validity to describe the cosmological evolution at late
times.

We used these bounds on ¢, to constrain first a subclass
of the Horndeski theory in which a scalar field except its
minimal coupling is also coupled to Einstein tensor. Assum-
ing that the scalar field plays the role of dark energy we
found a lower bound on the mass scale introduced by this
coupling and combining the constraints from inflation the
energy scale of the derivative coupling is bounded to be
101 GeV > M > 2 x 1073 GeV. This result requires
no fine-tuning and shows that it is possible to get ¢4y ~ ¢
from the terms with G4 x # 0 and Gs ¢ # 0 if their effects
are negligible at late times.

We also studied the Gauss—Bonnet theory in four dimen-
sions coupled to a scalar field. The coupling of the Gauss—
Bonnet term to scalar field not only gives successful infla-
tion, but also provides late time cosmic acceleration. Using
a particular model with a specific form of the coupling func-
tion f(¢) which allows an exact solution of the gravitational
equations, we found that the bounds on ¢, constrains the
Gauss—Bonnet coupling strength to be & < 10713, a con-
straint much stronger than the coupling strength —1 x 10™% <
o < 4x10™* resulted from models with power-law inflation.

Acknowledgements We thank K. Ntrekis, S. Tsujikawa, I. Dalianis, J.
Sakstein, L. Lombriser, M. Zumalacarregui and D. Shantanu for useful
discussions. E.P acknowledges the hospitality of School of Physics of
Huazhong University of Science and Technology where part of this
work was carried out. This research was supported in part by the Major
Program of the National Natural Science Foundation of China under
Grant no. 11690021 and the National Natural Science Foundation of
China under Grant nos. 11875136 and 11475065.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Funded by SCOAP3.

References

1. B.P. Abbott, Observation of gravitational waves from a binary black
hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

2. B.P. Abbott, GW151226: observation of gravitational waves from
a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett.
116(24), 241103 (2016)

3. B.P. Abbott, GW170104: observation of a 50-solar-mass binary
black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118(22),
221101 (2017)

4. B.P. Abbott, GW170608: observation of a 19-solar-mass binary
black hole coalescence. Astrophys. J. 851(2), L35 (2017)

5. B.P. Abbott, GW170814: a three-detector observation of gravita-
tional waves from a binary black hole coalescence. Phys. Rev. Lett.
119(14), 141101 (2017)

6. B.P. Abbott, GW170817: observation of gravitational waves from
a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101
(2017)

7. A. Goldstein, An ordinary short gamma-ray burst with extraordi-
nary implications: fermi-GBM detection of GRB 170817A. Astro-
phys. J. Lett. 848(2), L14 (2017)

8. V. Savchenko, INTEGRAL detection of the first prompt gamma-
ray signal coincident with the gravitational-wave event GW170817.
Astrophys. J. Lett. 848(2), L15 (2017)

9. B.P. Abbott, Gravitational waves and gamma-rays from a binary
neutron star merger: GW170817 and GRB 170817A. Astrophys.
J. 848(2), L13 (2017)

10. S. Mirshekari, N. Yunes, C.M. Will, Constraining generic lorentz
violation and the speed of the graviton with gravitational waves.
Phys. Rev. D 85, 024041 (2012)

11. J. Beltran Jimenez, F. Piazza, H. Velten, Evading the Vainshtein
mechanism with anomalous gravitational wave speed: constraints
on modified gravity from binary pulsars. Phys. Rev. Lett. 116(6),
061101 (2016)

12. PM. Chesler, A. Loeb, Constraining relativistic generalizations of
modified Newtonian dynamics with gravitational waves. Phys. Rev.
Lett. 119(3), 031102 (2017)

13. T. Baker, E. Bellini, P.G. Ferreira, M. Lagos, J. Noller, I. Sawicki,
Strong constraints on cosmological gravity from GW170817 and
GRB 170817A. Phys. Rev. Lett. 119(25), 251301 (2017)

