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Abstract In this note we explore a modified theory of grav-
itation that is not based on the least action principle, but on
a natural generalization of the original Einstein’s field equa-
tions. This approach leads to the non-covariant conserva-
tion of the stress-energy tensor, a feature shared with other
Lagrangian theories of gravity such as the f (R, T ) case. We
consider the cosmological implications of a pair of particular
models within this theory, and we show that they have some
interesting properties. In particular, for some of the stud-
ied models we find that the density is bounded from above,
and cannot exceed a maximum value that depends on certain
physical constants. In the last part of the work we compare
the theory to the f (R, T ) case and show that they lead to
different predictions for the motion of test particles.

1 Introduction

The least action principle has become one of the most pow-
erful tools to build a physical theory and also their possi-
ble generalizations. Among the numerous advantages of the
Lagrangian formalism we list the direct implementation of
symmetries and the derivation of general conservation laws.
Nevertheless, there is no reason to believe that ordinary sym-
metries and/or standard conservation laws will always hold
in a final theory of Nature. In this sense, it is interesting to
recall that Einstein did not originally followed a variational
principle in the derivation of general relativity (GR) [1–3].
Instead, he arrived to the correct field equations following a
very different approach, one that succeeded with the even-
tual addition of a trace term directly in the field equations.
Indeed, it is well known that the equivalence principle and
general covariance were the foundational concepts of the the-
ory, and the variational principle, i.e, the Einstein–Hilbert
action (EHA), was discovered and incorporated to the theory
when the correct field equations had already been derived [4].
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Similarly, the other classical field theory, namely, Maxwell’s
eletrodynamics (ME), was only completed after the addition
of a source term (the Maxwell displacement current), and it
wasn’t either originally conceived from any variational prin-
ciple [5].

In light of these historical facts, there is no reason to reject
the search for an alternative approach,one different from the
Lagrangian formalism. In this sense, a more general theory
could be formulated following an alternative but consistent
line of reasoning, and the variational principle (or something
alike) could be incorporated in the last stages of the comple-
tion of the theory in order to strengthen and to reinforce the
formalism. The fact that both the GR and ME field equations
were found without resorting to a variational principle sends
us the message that maybe a different approach deserves to
being taken into account.

Regarding the case of GR and their extensions, there exists
a high degree of arbitrariness in the choice of the specific gen-
eralized gravity Lagrangian. One of the most natural strate-
gies is to replace the curvature scalar R, by a function f (R)

in the action [6–12]. This approach leads to field equations
that give rise to a rich phenomenology (both in the metric
and metric-affine or Palatini formalisms), although some of
the beauty and simplicity of the original theory are lost in
the process. Regardless the specific choice among the innu-
merable possible generalized Lagrangians, the resulting field
equations are much more complicated than those of GR.

In view of the above, given the arbitrariness in the
choice of the possible gravity Lagrangian, we do not begin
from a Lagrangian formalism to look for a modification of
GR. Rather, we follow Maxwell’s and Einstein’s original
approaches of adding new possible source terms directly in
the field equations, this means that we focus on a similar strat-
egy that proved successful in the completion of the classical
Electromagnetic theory, and in the first correct derivation of
GR. In particular, the theory considered here is based on
a quite natural extension of GR, where the modification of
the field equations involves the addition of terms that only
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include the curvature scalar and the trace of the stress-energy
tensor. Therefore, in vacuum the field equations boil down to
those of GR, but in presence of matter there can be significant
departures, in particular the stress-energy tensor will not be
covariantly conserved in the general case. There are several
examples in the literature of gravitational theories of this
kind. An example is Rastall’s gravitational theory [13,14],
which is also non-conservative since the divergence of Tμν

does not vanish in general. Another more recent example is
given by the so-called f (R, T ) modified theories of gravity
[15,19–22]. We should mention that this note presents an
study of a modified theory of gravity at a preliminary level, it
is a first step in a different direction than that adopted by the
usual modified gravity theories, and further investigations are
required to discuss in more detail some important aspects that
are addressed in this work. It is becoming increasingly clear
that quantum field theories without a traditional Lagrangian
description are important and even populate much of the QFT
landscape. They also offer new opportunities in the search for
new type of 4-manifold invariants [23,24]. This fact repre-
sents another good motivation to explore here an example of
a Non-Lagrangian modified gravitational theory.

