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Abstract Using the Tsallis generalized entropy, holo-
graphic hypothesis and also considering the Hubble horizon
as the IR cutoff, we build a holographic model for dark energy
and study its cosmological consequences in the Brans–Dicke
framework. At first, we focus on a non-interacting universe,
and thereinafter, we study the results of considering a sign-
changeable interaction between the dark sectors of the cos-
mos. Our investigations show that, compared with the flat
case, the power and freedom of the model in describing the
cosmic evolution is significantly increased in the presence
of the curvature. The stability analysis also indicates that,
independent of the universe curvature, both the interacting
and non-interacting cases are classically unstable. In fact,
both the classical stability criterion and an acceptable behav-
ior for the cosmos quantities, including the deceleration and
density parameters as well as the equation of state, are not
simultaneously obtainable.

1 Introduction

Cohen et al.’s proposal [1] gives us an estimation for the
upper bound of the energy density of quantum fields in the
vacuum states. Shortly afterwards, it has been proposed that
this bound may provide an explanation for dark energy (DE),
a hypothesis called Holographic dark energy (HDE), is a
promising approach to solve the dark energy problem, and
its related topics [2–10]. Indeed, the HDE hypothesis helps
us in finding the cosmological features of the vacuum energy.
The mutual relation between the UV and IR cutoffs forms the
backbone of HDE [9,10]. Finally, it is worthwhile to men-
tion here that any changes in the horizon entropy, including
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changes in (i) the entropy-area relation, (ii) the IR cutoff or
even a combination of these ways, lead to new models for
HDE [9–13].

The Brans–Dicke (BD) theory of gravity is an alternative
to general relativity in which the gravitational constant G is
not constant, and it is replaced with the inverse of a scalar field
(φ) [14]. Although the BD theory can provide a description
for the current universe [15–17], its theoretical predictions for
the w parameter has major difference with the observations
[18–20]. In fact, the theoretical estimations for the value of
w is much less than those are obtained from observations,
a result encouraging physicists to use various dark energy
sources in order to describe the current universe in the BD
framework [18–20].

Motivated by the above arguments, the idea of HDE has
also been employed to study the dark energy problem in the
BD framework [21–30]. It has also been argued that since
HDE is a dynamic model, one should use the dynamic frame-
works, such as the BD theory, to study its cosmological fea-
tures [25,29]. It has been shown that the original HDE with
the Hubble radius as IR cutoff cannot produce the cosmic
acceleration in the BD theory [28], while for the event hori-
zon as the IR cut-off, an accelerated universe is obtainable.
Furthermore, it has been demonstrated that when an interac-
tion between HDE and DM is taken into account, the phan-
tom line is crossed in the BD cosmology [29]. The stability
of interacting HDE with the GO cutoff in the BD theory has
also been discussed in [30]. Observations also admit a sign-
changeable interaction between the cosmos sectors [31–33].
Such interaction usually admits the cosmological models to
experience a phantom phase [34].

Recently, using Tsallis generalized entropy [35], and by
considering the Hubble horizon as the IR cutoff, in agree-
ment with the thermodynamics considerations [11,12], a new
HDE model, called Tsallis holographic dark energy (THDE),
has been introduced and studied in the standard cosmology
framework [13]. At first glance, it is a proper model for
the current universe in the standard cosmology framework
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[13,36,37], but, the same as the primary HDE based on the
Bekenstein entropy [8], THDE is not stable [13,36,37]. More
studies on the various cosmological features of the Tsallis
generalized statistical mechanics can be found in Refs. [38–
41]. It is also useful to note here that a non sign-changeable
interaction between the cosmos sectors can not bring stability
for this model [37].

Here, we are interested in studying the consequences of
employing the THDE model in modeling dark energy in the
BD cosmology. In our setup, the Hubble horizon as the IR
cutoff is taken into account, and both the interacting and non-
interacting cases are also investigated. In order to achieve this
goal, we studied the non-interacting case in the next section.
The situation in which there is a sing-changeable interac-
tion between the cosmos sectors has also been addressed in
Sect. 3. The fourth section includes our results about the clas-
sical stability of the obtained models against perturbations.
The last section is devoted to concluding remarks.

