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Abstract The S- and P- wave phase shifts of low-energy
pion-nucleon scatterings are analysed using Peking Univer-
sity representation, in which they are decomposed into vari-
ous terms contributing either from poles or branch cuts. We
estimate the left-hand cut contributions with the help of tree-
level perturbative amplitudes derived in relativistic baryon
chiral perturbation theory up to O(p2). It is found that in
S11 and P11 channels, contributions from known resonances
and cuts are far from enough to saturate experimental phase
shift data – strongly indicating contributions from low lying
poles undiscovered before, and we fully explore possible
physics behind. On the other side, no serious disagreements
are observed in the other channels.

1 Introduction

The pion-nucleon (πN ) elastic scattering, as one of the
most fundamental and important processes in nuclear or
hadron physics, has been studied for decades [1,2]. How-
ever, there are still many open questions need to be attained
more insights into. For instance, the low energy behavior
of the πN elastic scattering amplitude, the pion nucleon σ -
term and the relevant intermediate resonances, e.g., �(1232),
N∗(1535) and N∗(1440), have attracted sustained attentions,
see, e.g., Refs. [3–13]. The N∗(1535) and N∗(1440) are of
particular interest. For N∗(1535), the origin of its high mass
and its large coupling to the ηN channel have been studied
in the literature [14,15]. As for N∗(1440), its quark model
interpretation and its coupling to σN channel are still not
well understood [16]. Furthermore, it may contain a two-
pole structure [17], and the corresponding P11 channel may
have strange branch cuts in the complex s plane [18]. In this
paper, we adopt another approach to study the low energy
πN scattering amplitudes. Peking University (PKU) rep-
resentation [19–23] is a model-independent method based
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on axiomatic S-matrix arguments. It has been successfully
applied to investigate ππ and πK scatterings and, in particu-
lar, corroborate the existences of σ and κ resonances [19,21].
The use of PKU representation to study πN scatterings may
help us not only to enrich our knowledge of the amplitude
structure but also to gain a fresh look at relevant physics in a
much more rigorous manner.

The PKU representation factorizes the partial wave two-
body elastic scattering S matrix in the form [21]

S(s) =
∏

b

1 − iρ(s) s
s−sL

√
sb−sL
sR−sb

1 + iρ(s) s
s−sL

√
sb−sL
sR−sb

∏

v

1 + iρ(s) s
s−sL

√
s′v−sL
sR−s′v

1 − iρ(s) s
s−sL

√
s′v−sL
sR−s′v

×
∏

r

M2
r − s + iρ(s)sGr

M2
r − s − iρ(s)sGr

e2iρ(s) f (s),

(1)

where the functions in resonance terms read

M2
r = Re[zr ] + Im[zr ] Im[√(zr − sR)(zr − sL)]

Re[√(zr − sR)(zr − sL)] , (2)

Gr = Im[zr ]
Re[√(zr − sR)(zr − sL)] , (3)

and the kinematic factor is defined by

ρ(s) =
√
s − sL

√
s − sR

s
(4)

with sL = (m1−m2)
2 and sR = (m1+m2)

2. Here the masses
of the two scattering particles are labeled by m1 and m2. Fur-
thermore, sb, s′

v and zr denote bound state poles (on the real
axis below threshold of the first Riemann sheet), virtual state
poles (on the real axis below threshold of the second Rie-
mann sheet) and resonances (on the second Riemann sheet
off the real axis), respectively. Lastly, the exponential term
in Eq. (1) is named as background term since it contains no
poles. Actually, the background term carries the information
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of left-hand cuts (l.h.c.s) and right-hand inelastic cut (r.h.i.c.)
above inelastic thresholds, and it satisfies a dispersion rela-
tion,

f (s) = s

2π i

∫

L
ds′ disc f

(
s′)

(s′ − s) s′ + s

2π i

∫

R′
ds′ disc f

(
s′)

(s′ − s) s′ ,

(5)

where L and R′ denote the l.h.c.s and r.h.i.c. respectively,
and disc stands for the discontinuity of the function f (s)
along the cuts. To obtain the background function f (s) in
Eq. (5), a first-order subtraction has been performed at the
point s0 = 0, at which the subtraction constant term f (s0)

vanishes, i.e. f (0) = 0, as pointed out in Ref. [23]. It should
be emphasized that resonances other than the second sheet
ones are not presented in the resonance terms in Eq. (1),
rather, their contributions are hidden in the r.h.i.c. integral of
Eq. (5) [23].