2 Definitions and field equations

Our framework is based on the following field equations

Rμν − 1

2
Rgμν − �gμν = κ(R, T )Tμν (1)

where Rμν is the Ricci tensor, gμν is the space-time metric,
� is a cosmological constant, Tμν the stress-energy tensor of
the matter sources, and κ(R, T ) corresponds to the Einstein
gravitational constant that we are promoting to the status of
a function of the traces T ≡ gμνTμν , and R ≡ gμνRμν . The
possible dependence of the gravitational constant κ on scalars
means that we explore the possibility of a running gravi-
tational constant, i.e. we generalize the original Einstein’s
gravitational constant, but not at the level of an action func-
tional. A varying gravitational constant in the action leads to
a Brans-Dicke type theory [25–27], with quite different field
equations from (1). The field equations (1) imply the non-
covariant conservation of Tμν . Indeed, since the left hand
side of these equations is divergence-free, we have

∇ν
(
κ(R, T )Tμν

)
= 0 (2)

Then, the non-conservation of the Tμν can be expressed
as

∇νTμν = −∇νκ(R, T )

κ(R, T )
Tμν (3)

In what follows, some cosmological implications (homo-
geneous and isotropic universe for a perfect fluid) of two
particular cases are analyzed. The first model considered
arises by setting, κ(T ) = 8πG − λT , and corresponds to
a matter–matter coupling. The second model that will be
studied is characterized by a gravitational “constant” that
varies as κ ′(R) = 8πG + αR, which will provide a cou-
pling between matter and curvature terms. We assume that
the coupling constants λ, α are sufficiently small to be con-
sistent with a small violation of the covariant conservation
of the stress-energy tensor. Obviously, in the limit λ, α → 0,
Einstein’s GR is recovered.

2.1 Modified Friedmann equations for a general κ(R, T )

model

If we consider an homogeneous and isotropic universe filled
by a perfect fluid as the matter source, the stress-energy tensor
will be

Tμν = (p + ρ)uμuν − pgμν (4)

where p, ρ, and uμ are the pressure, the density and the
macroscopic speed of the medium, respectively. On the other
hand, the standard FLRW metric for modeling the assumed
properties of such a universe leads to the line element

ds2 = dt2 − a(t)2

(
1

1 − r2

K 2

dr2 + r2dθ2 + r2 sin2 θdϕ2

)
(5)

With these ingredients, the two independent Modified
Friedmann Equations (MFE) for a general κ(R, T ) model
are
( ȧ(t)

a(t)

)2 + 1

K 2a2 − �

3
= κ(R, T )

3
ρ(t) (6)

ä(t)

a(t)
= �

3
− κ(R, T )

6
(3p(t) + ρ(t)) (7)

Two independent models of the form κ(T ) and κ(R) are
analyzed in the next subsections.

2.2 Matter–matter coupling

Here we analyze the cosmological implications of the model,
κ(T ) = k −λT , where k ≡ 8πG (c = 1) and λ is a constant
with the appropriate units. The reasons to choose a negative
sign will be understood later on. Therefore, with such a choice
for κ(R, T ) the field equations (1) acquire the form

Rμν − 1

2
Rgμν − �gμν = (8πG − λT )Tμν (8)
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The MFE that arise by solving the field equations are

H2 = 8πG

3
ρ + �

3
− 1

K 2a2 − λρ

3
(ρ − 3p) (9)

ä

a
= −4πG

3
(3p + ρ) + �

3
+ λ

6
(ρ − 3p)(ρ + 3p) (10)

where, H = ȧ/a. In order to better understand the physical
meaning of the MFE, and for the sake of simplicity it is
convenient to make use of a equation of state of the type,
p = wρ. Then, for the flat case (K−1 = 0), we can write

H2 = 8πG

3
ρ + �

3
− λρ2

3
(1 − 3w) (11)

ä

a
= −4πG

3
ρ(3w + 1) + �

3
+ λ

6
ρ2(1 + 3w)(1 − 3w)

(12)

It is therefore clear that the new additional term introduced
vanishes for w = 1/3 (radiation-dominated universe). For
w = −1/3 it vanishes for the second equation as well. For
a radiation-dominated universe, the traceless of the stress-
energy tensor implies that the MFE collapse to the standard
solution of GR with a cosmological constant. On the other
hand, the contribution of the new term is proportional to ρ2,
for −1/3 < w < 1/3 this quadratic term will be positive in
the acceleration equation, and this means that at sufficiently
high densities it could contribute to the cosmic speed-up.
However, to explain the late-time acceleration (low densi-
ties) we unavoidably need the inclusion of a cosmological
constant.