2 Non-interacting Tsallis holographic dark energy in
the Brans–Dicke cosmology

We consider a homogeneous and isotropic FRW universe
described by the line element

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2d�2
)

, (1)

where k = 0, 1,−1 represent a flat, closed and open uni-
verses, respectively. For the universe filled by a pressureless
dark matter (DM) with energy density ρm , and a DE candi-
date with energy density ρD , the Brans–Dicke field equations
are found as [27]

3

4ω
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(
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)
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2
+ 3

2ω
H φ̇φ = ρM + ρD, (2)

−φ2

4ω
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2ä
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a2

)
− 1

ω
H φ̇φ

− 1

2ω
φ̈φ − φ̇2

2

(
1 + 1

ω

)
= pD, (3)

φ̈ + 3H φ̇ − 3

2ω

(
ä

a
+ H2 + k

a2

)
φ = 0. (4)

where H = ȧ/a is the Hubble parameter and pD represents
the pressure of DE. Following [26], we assume that the BD
field φ can be described by a power function of the scale
factor, namely φ ∝ an . One can now get

φ̇ = nHφ, (5)

and hence

φ̈ = n2H2φ + nḢφ, (6)

where dot denotes derivative with respect to time.

Since the Tsallis generalized entropy-area relation is inde-
pendent of the gravitational theory used to study the system
[35], the energy density of Tsallis HDE (THDE) with the
Hubble radius as the IR cutoff (L = H−1), takes the follow-
ing form

ρD = Bφ2δH4−2δ. (7)

Here, φ2 = ω/(2πGef f ), Gef f is the effective gravitational
constant, and we used the holographic hypothesis [1–3,13].
In the limiting case, where Gef f is reduced to G, the energy
density of THDE in the standard cosmology is restored [13].
For the δ = 1 case, the above equation also yields the stan-
dard HDE density in the BD gravity [28]. The dimensionless
density parameters are defined as

�m = ρm

ρcr
= 4ωρm

3φ2H2 ,

�D = ρD

ρcr
= 4Bω

3
φ2δ−2H2−2δ,

�φ = ρφ

ρcr
= 2n

(nω

3
− 1

)
,

�k = k

a2H2 . (8)

Here, we also assume that there is no energy exchange
between the cosmos sectors, and hence, the energy conser-
vation equations are as follows

ρ̇D + 3H(1 + ωD)ρD = 0, (9)

and

ρ̇m + 3Hρm = 0, (10)

where ωD = pD
ρD

denotes the equation of state (EoS) param-
eter of dark energy. Taking the time derivative of Eq. (7), we
have

ρ̇D = 2HρD

(
nδ + (2 − δ)

Ḣ

H2

)
, (11)

combined with relation �̇D = H�′
D to obtain

�′
D = 2(1 − δ)�D

( Ḣ

H2 + n
)
, (12)

where prime denotes derivative with respect to x = ln a.
Now, combining the time derivative of Eq. (2) with Eqs. (5),
(6), (10) and (11), one can easily get

Ḣ

H2 =
[
3(�D − 1) − �k + 2n(δ�D + 2ωn2

3

+nω − 2n − �k − 4)
]

×
(

2(δ − 2)�D − 4n2ω

3
+ 4n + 2

)−1
(13)
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Fig. 1 �D versus z. Here, we used �k = 0 (upper panel), �k0 = 0.1
(lower panel), �D0 = 0.73, n = 0.001 and ω = 1000 [19] as the initial
conditions

Inserting Eq. (13) into (12), we also obtain the evolution
of dimensionless THDE density as

�′
D = 2n(δ − 1)�D + �D(1 − δ)

×
(

3(�D − 1) −�k + 2n(δ�D + nω+ 2ωn2

3 − 2n − �k − 4)
)

(δ − 2)�D − 2n2ω
3 + 2n + 1

.

