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Abstract We present an alternative description of mag-
netic monopoles by lifting quantum mechanics from 3-
dimensional space into a one with 2 complex dimensions.
Magnetic monopoles are realised as a generalisation of the
considered physical states. Usual algebraic relations and
magnetic fields describing monopoles are reproduced, with
the Dirac quantisation condition satisfied naturally.

1 Introduction

Magnetic monopoles are a vital part of many theoretical mod-
els, despite never being actually observed. They have a long
history, in classical electromagnetism they appeared as a gen-
eralisation of Maxwell equations (by adding magnetic charge
sources). The situation is more intricate in quantum mechan-
ics (QM), where electromagnetism is described by electro-
magnet potentials, which were defined to make the theory
free of magnetic monopoles by default (as div rot A ∼ ρM =
0).

However, there is a workaround; one can use potentials
singular on a (half-)line, so-called Dirac strings [1]. This idea
allowed Dirac to study magnetic monopoles in the context of
QM and to derive the famous Dirac quantisation condition,
which states that the product of electric and magnetic charge,
denoted μ, has to be quantised. Therefore, if at least one
magnetic monopole exists in the Universe the electric charge
has to be quantised, as is indeed observed.

This description was later refurbished by Yang and Wu,
[2,3], who instead of using one singular potential used two
non-singular potentials defined in different, but overlapping,
regions. This connected the theory of magnetic monopoles
not only to the mathematical theory of sections but also, in
retrospective, to topology. Two potentials define two solu-
tions which are related by a phase factor transformation. On
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the overlapping region, one can define a non-contractible
path and by moving along the entire loop, the phase has to
change by an integer multiple of 2π . The winding number
integer corresponds to the quantised μ. Important studies of
magnetic monopoles in QM, whose results we are comparing
within this paper, were done by Zwanziger, see [4].

Nowadays, magnetic monopoles often appear as solutions
in various field theories, where they appear as long as one
can specify topologically nontrivial boundary conditions (for
example the hedge-hog configuration in [5,6] or in super
Yang–Mills theory in [7]). They also appear in string theory,
where they are even less similar to the electric ones, as their
dimensionality usually differs.1

We will show in this paper how can the monopoles in QM
be described in a new way. The main idea is this: we will
reformulate QM in C2, a space with two complex dimen-
sions, instead of R3. We will show that the usual QM can
be obtained by restricting on a specific Hilbert subspace.
Then, we will show that by lowering these restrictions we
can describe magnetic monopoles of an arbitrary charge μ.

That the monopoles can be described in C2 using a Hopf
fibration is known, but mostly from the context of electro-
magnetism, see [9,10]. Twistor decription of monopoles has
been also discussed in [11]. Our approach is closely related
to QM and can be used as a starting point for some other
modifications, for example for formulating QM on a non-
commutative space, see [12–15]. The idea of using addi-
tional degrees of freedom to describe monopole system also
appeared in [16].

1 The condition is p + p′ = D − 4, see [8], where the electrical object
is p-dimensional, the magnetic one is p′-dimensional and D is the
dimension of spacetime. In the currently observed universe is D = 4
and therefore p = p′ = 0.
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2 Quantum mechanics revisited

Quantum-mechanical theory consist of two building blocks:
a Hilbert space of states and a set of operators on it. The most
notorious example might be the space of square-integrable
complex functions Ψ (x) of three spatial coordinates xi , i =
1, 2, 3, which is equipped with the norm

||Ψ ||2 =
∫

Ψ ∗(x)Ψ (x)d3x . (1)

Observables are defined as operators on this space, for exam-
ple, the coordinate and the momentum operators are

x̂ iΨ (x) = xiΨ (x),

p̂iΨ (x) = −i∂xi Ψ (x), (2)

where we have set h̄ = 1. As long as normalizable under 1,
any function Ψ (x) can be considered a QM state.