The non-conservation of the stress-energy tensor implies
a modification of the relativistic fluid equation characterized
by

ρ̇ + 3
ȧ

a
ρ(1 + w)F(ρ) = 0 (13)

The correction with respect to the GR case is represented
by the presence of a certain function F(ρ) which is explicitly
given by

F(ρ) = 1 − (1 − 3w)
2ρ
ρm

1 − (1 − 3w)
ρ
ρm

(14)

where we have denoted a certain constant ρm with units of
density as

ρm = 8πG

λ
(15)

In Fig. 1, We plot the behavior of the correction factor
F as function of ρ/ρm . Notice that when ρ << ρm , then,
F(ρ) � 1 and we essentially recover the same fluid equation
of GR. However, for ultra high-densities, namely, ρ >> ρm ,

0.5 1.0 1.5 2.0 2.5

–2

2
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6

Fig. 1 Variation of F(ξ) as function of the dimensionless variable
ξ ≡ ρ/ρm for different values of the parameter w. The horizontal
line corresponds to w = 1/3. At low densities F(ξ) � 1 and the RG
behavior is recovered

F(ρ) � 2. For such a regime, the relativistic fluid equation
becomes

ρ̇ + 6
ȧ

a
ρ
(

1 + w
)

= 0 (16)

This implies that, ρ(t) ∼ a(t)−6(1+w) which suggests
a much more rapid decrease of the density with the scale
factor. However, the density cannot be arbitrarily large, and
in general it will be of order ρm . This is due to the requirement
H2 ≥ 0 which imposes an upper bound for the density.
Indeed, suppose that at sufficiently high densities we can
neglect the contribution of the cosmological constant term
compared to the other two in the first MFE. Then, reality of
H2 requires

8πG

3
ρ ≥ λρ2

3
(1 − 3w) (17)

which implies

ρmax ∼ 8πG

λ(1 − 3w)
= ρm

(1 − 3w)
(18)

For w 	= 1/3. Notice that for ρ = ρmax, H ∼ √
� and

therefore the Hubble parameter behaves such as de Sitter
vacuum solution. Finally, the choice of the negative sign in
the function κ(T ) = 8πG − λT is due to very good reasons
that turn out to be evident now. If we had chosen the positive
sign, we would have that at high densities H2 ∼ ρ2, which
is worst in terms of divergences than the GR case [29].

Field equations similar to (1), or (11-12) in cosmol-
ogy, could arise from Ricci and specially from generalized
Ricci-Gauss-Bonnet holographic dark energy models, see for
example Refs. [16–18].
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2.2.1 Dust solution

Let us solve the equations for the simplest cosmological
model, which is obtained by assuming a dust universe, where
p = 0. The MFE for such a universe become

H2 = 8πG

3
ρ + �

3
− λ

3
ρ2 (19)

ä

a
= −4πG

3
ρ + �

3
+ λ

6
ρ2 (20)

Using that ä/a = Ḣ + H2 and combining both equations
we obtain

Ḣ + 3

2
H2 = �

2
(21)

These results mean that H(t) for dust evolves as in the GR
case, and does not depend on the value of λ. For a matter-
dominated universe where we can neglect the contribution
of the cosmological constant, we have H(t) = 2/3t , a(t) =
t2/3. Then, the dust solution shows that the λ parameter for
this particular model has no effect in the expansion rate of
the universe, which turns out to be identical to the GR case,
and the main difference is the existence of a bound for the
density, given by ρmax = 8πG/3λ. On the other hand, the
dust solution for the f (R, T ) theory was studied in [15],
where for a function of the form f (T ) = λT the Hubble
parameter was found to be dependent on λ as

H(t) f (R,T ) = 2(8π + 3λ)

3(8π + 2λ)

1

t
(22)

Therefore, H(t) f > H(t)κ , i.e, the Hubble parameter in
the f (R, T ) theory turns out to be a bit larger than the value
of the Hubble parameter in κ(R, T ) for a similar functional
dependence on T . Nevertheless, the exact discrepancy with
respect to the GR case is not clear since the authors do not
constrain the value of λ.