(14)

In the limiting case n = 0 (ω → 0), Eq. (14) restores
the result of the Einstein gravity [13]. The evolution of the
dimensionless THDE density parameter �D against redshift
z is shown in Fig. 1 for the �k = 0 (the upper panel)
and �k0 = 0.1 [42], where �k0 is the current value of
�k , (the lower panel) cases whenever the initial condition
�D(z = 0) = 0.73 has been considered. Additionally,

n = 0.001 and ω = 1000 [19,20] have also been used to
plot Fig. 1, showing that in the early time (z → ∞) we have
�D → 0, while at the late time (where (z → −1)) we have
�D → 1.

Combining Eqs. (9), (11) and (13) with each other, the
EoS parameter is obtained as

ωD = −1 − 2δn

3
+ (δ − 2)

×3(�D − 1) − �k + 2n(δ�D + nω + 2ωn2

3 − 2n − �k − 4)

3(δ − 2)�D − 2n2ω + 6n + 3
.

(15)

It is easy to see that the EoS parameter for THDE in the
standard cosmology is retrieved at the appropriate limitn = 0
(ω → 0) [13]. The behavior of ωD against z has been plotted
in Fig. 2, for both the �k = 0 (upper panel) and �k0 = 0.1
[42] (lower panel) cases, whenever n = 0.001 and ω = 1000
[19]. From Fig. 2, one can clearly see that the THDE model
with the Hubble cutoff in the BD gravity can lead to the
accelerated expansion, even in the absence of an interaction
between the two dark sectors of cosmos, and in addition, we
have ωD(z → −1) → −1 which implies that this model
simulates the cosmological constant at future.

Using Eq. (13), we can also write

q = −1 − Ḣ

H2 = −1

−3(�D − 1) − �k+2n(δ�D + nω + 2ωn2

3 − 2n − �k − 4)

2(δ − 2)�D − 4n2ω
3 + 4n + 2

.

(16)

Once again, the respective relation in [13] can be obtained
in the limiting case n = 0. In the limiting case δ = 1, the
obtained results in Eqs. (15) and (16) are reduced to their
respective expressions for the original HDE in the BD grav-
ity [28]. The evolution of q versus redshift parameter z for
different values of the parameter δ has also been plotted in
Fig. 3 for the �k = 0 (upper panel) and �k0 = 0.1 [42]
(lower panel) cases, whenever n = 0.001 and ω = 1000
[19].

Our results show that the transition redshift (from the
deceleration phase to an accelerated phase) lies in the inter-
val 0.5 < z < 0.9, which is fully consistent with the recent
observations [43–45]. Figures 1, 2 and 3 indicate that, for
the assumed values of n and ω, (i) only the δ = 1.2 case
can produce acceptable behavior for the system quantities,
including q, ωD and �D , simultaneously in the flat FRW
universe, and (ii) there are various values for δ which lead to
the proper behavior for the system quantities simultaneously
in the non-flat universe.
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Fig. 2 The evolution of the EoS parameter ωD versus redshift param-
eter z for the non-interacting THDE, where the different parameter
values �k = 0 (upper panel), �k0 = 0.1 (lower panel), n = 0.001 and
ω = 1000 [19] are adopted

3 Sign-changeable interacting THDE model

In the FRW background, filled with DE and DM interacting
with each other, the total energy-momentum conservation
law is decomposed into

ρ̇D + 3H(1 + ωD)ρD = −Q, (17)

and

ρ̇m + 3Hρm = Q, (18)

where Q denotes the interaction term, and we assume that it
has the Q = 3b2qH(ρm +ρD) form [31–33], in which b2 is
the coupling constant. Taking the time derivative of Eq. (2)
and using Eqs. (5), (6), (11) and (18), we have
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Fig. 3 The evolution of the deceleration parameter q versus redshift
parameter z for the non-interacting THDE, where the different param-
eter values �k = 0 (upper panel), �k0 = 0.1 (lower panel), n = 0.001
and ω = 1000 are adopted

Ḣ

H2 =
[
3�D − 3(1 + �k)(1 + b2) − 2�k(n − 1)

+2n(δ�D + 2ωn2

3
+ (nω − 3)(b2 + 1) − 2n − 1)

]

×
(

2(δ − 2)�D − 4n2ω

3
+ (3b2 + 2)(2n + 1)