14. P. Creminelli, F. Vernizzi, Dark energy after GW170817 and
GRB170817A. Phys. Rev. Lett. 119(25), 251302 (2017)

15. J. Sakstein, B. Jain, Implications of the neutron star merger
GW170817 for cosmological scalar—tensor theories. Phys. Rev.
Lett. 119(25), 251303 (2017)

16. J.M. Ezquiaga, M. Zumalacarregui, Dark energy after GW170817:
dead ends and the road ahead. Phys. Rev. Lett. 119(25), 251304
(2017)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

738 Page 6 of 7

Eur. Phys. J. C (2018) 78:738

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

M.A. Green, J.W. Moffat, V.T. Toth, Modified gravity
(MOG), the speed of gravitational radiation and the event
GW170817/GRB170817A. Phys. Lett. B 780, 300 (2018)

A. Nishizawa, Generalized framework for testing gravity with
gravitational-wave propagation. I. Formulation. Phys. Rev. D
97(10), 104037 (2018)

S. Arai, A. Nishizawa, Generalized framework for testing gravity
with gravitational-wave propagation. II. Constraints on Horndeski
theory. Phys. Rev. D 97(10), 104038 (2018)

R.A. Battye, F. Pace, D. Trinh, Gravitational wave constraints on
dark sector models. Phys. Rev. D 98(2), 023504 (2018)

Y. Fujii, K. Maeda, The scalar—tensor theory of gravitation
(Cambridge University Press, 2007). http://www.cambridge.org/
uk/catalogue/catalogue.asp?isbn=0521811597

G.W. Horndeski, Second-order scalar-tensor field equations in a
four-dimensional space. Int. J. Theor. Phys. 10, 363 (1974)

M. Ostrogradsky, Mémoires sur les équations différentielles, rela-
tives au probleme des isopérimetres. Mem. Acad. St. Petersbourg
6(4), 385 (1850)

A.L Vainshtein, To the problem of nonvanishing gravitation mass.
Phys. Lett. 39B, 393 (1972)

A. Nicolis, R. Rattazzi, E. Trincherini, The Galileon as a local
modification of gravity. Phys. Rev. D 79, 064036 (2009)

C. Deffayet, G. Esposito-Farese, A. Vikman, Covariant Galileon.
Phys. Rev. D 79, 084003 (2009)

N. Chow, J. Khoury, Galileon cosmology. Phys. Rev. D 80, 024037
(2009)

A. De Felice, R. Kase, S. Tsujikawa, Vainshtein mechanism in
second-order scalar—tensor theories. Phys. Rev. D 85, 044059
(2012)

E. Babichev, C. Deffayet, G. Esposito-Farese, Improving relativis-
tic MOND with Galileon k-mouflage. Phys. Rev. D 84, 061502
(2011)

S. Chakraborty, S. SenGupta, Solar system constraints on alterna-
tive gravity theories. Phys. Rev. D 89(2), 026003 (2014)

G. Lambiase, M. Sakellariadou, A. Stabile, A. Stabile, Astrophys-
ical constraints on extended gravity models. JCAP 1507(07), 003
(2015)

S. Bhattacharya, S. Chakraborty, Constraining some Horndeski
gravity theories. Phys. Rev. D 95(4), 044037 (2017)

T. Kolyvaris, G. Koutsoumbas, E. Papantonopoulos, G. Siopsis,
Scalar hair from a derivative coupling of a scalar field to the Einstein
tensor. Class. Quant. Grav. 29, 205011 (2012)

M. Rinaldi, Black holes with non-minimal derivative coupling.
Phys. Rev. D 86, 084048 (2012)

T. Kolyvaris, G. Koutsoumbas, E. Papantonopoulos, G. Siopsis,
Phase transition to a hairy black hole in asymptotically flat space-
time. JHEP 11, 133 (2013)

E. Babichev, C. Charmousis, Dressing a black hole with a time-
dependent Galileon. JHEP 08, 106 (2014)

C. Charmousis, T. Kolyvaris, E. Papantonopoulos, M. Tsoukalas,
Black holes in bi-scalar extensions of Horndeski theories. JHEP
07, 085 (2014)