On the other hand, to see how the density evolves with
time for a dust universe in the κ(R, T ) theory, we come back
to the fluid equation (13) which for dust (w = 0) reduce to
the expression

ρ̇ + 2ρ(1 − 2ρ
3ρmax

)

t (1 − ρ
3ρmax

)
= 0 (23)

where we have employed the identity ρm = 3ρmax. To solve
this equation, first notice that

1

2
≤ 1 − 2ρ

3ρmax

1 − ρ
3ρmax

≤ 1 (24)

where the minimum value 1/2 of this function is reached
for ρ = ρmax and the maximum value is approached for

ρ << ρmax. Then, an acceptable solution can be provided if

we set,
1− 2ρ

3ρmax
1− ρ

3ρmax
� N where N is a number between 1/2 ≤

N ≤ 1. Assuming that the density obeys a relation of the
type ρ = Ctα , where C is a constant, and substituting this in
Eq. (23), we obtain the condition α+2N = 0, which implies

ρ(t) � C

t2N 1/2 ≤ N ≤ 1 (25)

At low densities N � 1, and for such a regime the den-
sity evolves with time as ρ � Ct−2, like the standard dust
solution of GR.

2.2.2 Stationary solutions and exponential expansion

By setting H = H0 = const. into Eq. (11) and rearranging
terms we find an algebraic quadratic equation for the density
given by

ρ2 − 8πG

λ(1 − 3w)
ρ + 1

λ(1 − 3w)
(3H2

0 − �) = 0 (26)

The solutions of this equation are

ρ = ρmax

2
± 1

2

√
ρ2

max − 4

λ(1 − 3w)
(3H2

0 − �) (27)

where ρmax is the maximum density deduced in the previous
subsection. Therefore, for H0 = √

�/3 we haveρ = 0 which
is the standard vacuum de Sitter solution, and ρ = ρmax.
Moreover, the difference, 3H2

0 − � is bounded from above.
Indeed, we can rewrite the last equation in the form

ρ = ρmax

2
± 1

2

√
ρmax

(
ρmax − 1

2πG
(3H2

0 − �)
)

(28)

Therefore,

3H2
0 − � ≤ 2πGρmax (29)

Another interesting feature of this model is the predic-
tion of a specific value of the density (depending on λ)
for the exponential expansion governed by the cosmologi-
cal constant, which will be exactly equal to ρmax. Indeed, the
acceleration Eq. (12) reduces to ä/a = �/3 (which implies
a(t) ∼ exp(

√
�/3t)) for ρinf = 8πG/λ(1 − 3w) = ρmax.

Then, the inflation takes place when the density reaches the
maximum value.

2.3 Matter–curvature coupling

Here we study cosmological solutions for the theory κ(R) =
8πG +αR, where R is the curvature scalar and α a constant
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with units of the inverse of the density. The field equations
with such a choice for κ(R, T ) are

Rμν − 1

2
Rgμν − �gμν =

(
8πG + αR

)
Tμν (30)

With a bit of algebra, we find that the expansion rate equa-
tion for this model is given by

H2 = 8πG

3
ρ
(

1− f (ρ)(1−3w)
)
+ �

3

(
1−4 f (ρ)

)
− 1

K 2a2

(31)

where H ≡ ȧ/a, and f (ρ) is a function of the density given
by

f (ρ) = ρ

ρ0

( 1

1 + (1 − 3w)
ρ
ρ0

)
(32)

The constant ρ0 is a certain density denoted by, ρ0 = 1/α.
Since we expect α to be very small, ρ0 will presumably take
a very large value. For ρ << ρ0, f (ρ) ≈ 0 and we recover
the result of GR for the expansion rate equation. At ρ = ρ0

, the function f (ρ) is always regular for all the physically
acceptable values of w, and H2 is also regular as required.
Indeed, we have that f (ρ0) = 1/(2 − 3w) which is singular
only if w = 2/3. The expansion rate parameter at ρ = ρ0

becomes

H2 = 8πGρ0

(1 − 2w

2 − 3w

)
+ �

3

(3w + 2

3w − 2

)
− 1

K 2a2 (33)

It is important to note that this model also implies that
in general there should exist bounds for the density, namely,
the density cannot take an infinite value (with the exception
of some particular case). Indeed, for ρ >> ρ0 we have that
f (ρ) ≈ 1/(1 − 3w). Therefore the first contribution due to
the density in Eq. (31) vanishes identically, and the Hubble
parameter becomes for such a regime

H2 � �
( w + 1

3w − 1

)
− 1

K 2a2 (34)

which is always negative for w < 1/3. (The special case w =
1/3 will be analyzed apart). Therefore, the limit ρ >> ρ0

lacks physical sense, and we conclude that the density cannot
be much larger than ρ0 = 1/α when w < 1/3.