+b2
(
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, (19)

substituted into Eq. (12) to obtain

�′
D = 2n(δ − 1)�D

+
[
�D(1 − δ)

(
3�D − 3(1 + �k)(1 + b2)
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3
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Fig. 4 The evolution of �D versus z for the interacting THDE in the
BD gravity. Here, we considered �k = 0 (upper panel), �k0 = 0.1
(lower panel), �D0 = 0.73, n = 0.005 and ω = 10000 [20] for the
initial conditions

+(nω − 3)(b2 + 1) − 2n − 1))
)]

×
(
(δ − 2)�D − 2n2ω

3
+

(
3b2

2
+ 1

)
(2n + 1)

+b2(3�k − 2n2ω)
)−1

. (20)

In the absence of interaction term (b2 = 0), Eq. (20) is
reduced to its respective relation in the previous section. The
evolution of �D against redshift z for interacting THDE has
been plotted in Fig. 4. As it is seen, we have �D → 0 and
�D → 1 at the z → ∞ (the early time) and z → −1 (the late
time) limits, respectively. The Eos parameter ωD can also be
derived by combining Eqs. (11) and (17) with Eq. (19) as

ωD = −1 − 2δn

3
+ (2n − 2ωn2

3 + 1)b2

�D

+ (6n − 2ωn2 + 3)b2 + 2(δ − 2)�D

6�D

×
[
3(�D − (1 + �k)(1 + b2)) − 2�k(n − 1)

+2n(δ�D + 2ωn2

3
+ (nω − 3)(b2 + 1) − 2n − 1)

]

×
(

2(δ − 2)�D − 4n2ω

3
+ (3b2 + 2)(2n + 1)

+b2(3�k − 2n2ω)2ω
)−1

. (21)

We have also plotted the evolution of ωD versus z for the
interacting THDE in Figs. 5 and 6 forn = 0.05 and ω = 1000
[19]. From these figures, it is obvious that, depending on the
values of δ, �k and b2, the phantom line can be crossed,
and the cosmological constant model of DE (ωD → −1) is
obtainable at the z → −1 limit in both the flat (for 0.5 <

δ < 1 and b2 > 0.1) and non-flat (for δ > 1) FRW universes.
From Eq. (19), we also get

q = −1 −
[
3(�D − (1 + �k)(1 + b2)) − 2�k(n − 1)

+2n(δ�D + 2ωn2

3
+ (nω − 3)(b2 + 1) − 2n − 1)

]

×
(

2(δ − 2)�D − 4n2ω

3
+ (3b2 + 2)(2n + 1)

+b2(3�k − 2n2ω)2ω
)−1

. (22)

It is obvious that, in the limiting case b2 = 0, the respective
relation in the previous section can be retrieved. The evolu-
tion of q versus z has been plotted in Figs. 6 and 7.

From Figs. 6 and 7, it is clear that q starts from posi-
tive value at the earlier time, and takes the negative values
later, and also, it has a zero at z ≈ 0.6 [43–45]. Figures 4,
5, 6 and 7 indicate that, with the same set of the system
parameters (δ, n, ω, b), acceptable and proper behavior for
ωD , q and �D is obtainable simultaneously only in the non-
flat universe. In fact, as the non-interacting case, the non-flat
universe can produce more better and acceptable results com-
pared with the flat universe.

4 Stability

In this section we would like to study the classical stability of
the obtained models against perturbations. In the perturbation
theory, an important quantity is the squared of the sound
speed v2

s . Stability or instability of a given perturbation in
the background, can be specified by determining the sign
of v2

s . For v2
s > 0 the given perturbation propagates in the

environment meaning that the model is stable against the
perturbations.
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Fig. 5 The evolution of ωD versus z for the interacting THDE, where
�k = 0 (upper panel), �k0 = 0.1 (lower panel), δ = 0.6, n = 0.05 and
ω = 1000 are adopted as the initial conditions

The squared sound speed v2
s is given by

v2
s = dp

dρD
= ṗ

ρ̇D
. (23)