PKU representation is derived based on first principles
of S-matrix theory, thus, in principle it is rigorous and uni-
versal for two-body elastic scatterings.1 Besides, the pro-
duction representation equipped itself with additive phase
shifts stemming from different contributions, which makes
the analysis of phase shifts clear and convenient, and enables
one even to find out hidden contributions. The phase shifts
given by PKU representation are sensitive to (not too) distant
poles, letting one determine pole positions rather accurately.
Moreover, each phase shift contribution has a definite sign:
bound states always give negative contributions, while virtual
states and resonances always give positive contributions.2

Furthermore, the l.h.c.s would give negative phase shifts.3

The observation that the l.h.c.s give a large and negative con-
tribution is crucial to firmly establish the very existence of
the σ meson ( f0(500)) in Ref. [19], and the κ resonance
(K ∗(800)) in Ref. [21]. The essence of PKU representation
is not to directly unitarize the amplitude itself, rather, it uni-
tarizes the l.h.c.s of the perturbative amplitude and hence
hazardous spurious poles can be avoided. Specific example
concerning the advantage of PKU representation, compared
to some conventional unitarization approaches (like Padé
approximation), can be found in Ref. [27].

In this paper, PKU representation is employed to study
the S- and P- wave channels of the πN elastic scattering.
On the one hand, the various relevant poles are incorporated

1 It is only confined to the situation of elastic scatterings. For coupled
channel situation, a production representation is not established, see
Ref. [24].
2 Actually, the PKU representation method is the quantum field the-
ory correspondence of Ning Hu representation in quantum mechanical
scattering theory, see Ref. [25].
3 This lacks of rigorous mathematical prove, but is correct empirically,
and is to be discussed later at tree level. There exists a corresponding
prove at the level of quantum mechanical scattering theory under some
assumptions, see Ref. [26].

as inputs or determined by fit. On the other hand, the con-
tribution of l.h.c.s is deduced with the help of chiral pertur-
bative amplitudes of O(p2) at tree level, derived in a rela-
tivistic baryon chiral perturbation theory (BChPT) [28]. In
the following Sect. 2, the basic formulae relevant to the cal-
culation are shown. In Sect. 3 the numerical results are pre-
sented and discussed. Finally Sect. 4 contains conclusions
and outlook of this paper. The tree amplitudes up to O(p2)

and their partial-wave projection are relegated to Appendices
A and B, respectively. The major uncertainties of the estima-
tion of the background integral are compiled in Appendix
C. Finally, a comparison between the perturbative result and
the subthreshold expansion from Ref. [13] in P11 channel is
demonstrated in Appendix D.

2 Theoretical framework

2.1 Left-hand cut contributions implied by BChPT at
tree-level

In the SU (2) isospin limit, the πN Lagrangians relevant to
the calculation up to O(p2) are [29]:

L(1)
πN = N̄

(
i /D − M + 1

2
g/uγ 5

)
N , (6)

L(2)
πN = c1〈χ+〉N̄ N − c2

4M2 〈uμuν〉(N̄ DμDνN + h.c.) (7)

+ c3

2
〈uμuμ〉N̄ N − c4

4
N̄γ μγ ν

[
uμ, uν

]
N ,

with M being the mass of the nucleon, g being the axial
current coupling constant and ci (i = 1, 2, 3, 4) the O(p2)

coupling constants. The “〈· · · 〉” denotes the matrix tracing
in isospin space. The pion fields are compiled in

u(x) = exp

(
iπaτ a

2F

)
, (8)

with F being the pion decay constant in the chiral limit and
τ a standing for Pauli matrices. The chiral building blocks in
Eqs. (6) and (7) are as follows:

Dμ = ∂μ + μ,

μ = 1

2

[
u†(∂μ − irμ)u + u(∂μ − ilμ)u†],

uμ = i
[
u†(∂μ − irμ)u − u(∂μ − ilμ)u†],

χ+ = u†χu† + uχ†u,

χ = 2B0(s + i p),

During the procedure of calculation one needs to set 2B0s →
2B0mq ≡ m2 with m being the pion mass, while the other
sources (lμ, rμ and p) are switched off. To obtain the ampli-
tudes with definite isospin I and angular momentum J , one
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should decompose the isospin structure and then perform
partial wave projection. For isospin decomposition,