On the other hand, the case w = 1/3 corresponds to a
radiation-dominated universe, the function f for such a value
of the parameter w becomes, f (ρ) = ρ/ρ0. Taking this into
account and setting w = 1/3 into Eq. (31), we have

H2 = 4

3
ρ
(

2πG − �

ρ0

)
+ �

3
− 1

K 2a2 (35)

In this case, there are no bounds for the growth of the
density because the assumed smallness of �/ρ0 compared to
2πG assures that the quadratic density term will not acquire
a negative sign.

Regarding the generalized Friedmann acceleration equa-
tion for this theory, we have

ä

a

(
1 − ρ

ρ0
(3w + 1)

)
= �

3

+ρ(3w + 1)
(

− 4πG

3
+ 1

ρ0

(
H2 + 1

K 2a2

))
(36)

where the scale factor H2 is provided by Eq. (31). The
acceleration equation is difficult to interpret given the quan-
tity of terms involved. For ρ << ρ0 we obviously recover
the GR result, namely, the cosmological constant rules the
late-time cosmic speed-up. It is worth noting that the term
that accounts for the accelerated expansion vanishes when
ρ = ρ0/(3w + 1). It turns out that for such a specific value
of the density the effects of the accelerated expansion are
null.

Let us conclude with some brief comments regarding the
theory κ(R) = 8πG − αR. By solving again the equations
for the FLRW metric and the perfect fluid, we find a similar
expression for the modified expansion rate equation which is
explicitly given by

H2 = 8πG

3
ρ
(

1+g(ρ)(1−3w)
)
+ �

3

(
1+4g(ρ)

)
− 1

K 2a2

(37)

where the function g(ρ) is denoted by

g(ρ) = ρ

ρ0

( 1

1 − (1 − 3w)
ρ
ρ0

)
(38)

The difference with respect to the theory κ(T ) = κ + αR
discussed before, lies in the fact that the latter is better in
terms of singularities. In particular, the main difference is
due to the behavior of the functions f (ρ) and g(ρ) regard-
ing regular properties. In contrast to f (ρ), that was regular
everywhere and in particular at ρ = ρ0/(1 − 3w), the func-
tion g(ρ) is singular at such points and therefore H2 for the
model κ(R) = κ − αR will also diverge for that family of
values of the density. Talking about the divergences of f (ρ)

and g(ρ) is equivalent to talk about the divergences of the
curvature scalar R for these models (see the “Appendix” for
details).

2.4 Static spherically symmetric perfect fluid

Spherically symmetric scenarios in GR and their extensions
are very important because a wide range of phenomena such
as black holes, neutron/quark stars and gravitational collapse
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can be theoretically described by means of spherical symme-
try. The aim of this subsection is to present the main equations
for the model κ(T ) = 8πG − λT , and to show how the a
unknown metric components can be expressed in terms of
the modified sources. Nonetheless, the explicit solution of
the equations is an open problem that we leave for future
works. The line element for a static spherically symmetric
space-time takes the form

ds2 = A2(r)dt2 − B−1(r)dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(39)

By solving the field equations of the theory (8) for � = 0,
we obtain the system

1 − B

r2 − 1

r

dB

dr
= 8πGρ

(
1 − 1

ρm
(ρ − 3p)

)
(40)

2

A

dA

dr

B

r
+ B − 1

r2 = 8πGp
(

1 − 1

ρm
(ρ − 3p)

)
(41)

where we already denoted the constant ρm as ρm ≡ 8πG/λ.
The non-conservation of the stress-energy tensor implies
another first order differential equation given by

p′ + A′

A

(
p + ρ

)
= ρ′ − 3p′

3 + ρm−ρ
p

(42)

where p′ ≡ dp/dr . The presence of a non-null right hand
side represents the departure with respect to the GR case. On
the other hand, the integration of the first equation gives

B(r) = 1 − 2Gmef f (r)

r
(43)

where

mef f (r) = 4π

∫ r

0
ρ(z)

(
1 − 1

ρm
(ρ(z) − 3p(z))

)
z2dz (44)

Represents the “effective mass” content of the distribu-
tion within the sphere of radius r . The remaining unknown
metric component, the function A(r), can also be expressed
as an integral over the matter content and their density and
pressure. Indeed, combining the first and second equations,
we obtain

8πG
(
ρ + p

)(
1 − 1

ρm
(ρ − 3p)

)
= 2

A

dA

dr

B

r
− 1

r

dB

dr
(45)

This equation can be immediately integrated to give

A(r) = C
√
B(r)

× exp

⎛
⎝4πG

∫ (ρ + p)
(

1 − 1
ρm

(ρ − 3p)
)

B
rdr

⎞
⎠

(46)