This entire picture can be recast in a different way, instead
of starting from a space with three real coordinates xi , we can
take two complex coordinates zα, α = 1, 2. The Hilbert state
consists of square-integrable complex functions Φ(z, z∗) and
is equipped with a norm

||Φ2|| =
∫

2r

π
Φ∗(z, z∗)Φ(z, z∗)dzαdz∗α, (3)

where r = z∗αzα (summation over repeated indices is
assumed in this paper). The choice of this weight will become
clear later. The space C2 is naturally equipped with a sym-
plectic structure

{zα, z∗β} = −i δαβ , {zα, zβ} = {z∗α, z∗β} = 0. (4)

Using this, we can define numerous operators on the Hilbert
space, for example, the Laplace operator is

ΔΦ(z, z∗) = 1

r
{z∗α, {zα,Φ(z, z∗)}}. (5)

So far this looks like completely different QM, but there is
a way to connect the theory in C2 to that in R3. The important
thing to recall is that even though these two spaces are dif-
ferent, the groups of their (rotational) symmetries are locally
isomorphic (both can be realised using the algebra of Pauli
matrices). We can parametrise zα, z∗α using the Euler angles
as (cf. [17])

z1 = √
r cos (θ/2) e

i
2 (−φ+γ ), z∗1 = √

r cos (θ/2) e− i
2 (−φ+γ ),

z2 = √
r sin (θ/2) e

i
2 (φ+γ ), z∗2 = √

r sin (θ/2) e− i
2 (φ+γ ).

(6)

The coordinates of C2 can be mapped into the coordinates
of R3 using the Pauli matrices as

xi = z∗ασ i
αβ zβ. (7)

How does this map work? It is mapping points from a 3-
sphere, z∗αzα = r , into points on a 2-sphere, xi xi = r2. All

points differing only the angle γ are mapped into a single

one. This is a (complex) Hopf fibration S3 S1→ S2 for any
r > 0. Plugging 6 into 7 results into xi expressed in the
spherical coordinates (r, θ, φ).

Instead of considering any square-integrable function
Φ(z, z∗) as a QM state, we can restrict only to functions
depending on very specific combinations of zα, z∗α , namely
those of the form Φ(x) with x defined in 7. Then, the natu-
rally defined operators act in a familiar way

Δ̂Φ(x) = 1

r
{z∗α, {zα,Φ(x)}} = ∂xi ∂xi Φ(x),

x̂ iΦ(x) = xiΦ(x),

V̂ iΦ(x) ≡ 1

2

[
Δ̂, x̂ i

]
Φ(x)

= − i

2r
σ i

αβ(z∗α∂z∗β + zβ∂zα )Φ(x)

= −i∂xi Φ(x),

L̂iΦ(x) = i

2
{xi , Φ(x)} = εi jk x̂ j V̂ kΦ(x). (8)

Also, the integration weight becomes
∫ r

2π
d2z → ∫

d3x .
The third relation defines the velocity operator, which is equal
to the conjugate momentum (withm = h̄ = 1) and the fourth
one defines the angular momentum operator satisfying the
usual su(2) relation. All of these can be obtained using 4 and
the chain rule for derivatives (note that {zα, .} = −i∂z∗α and
{z∗α, .} = i∂zα ).

This way we can rewrite the standard R3 QM in C2 formal-
ism. By considering only states of the form Φ(x) (restrict-
ing on a certain Hilbert subspace) it is hard to see any
difference.

One of the benefits of this construction is that the sym-
plectic structure 4 allows for Kontsevich quantisation of
the underlying space, resulting into a theory of QM on a
noncommutative (or quantum, fuzzy) space R3

λ, [12,13].
We will not follow this direction here, it can be found in
[14,15].

For the considered Hilbert subspace with states of the form
Φ(x), the singularity at r = 0 is only a coordinate one.
However, for general states, this point has to be removed as
it would make the Laplace operator Δ̂ ill-defined. From now
on, we will consider C2\{0} instead of C2.

3 Generalised states

The important property of the states Φ(x) is that they contain
a product of equal powers of complex coordinates z and their
conjugates z∗, which is ensured by the form of 7. As a result,
their dependence on the angle γ disappears.