G. Koutsoumbas, K. Ntrekis, E. Papantonopoulos, M. Tsoukalas,
Gravitational collapse of a homogeneous scalar field coupled kine-
matically to Einstein tensor. Phys. Rev. D 95(4), 044009 (2017)
L. Amendola, Cosmology with nonminimal derivative couplings.
Phys. Lett. B 301, 175 (1993)

S.V. Sushkov, Exact cosmological solutions with nonminimal
derivative coupling. Phys. Rev. D 80, 103505 (2009)

C. Germani, A. Kehagias, UV-protected inflation. Phys. Rev. Lett.
106, 161302 (2011)

E.N. Saridakis, S.V. Sushkov, Quintessence and phantom cos-
mology with non-minimal derivative coupling. Phys. Rev. D 81,
083510 (2010)

@ Springer

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Y. Huang, Q. Gao, Y. Gong, The phase-space analysis of scalar
fields with non-minimally derivative coupling. Eur. J. Phys. C 75,
143 (2015)

N. Yang, Q. Fei, Q. Gao, Y. Gong, Inflationary models with non-
minimally derivative coupling. Class. Quant. Grav. 33(20), 205001
(2016)

G. Koutsoumbas, K. Ntrekis, E. Papantonopoulos, Gravitational
particle production in gravity theories with non-minimal derivative
couplings. JCAP 08, 027 (2013)

X.M. Kuang, E. Papantonopoulos, Building a holographic super-
conductor with a scalar field coupled kinematically to Einstein ten-
sor. JHEP 08, 161 (2016)

C. Germani, A. Kehagias, New model of inflation with non-
minimal derivative coupling of standard model Higgs Boson to
gravity. Phys. Rev. Lett. 105, 011302 (2010)

C. Germani, Y. Watanabe, UV-protected (natural) inflation: pri-
mordial fluctuations and non-Gaussian features. JCAP 1107, 031
(2011). [Addendum: JCAP1107,A01(2011)]

L. Lombriser, A. Taylor, Breaking a dark degeneracy with gravita-
tional waves. JCAP 1603(03), 031 (2016)

L. Lombriser, N.A. Lima, Challenges to self-acceleration in mod-
ified gravity from gravitational waves and large-scale structure.
Phys. Lett. B 765, 382 (2017)

D. Bettoni, J.M. Ezquiaga, K. Hinterbichler, M. Zumalacarregui,
Speed of gravitational waves and the fate of scalar—tensor gravity.
Phys. Rev. D 95(8), 084029 (2017)

E. Babichev, C. Charmousis, G. Esposito-Farese, A. Lehébel, Sta-
bility of black holes and the speed of gravitational waves within
self-tuning cosmological models. Phys. Rev. Lett. 120(24), 241101
(2018)

E. Babichev, C. Charmousis, G. Esposito-Fare¢se, A. Lehébel,
Hamiltonian vs stability and application to Horndeski theory.
arXiv:1803.11444

T. Kobayashi, M. Yamaguchi, J. Yokoyama, Generalized G-
inflation: inflation with the most general second-order field equa-
tions. Prog. Theor. Phys. 126, 511 (2011)

A.De Felice, S. Tsujikawa, Conditions for the cosmological viabil-
ity of the most general scalar—tensor theories and their applications
to extended Galileon dark energy models. JCAP 1202, 007 (2012)
S. Hou, Y. Gong, Y. Liu, Polarizations of gravitational waves in
Horndeski theory. Eur. Phys. J. C 78, 378 (2018)

Z.Yi, Y. Gong, PPN parameters in gravitational theory with non-
minimally derivative coupling. Int. J. Mod. Phys. D 26, 1750005
(2017)

J.FE. Bell, T. Damour, A New test of conservation laws and Lorentz
invariance in relativistic gravity. Class. Quant. Grav. 13, 3121
(1996)

I.H. Stairs, Discovery of three wide-orbit binary pulsars: implica-
tions for binary evolution and equivalence principles. Astrophys.
J. 632, 1060 (2005)