With C an arbitrary integration constant. Therefore, the
unknown metric components have been expressed in terms
of the modified sources, as required. It is important to recall
that the internal Schwarzschild-type solution should match
with the external one at r = R, being R the radius of the
compact object. Since the external Schwarzschild solution
satisfies A(r) = √

B(r), and B(r) = 1−2GM/r , we see that
the obtained internal metric components have the appropriate
structure to match with the external solution, and this fixes
the value of the constant C to be

C−1 = exp

⎛
⎝4πG

∫ (ρ + p)
(

1 − 1
ρm

(ρ − 3p)
)

B
rdr

⎞
⎠ |r=R

(47)

2.5 Comparison among κ(R, T ) and f (R, T ) theories

It would be interesting to compare the theory κ(R, T ) to
a gravitational Lagrangian theory, for example, we can
compare the special case κ(R, T ) = κ(T ) to a subclass
of the variational theories f (R, T ), which are also non-
conservative theories (in the sense that ∇νTμν 	= 0). One
of the most natural choices is a model of the type f (R, T ) =
R + f2(T ). For a perfect fluid, this model leads to the field
equations[15]

Rμν − 1

2
Rgμν =

(
8πG + f ′

2(T )
)
Tμν + T ef f

μν (48)

Where T ef f
μν for this particular theory f (R, T ) = R+ f2(T )

is given by

T ef f
μν =

(
f ′
2(T )p + f2(T )

)
gμν (49)

Then, the comparison to the field equations

Rμν − 1

2
Rgμν − �gμν = κ(T )Tμν (50)

leads to the conclusion that the field equations of both theories
only match if we assume in the field equations of the κ(T )

theory1 the possibility of a variable cosmological term �(T )

that depends on the matter sources, namely

�(T ) ≡ f ′
2(T )p + f2(T ) (51)

It has been pointed out that recent cosmological data favor
a variable cosmological constant [28].

1 Note that if we consider the variable cosmological term in the action
we will have a different theory
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2.5.1 Modified geodesic equation of motion

The fact that the stress-energy tensor is not covariantly con-
served has the effect of modifying the equations of motion
of particles. In fact, as a direct consequence an extra force
will arise in the geodesic equation. To see in detail how this
happens, we can write rewrite Eq. (3) for the perfect fluid in
the form

uμuν∇ν(p + ρ) + (p + ρ)
(
uμ∇νu

ν + uν∇νu
μ
)

−gμν∇u p = −∇νκ

κ
Tμν (52)

where ∇νgμν = 0. Let us introduce now an auxiliary metric
hμλ defined by hμλ ≡ gμλ − uμuλ. Then, multiplying the
last equation by hμλ we have

gμλu
ν∇νu

μ = ∇ν[κ(R, T )p]
(p + ρ)κ(R, T )

hν
λ (53)

where we have used the identities, hμλTμν = −hν
λ p, and

hμλuμ = 0. Therefore, with the aid of the identity

uν∇νu
μ = d2xμ

ds2 + �
μ
νλu

νuλ (54)

where �
μ
νλ is the Levi-Civita connection of gμν , the modified

geodesic equation of motion (53) acquires the form

d2xμ

ds2 + �
μ
νλu

νuλ = f μ (55)

where f μ denotes a four-vector “force” given by

f μ = ∇ν[κ(R, T )p]
(p + ρ)κ(R, T )

(
gμν − uμuν

)
(56)

Therefore, for dust (p ≈ 0), we recover the geodesic equa-
tion of GR. Moreover, when κ(R, T ) = const = 8πG,
the standard result of GR for perfect fluids with pressure
is recovered as well. Notice that the vector f μ is orthog-
onal to uμ, namely, f μuμ = 0. Equation (56) suggests to
re-define the pressure and density as, ρe f f = κ(R, T )ρ, and
pef f = κ(R, T )p. Doing this, the form of the geodesic equa-
tion is identical to the GR case with the new variables ρe f f
and pef f playing the role of p and ρ. On the other hand,
it is worth comparing this extra force with other external
force that arises in the geodesic equation of motion of the
Lagrangian theory f (R, T ). For this theory, the extra force
is given by [15]:

f μ

f (R,T ) = 8πG
∇u p

(p + ρ)[8πG + fT (R, T )]
(
gμν − uμuν

)

(57)

where fT (R, T ) = ∂ f (R, T )/∂T . In order to see explicitly
the differences among the extra force in both theories, we can
select the same dependence on the trace T to compare predic-
tions. For example, setting κ(R, T ) = κ(T ) = 8πG − λT ,
and f (R, T ) = f1(R) − βT , where λ, β are constants and
f1(R) is an arbitrary function of R. Then, a first important
consequence is that for T = 0 (photons), both theories pre-
dict the same extra force, but when T 	= 0 such is the case of
massive particles, the two forces are different. Therefore, a
detailed investigation on the trajectory of massive particles in
a gravitational field could help to find out which among these
different theories represent the most viable generalization of
Einstein’s GR.