Let us now do the following: we will lower the restriction
on the form of the states, allowing them to have unequal pow-
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ers of z and z∗. These states have no counterpart in the ordi-
nary QM, as they do depend on γ . Nonetheless, the operators
8 remain well-defined and we will use them to show that the
generalised states actually described magnetic monopoles of
an arbitrary charge allowed by the Dirac quantisation condi-
tion.

The generalised states forming Hκ are of the form

Φκ(z, z∗) = Φ(x) · ξκ , ξκ =
(
z1

z∗1

) κ−δ
4

(
z2

z∗2

) κ+δ
4

. (9)

The extra factor ξκ can be also expressed in coordinates 6 as

ξκ = ei
κ
2 γ ei

δ
2 φ. (10)

We could consider even a sum of such terms with differ-
ent δ (and different coefficients), but we will stick with this
simplest case in this paper. As the coordinates γ, φ are peri-
odic with a period of 4π , the functions Φκ remain uniquely
defined as long as κ, δ ∈ N. While κ counts the difference in
the powers of z and z∗, δ counts the difference between the
components with index 1 and 2.

It is important to notice that while for κ 	= 0 we cannot
express the wave-function Φk as a function of x , the prob-
ability density Φ∗

k Φk always contains equal powers of z a
z∗ and can be, via 7, expressed as a function of R3 coordi-
nates. Therefore, the states always have a proper probabilistic
interpretation.

There are many relations that reveal the monopole behav-
ior. For example, the following relation

εi jk x̂ j V̂ kΦκ =
(
L̂i + κ

2

x̂ i

r

)
Φκ. (11)

reveals the presence of a non-vanishing angular momentum.
The same was shown for a monopole system by Zwanziger
in [4]. Probably the most telling object is the commutator of
the velocity operators

[V̂ i , V̂ j ]Φκ = κ

2
iεi jk

x̂ k

r3 Φκ, (12)

which is equal to the monopole field strength (also the same
as in the Zwanziger’s study).

This should be sufficient, but we can proceed one step fur-
ther. The velocity operator is a differential operator, acting
only on Φ(x), it is proportional to the partial derivative with
respect to x , see 8. However, its action on Φκ is more com-
plicated, as by the Leibniz rule, there is also a contribution
Φ(x)V̂ iξκ . Let us identify it with a gauge potential

V̂ jΦκ = (−i∂x j Φ(x))ξκ + A jΦκ,

A j = − i

2rξκ

σ
j

γ δzδ(∂zγ ξκ) (13)

Given our choice of ξκ , the only nontrivial component (in
spherical coordinates) is

Aφ = δ + κ cos(θ)

2r sin(θ)
, (14)

which defines the following magnetic field

Bi = (rot A)i = −κ

2

xi

r3 . (15)

As we can see, the resulting Coulomb-like field depends
only on κ , not δ. The potential Aφ can be split into two parts,

the first one Aφ
κ = κ

2r cot(θ) describes the magnetic field

while the other, Aφ
δ = δ

2r csc(θ) = ∇φ

(
δ
2φ

)
can be gauged

away. Both of them appear in the analysis of Yang, see [3].
It is obvious now that κ/2 can be identified with the mag-

netic charge μ. Dirac quantisation condition, that μ has to
be a half-integer, is satisfied naturally, as κ counts the differ-
ence in the powers of z and z∗, which is in our construction
an integer number.

If we set δ = 0, we have ξκ =
(

z1z2
z∗1z2∗

) κ
4

and the resulting

potential Aφ is singular for both θ = 0, π . On the other hand,

choosing δ = ±κ yields ξκ =
(
z1
z∗1

) κ
2

or ξκ =
(
z2
z∗2

) κ
2

which

leads to a potential singular only on the north or the south

pole. Therefore, we conclude that
(
z1
z∗1

)
and

(
z2
z∗2

)
correspond

to Dirac semi-strings with μ = κ
2 and the general choice 13

is a combination of both.
It is also possible to define additional operator V̂ 4 =

1
2r

(
z∗α∂z∗α − zα∂zα

)
which acts as V̂4 = 1

r ∂γ on the consid-
ered states and measures their monopole charge.