By differentiating of pD with respect to time, inserting the
result in Eq. (23), and using Eq. (11), we can finally get

v2
s = ωD + ω′

D

2δn + 2(2 − δ) Ḣ
H2

. (24)

4.1 Non-interacting case

Taking the time derivative of Eq. (15) and using Eqs. (11),
(13), (14) and (24), one can obtain v2

s for the non-interacting
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Fig. 6 The evolution of ωD and q versus z for the interacting THDE
in the non-flat BD cosmology. Here, we used �k0 = 0.1 , b2 = 0.1,
n = 0.05 and ω = 1000 as the initial conditions

THDE with the Hubble cutoff in the BD cosmology. Since
this expression is too long, we shall not present it here, and
only plot it in Fig. 8. This figure shows that, in the flat FRW
universe, the non-interacting THDE model is classically sta-
ble (unstable) for 0 < δ < 1 (δ > 1). In addition, the lower
panel indicates that the model is classically unstable in the
non-flat FRW universe.

4.2 Interacting case

By taking the time derivative of Eq. (21), and combining the
result with Eqs. (7), (11), (19) and (24), we can obtain v2

s
for the interacting THDE. Again, since this expression is too
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Fig. 7 The evolution of q versus z for the interacting THDE. We con-
sidered �k = 0 (upper panel), �k0 = 0.1 (lower panel), δ = 0.6,
n = 0.05 and ω = 1000 as the initial conditions

long, we do not present it here, and it has been plotted in
Figs. 9 and 10. As the upper panel of Fig. 9 shows, the model
is classically stable in the flat universe, but the values chosen
for δ, b2, n and ω cannot produce proper behavior for q,
ωD and �D simultaneously. In fact, in a flat FRW universe,
the interacting THDE cannot produce stable and acceptable
description for q, ωD and �D with the same set of (δ, n, ω, b)
simultaneously. The same story is also obtained in the non-
flat case. As it is obvious from Fig. 10 and the lower panel
of Fig. 9, the model description of the cosmic evolution may
be stable, depending on the value of δ. Indeed, although, the
parameters leading to the stable description provide suitable
behavior for q and ωD , they cannot produce proper behavior
for �D .
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Fig. 8 v2
s versus z for the non-interacting THDE in the BD gravity,

where �k = 0 (upper panel), �k0 = 0.1 (lower panel), n = 0.001 and
ω = 1000 [19] are adopted

5 Concluding remarks

We studied the consequences of using THDE in order to
model DE in the BD framework. For the flat universe and
the non-interacting THDE, it has been obtained that, for the
assumed initial conditions, only the δ = 1.2 case can pro-
duce suitable behavior for q, ωD and �D . For this case,
we obtained ωD(z → −1) → −1 addressing us that this
model simulates cosmological constant at future. The clas-
sical stability analysis also shows that this model is not sta-
ble. If the interaction Q = 3b2qH(ρm + ρD) [31–33] is
added to the system, then there is not a set of (δ, n, ω, b)
leading to acceptable and proper behavior for q, ωD and
�D simultaneously meaning that the system description is
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Fig. 9 v2
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the Hubble cutoff. Here, we used �k = 0 (upper panel), �k0 = 0.1
(lower panel), δ = 0.6, n = 0.05 and ω = 1000 as the initial conditions

incomplete. It is also useful to mention here that this incom-
plete description can meet the classical stability require-
ment.

For the non-flat FRW universe, we found out that (i) for
δ > 2, the model can provide suitable descriptions for the
cosmic evolution in both the interacting and non-interacting
cases, (ii) these descriptions are not stable, and (iii) there are
cases for which ωD(z → −1) → −1 the same as the EoS of
the cosmological constant (ωD = −1). In fact, the same as
the flat universe, the sets of (δ, n, ω, b) leading to the stable
cases cannot provide proper explanations for q, ωD and �D

simultaneously and vice versa.
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δ=2.4
δ=2.6

b2=0.1, n=0.05, ω=1000

Fig. 10 v2
s versus �D for the sign-changeable interacting THDE with

the Hubble cutoff, where �k0 = 0.1 , b2 = 0.1, n = 0.05 and ω = 1000
are adopted
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