I. Dalianis, G. Koutsoumbas, K. Ntrekis, E. Papantonopoulos,
Reheating predictions in gravity theories with derivative coupling.
JCAP 1702(02), 027 (2017)

G. Koutsoumbas, K. Ntrekis, E. Papantonopoulos, E.N. Saridakis,
Unification of dark matter—dark energy in generalized Galileon
theories. JCAP 1802(02), 003 (2018)

D. Lovelock, The Einstein tensor and its generalizations. J. Math.
Phys. 12,498 (1971)

J. Rizos, K. Tamvakis, On the existence of singularity free solutions
in quadratic gravity. Phys. Lett. B 326, 57 (1994)

A. De Felice, S. Tsujikawa, Inflationary non-Gaussianities in the
most general second-order scalar—tensor theories. Phys. Rev. D 84,
083504 (2011)

S. Nojiri, S.D. Odintsov, M. Sasaki, Gauss-Bonnet dark energy.
Phys. Rev. D 71, 123509 (2005)


http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521811597
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521811597
http://arxiv.org/abs/1803.11444

Eur. Phys. J. C (2018) 78:738

Page 7of 7 738

66.

67.

68.

69.

70.

71.

72.

T. Koivisto, D.F. Mota, Cosmology and astrophysical constraints
of Gauss—Bonnet dark energy. Phys. Lett. B 644, 104 (2007)

T. Koivisto, D.F. Mota, Gauss—Bonnet quintessence: background
evolution, large scale structure and cosmological constraints. Phys.
Rev. D 75, 023518 (2007)

G. Calcagni, B. de Carlos, A. De Felice, Ghost conditions for
Gauss—Bonnet cosmologies. Nucl. Phys. B 752, 404 (2006)
B.M.N. Carter, I.P. Neupane, Towards inflation and dark energy
cosmologies from modified Gauss—Bonnet theory. JCAP 0606, 004
(2006)

E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy.
Int. J. Mod. Phys. D 15, 1753 (2006)

B.M. Leith, I.P. Neupane, Gauss—Bonnet cosmologies: crossing the
phantom divide and the transition from matter dominance to dark
energy. JCAP 0705, 019 (2007)

K. Nozari, N. Rashidi, Perturbation, non-Gaussianity, and reheat-
ing in a Gauss—Bonnet a-attractor model. Phys. Rev. D 95(12),
123518 (2017)

73.

74.

75.

76.

71.

78.

Z.K. Guo, D.J. Schwarz, Power spectra from an inflaton coupled
to the Gauss—Bonnet term. Phys. Rev. D 80, 063523 (2009)

S. Koh, B.H. Lee, W. Lee, G. Tumurtushaa, Observational con-
straints on slow-roll inflation coupled to a Gauss—Bonnet term.
Phys. Rev. D 90(6), 063527 (2014)

P. Kanti, R. Gannouji, N. Dadhich, Early-time cosmological solu-
tions in Einstein—Scalar—Gauss—Bonnet theory. Phys. Rev. D 92(8),
083524 (2015)

S. Koh, B.H. Lee, G. Tumurtushaa, Reconstruction of the scalar
field potential in inflationary models with a Gauss—Bonnet term.
Phys. Rev. D 95(12), 123509 (2017)

M. Heydari-Fard, H. Razmi, M. Yousefi, Scalar—Gauss—Bonnet
gravity and cosmic acceleration: comparison with quintessence
dark energy. Int. J. Mod. Phys. D 26(02), 1750008 (2016)

P.A.R. Ade, Planck 2015 results. XIII. Cosmological parameters.
Astron. Astrophys. 594, A13 (2016)

@ Springer



	Constraints on scalar–tensor theory of gravity by the recent observational results on gravitational waves
	Abstract 
	1 Introduction
	2 The effect of the speed of gravitational waves in the Horndeski theory
	3 The effect of the speed of gravitational waves in the Gauss–Bonnet theory
	4 Conclusions
	Acknowledgements
	References