2.6 Generalized energy conditions

Generalized energy conditions (GEC) in Extended Theories
of Gravity have been studied in detail in several works, see for
example [30–37]. To study the role of the energy conditions
in the κ(R, T ) theory, with the aim to investigate if they are
violated or not, it is convenient to recast the field equations
in the form:

Rμν − 1

2
Rgμν = T ef f

μν (58)

where the effective energy momentum tensor T ef f
μν is defined

by

T ef f
μν = κ(R, T )Tμν + �gμν (59)

The effective energy momentum tensor T ef f
μν , in turn

allows to define the effective pressure pef f and density ρe f f
necessary to present the conditions required for realizing each
type of the energy conditions. In fact, pef f and ρe f f will be
very similar to those that arose in the previous subsection.
Indeed, by assuming that the content of the universe behaves
like a perfect fluid, and for a flat FRLW metric we have

3H2 = κ(R, T )ρ + � (60)

−2Ḣ − 3H2 = κ(R, T )p − � (61)

It is convenient to focus on the case κ(R, T ) = κ(T ) in
order to simplify the analysis. This choice for κ(R, T ) allows
one to define the effective pressure and density as ρe f f =
κ(T )ρ +�, pef f = κ(T )p−�. By using these expressions
forρe f f and pef f , we get the null energy condition (NEC), the
weak energy condition (WEC), the strong energy condition
(SNC) and the dominant energy condition (DEC) [30] as:

NEC: ρe f f + pef f ≥ 0 , (62)
WEC: ρe f f ≥ 0 , ρe f f + pef f ≥ 0 , (63)
SEC: ρe f f + 3pef f ≥ 0 , ρe f f + pef f ≥ 0 , (64)

123
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DEC: ρe f f − pef f ≥ 0 , ρe f f + pef f ≥ 0 , ρe f f ≥ 0 . (65)

Then, for a general κ(T ) model, the GEC will acquire the
explicit expressions:

NEC: κ(T )(ρ + p) ≥ 0 , (66)
WEC: κ(T )ρ + � ≥ 0 , ρe f f + pef f ≥ 0 , (67)
SEC: κ(T )(ρ + 3p) − 2� ≥ 0 , ρe f f + pef f ≥ 0 , (68)
DEC: κ(T )(ρ − p) + 2� ≥ 0 , ρe f f + pef f ≥ 0 , ρe f f ≥ 0 .

(69)

It is not difficult to prove that for the perfect fluid and the
model studied in this work, namely κ(T ) = 8πG − λT , the
GEC are satisfied, since the density is bounded. Indeed, the
NEC will be

NEC:
(

8πG − λ(1 − 3w)ρ
)
ρ(1 + w) ≥ 0 (70)

where we have neglected the contribution of the cosmological
constant. For w > −1, the NEC is automatically fulfilled if
ρ ≤ ρmax, where ρmax = 8πG/λ(1−3w) in agreement with
Eq. (18). Regarding the WEK, it is also satisfied identically
if ρ ≤ ρmax. As for the SEC, we have

SEC:
(

8πG − λ(1 − 3w)ρ
)
ρ(1 + 3w) ≥ 0 ,

(
8πG − λ(1 − 3w)ρ

)
ρ(1 + w) ≥ 0 (71)

For w > −1/3, ρ ≤ ρmax the SEC is realized as well.
Finally, the DEC acquires the form

DEC:
(

8πG − λ(1 − 3w)ρ
)
ρ(1 − w) ≥ 0 ,

ρe f f + pef f ≥ 0 , ρe f f ≥ 0 . (72)

For w < 1 the DEC is also satisfied for ρ ≤ ρmax. There-
fore, the presence of a bound for the density guarantees that
all the energy conditions are satisfied in a consistent way for
the model κ(T ) = 8πG − λT .