4 Conclusion

We have shown a slightly unusual construction of QM.
The three-dimensional theory was reformulated in four-
dimensional (or two-complex-dimensional) space by con-
sidering a restricted class of wave-functions of the form
Φ(z∗σ z). This construction is alluring as it offers some new
possibilities. As we have shown, the extra dimension, which
in the context of Hopf fibrations has a topology of a circle,
allowed us to describe monopoles states in a regular way.

Also, as this space is naturally equipped with Poisson
structure, it can be (canonically) quantised to obtain noncom-
mutative space: {zα, z∗β} = −iδαβ → [zα, z∗β ] = δαβ and

[xi , x j ] = 2iεi jk xk (as follows from 7). Such spaces, whose
close points cannot be distinguished below some fundamen-
tal scale, are a rather general aspect of theories of quantum
gravity.

After this quantisation, one can define QM the same way
as was done in this paper to obtained so-called noncommuta-
tive QM, see [12,13,18–20]. By considering a similarly gen-
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eralised class of states as in this paper (containing an unequal
number of bosonic creation and annihilation operators), one
can realise magnetic monopoles in this theory, see [14,15].

The fact that lifting the theory one dimension up offered
new possibilities shall be of no surprise. When Kaluza and
Klein studied general relativity in 5 dimensions, with the fifth
dimension tightly curled up, electromagnetism appeared nat-
urally. Also not so surprisingly, there are known gravitational
solutions in 5 the dimensional theory that look like magnetic
monopoles in 4 dimensions [21,22].

Our choice of the form of ξk ensured that the factor which
introduced monopoles was just a phase, not affecting the
norm of the states, ||Φκ ||2 = ||Φ(x)ξk ||2 = ||Φ(x)||2. If we
were more careless and chose, for example, ξk = (z1z2)

κ
2 ,

following the same steps would lead to the same monopole

field Bi = − κ
2
xi

r3 .
The fact that such choice changes the amplitude of the

wave-functions would manifest itself as an imaginary con-
tribution to the potential Ai , which can be easily removed.
Assuming δ = 0 for simplicity, if we factorise this ξκ as
ξ ′
κ(r, θ, φ)ξ ′′

κ (γ ), it follows that

Im(Ai ) = −∂xi log(ξ ′
κ), (16)

which, being a gradient, can be gauged away. This results
into a change of the wave-function which is not just a phase,
as the potential is imaginary, but instead

e− log(ξ ′
κ )Φ(x)ξ ′

κξ ′′
κ = Φ(x)ξ ′′

κ . (17)

This means it removes the amplitude-changing part leaving
only the phase factor ξ ′′

κ .
To put it simply, if we introduce monopoles by adding

a factor that is not just a phase, the non-phase part can
be gauged away using the imaginary potential it produced.
Notably, complex electromagnetic potentials have been stud-
ied in the context of electromagnetic duality in the theory with
superluminal sources in [23], but in our case is the imaginary
part redundant.
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15. S. Kováčik, P. Prešnajder (2018). arXiv:1802.06854 [math-ph]
16. V.G. Kupriyanov, R.J. Szabo, Phys. Rev. D 98, 045005 (2018).

https://doi.org/10.1103/PhysRevD.98.045005
17. H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley,

Reading, 1980), p. 155
18. H.J. Groenewold, Physica 12, 405 (1946)
19. S. Snyder, Phys. Rev. 71, 38 (1947)
20. J. Madore, Class. Quantum Gravity 9, 69 (1992)
21. R.D. Sorkin, Phys. Rev. Lett. 51, 87 (1983)
22. D.J. Gross, M.J. Perry, Nucl. Phys. B 226, 29 (1983)
23. A.A. Deriglazov, A.M. Pupasov-Maksimo, Phys. Lett. B 761, 207

(2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1802.06854
https://doi.org/10.1103/PhysRevD.98.045005

	Alternative description of magnetic monopoles in quantum mechanics
	Abstract 
	1 Introduction
	2 Quantum mechanics revisited
	3 Generalised states
	4 Conclusion
	Acknowledgements
	References