3 Summary and conclusions

The important degree of arbitrariness inherent in the choice
of the gravity Lagrangian has lead to a large amount of dif-
ferent modified gravity proposals, many of which are so
similar that it is difficult to distinguish one from the other.
The Lagrangian formalism has undoubted advantages at the
level of symmetries implementation and conservation-laws
derivation, but possible theoretical alternatives to standard
Lagrangian theories also deserve consideration. In this sense,
the importance of non-Lagrangian theories in other branches
of theoretical physics such as quantum field theory is being
acknowledged in the last years. Among their advantages, it
seems increasingly clear that these theories offer new oppor-
tunities in the search of new types of invariants.

In this work, and in absence of a foundational principle,
we have explored an example of a non-Lagrangian modified
gravity theory inspired by Maxwell’s approach to Electro-
dynamics, adding new possible source terms directly in the
field equations, namely, we have investigated a gravitational
analogue of the Maxwellian “displacement current” contri-
bution. It should be noted that our approach does not mean
that a variational formulation of the theory could not exist, but
in this work we did not focus on that problem. In particular,
we have analyzed some special cases that belong to the clas-
sification: κ(R, T ) = k + f (T ) and κ(R, T ) = k + f (R),
which corresponds to matter–matter and matter–curvature
couplings respectively. We carried out a preliminary study
of some cosmological aspects of these models in a FLRW
universe filled by a perfect fluid, and it was shown that the
density in bounded from above in some of them. Further-
more, the formal similarities and differences among the the-
ory κ(R, T ) and the Lagrangian theory f (R, T ) were also
investigated. The field equations can match in some particular
cases that imply a variable cosmological term that depends on
the energy-matter content. However, both theories are essen-
tially different at the level of the equations of motion for
massive particles. Moreover, the generalized energy condi-
tions were also investigated for the theory κ(T ) = 8πG−λT
and we have shown that the existence of a maximum density
ρmax guarantees that all the energy conditions are satisfied
in a consistent way. In summary, we have presented in this
work an example of a Non-Lagrangian modified gravity the-
ory, which is a relatively unexplored research avenue in the
field of modified gravity.
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4 Appendix: Divergences and zeros of the curvature
scalar

By contracting the field equations (1) with gμν it is easy to
obtain a generic relation among the traces given by

−R − 4� = κ(R, T )T (73)
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Then, the exact relation among R and T requires that we
fix a particular κ(R, T ) model. Choosing a model of the type
κ(T ) = 8πG − λT , we find that there exists an algebraic
quadratic equation among R and T given by

R = λT 2 − 8πGT − 4� (74)

In the limit � → 0 we obtain

R � λT
(
T − 8πG

λ

)
(75)

Therefore R vanishes for T = 0 (the vacuum solution as in
GR), and for T = 8πG/λ. In general, R vanishes for specific
values of the pressure and the density that are solutions of
the quadratic equation, λT 2 − 8πGT − 4� = 0. Given that
ρm ≡ 8πG/λ, T = ρ − 3p for the perfect fluid, and using a
barotropic equation of state of the type p = wρ, we obtain
such specific values of the density where R = 0

ρ = 1

2(1 − 3w)

(
ρm ±

√
ρ2
m + 16�

λ

)

= 1

2(1 − 3w)
ρm

(
1 ±

√
1 + 16�

λρ2
m

)
(76)

For w 	= 1/3. If ρm >> 4
√

�/λ, we can approximate the
solutions as

ρ1 � 1

1 − 3w

(
ρm + 4�

λρm

)
(77)

ρ2 � − 4�

(1 − 3w)λρm
(78)

Therefore, we see that the values of the density that
vanish R are purely mathematical an not physical solu-
tions. Recall that ρ is bounded and verifies, ρ ≤ ρmax,
namely, ρ ≤ ρm/(1 − 3w) according to Eq. (17). In the
limit �/λ → 0, we obtain that ρ2 = 0 (as in GR), and
ρ1 = ρm/(1 − 3w) = ρmax, which is the extra solution with
respect to the GR case. On the other hand, for the pair of
models κ(R) = k ± αR, the exact relation among the traces
is

R = −4� − 8πGT

1 ± αT
(79)

This relation becomes, with the assumed approximations,

R = −4� − 8πGρ(1 − 3w)

1 ± (1 − 3w)
ρ
ρ0

(80)

where, ρ0 ≡ 1/α. Then, R has a zero at a density given
by ρ = �/2πG(3w − 1) which is negative for w < 1/3.
Regarding the divergences, the curvature scalar is regular
everywhere for the theory κ(R) = k+αR (with the exception

of the special case w = 2/3, which contains a pole at ρ =
ρ0). On the contrary, the model κ(R) = k − αR yields to
divergences for the family of values of the density given by
ρ = ρ0/(1 − 3w).
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