T (πa + Ni →πa′ + Nf)=χ
†
f

(
δa

′aT S+ 1

2

[
τ a

′
, τ a

]
T A

)
χi,

(9)

where χi and χf are isospinors of initial and final nucleon
states, respectively. Then the amplitudes with isospins I =
1
2 , 3

2 can be written as

T I=1/2 = T S + 2T A, (10)

T I=3/2 = T S − T A. (11)

Further, the Lorentz structure of the above isospin amplitudes
reads

T I = ū(p′, s′)
[
AI (s, t) + 1

2
(/q + /q ′)BI (s, t)

]
u(p, s), (12)

where s, t are Mandelstam variables, and q and q ′ are the
4-momenta of initial and final states of pions, respectively.
The tree-level AI and BI up toO(p2) are listed in Appendix.
A. The helicity amplitudes in the centre of mass frame can
be expressed in terms of functions AI and BI as

T I++ =(
1 + zs

2
)

1
2 [2MAI (s, t) + (s − m2 − M2)BI (s, t)],

T I+− = − (
1 − zs

2
)

1
2 s− 1

2 [(s − m2 + M2)AI (s, t)

+ M(s + m2 − M2)BI (s, t)], (13)

where the subscripts “±” are abbreviations of helicity h =
±1/2. Moreover, the first and second subscripts correspond
to the helicities of the initial and final nucleon states, respec-
tively. zs is defined as the cosine of the scattering angle. The
partial wave projection formulae are given by

T I,J
++ = 1

32π

∫ 1

−1
dzsT

I++(s, t (s, zs))d
J−1/2,−1/2(zs),

T I,J
+− = 1

32π

∫ 1

−1
dzsT

I+−(s, t (s, zs))d
J
1/2,−1/2(zs), (14)

with d J to be the Wigner D-matrix. To be specific, the six
S- and P- wave amplitudes (in L2I 2J convention) can be
represented in terms of helicity amplitudes as follows:

T (S11) = T 1/2,1/2
++ + T 1/2,1/2

+− ,

T (S31) = T 3/2,1/2
++ + T 3/2,1/2

+− ,

T (P11) = T 1/2,1/2
++ − T 1/2,1/2

+− ,

T (P31) = T 3/2,1/2
++ − T 3/2,1/2

+− ,

T (P13) = T 1/2,3/2
++ + T 1/2,3/2

+− ,

T (P33) = T 3/2,3/2
++ + T 3/2,3/2

+− . (15)

The explicit expressions of the partial-wave helicity ampli-
tudes can be found in Appendix B. From Eq. (15) the sym-
metry proposed by MacDowell in Ref. [30] is manifest: if the
s−1/2 factor in T+− changes its sign while other terms remain
fixed, then the S- wave amplitudes are transformed into the
corresponding P-wave ones. That property is automatically
fulfilled in perturbation theory, hence also satisfied here since
we use perturbative amplitudes to evaluate the left-hand cut
integrals. Eventually, the discontinuity of function f can be
deduced through (the symbols of the channels are omitted)

disc
[
f (s)

] = disc

[
ln S(s)

2iρ(s)

]
,

S(s) = 1 + 2iρ(s)T (s) , (16)

where T (s) is perturbatively calculated here, and function
f (s) can be obtained by using Eq. (5). At tree level, the
left-hand cut structure for T is quite simple: a kinematic cut
(−∞, 0] and a segment cut [(M2 − m2)2/M2, 2m2 + M2]
due to the u-channel nucleon exchange. Note that ρ(s) has
an extra branch-cut (−∞, (M−m)2] by definition in Eq. (4),
so the cuts of S(s) should be (−∞, (M − m)2] and [(M2 −
m2)2/M2, 2m2 + M2],4 thus the background function is

f (s) = − s

π

∫ (M−m)2

sc

ln |S(w)|dw

2ρ(w)w(w − s)

+ s

π

∫ 2m2+M2

(M2−m2)2/M2

Arg[S(w)]dw

2iwρ(w)(w − s)
. (17)

From Eq. (17) it is found that the dispersion integral con-
tains a logarithmic term and once subtraction,5 which signif-
icantly suppresses the bad behavior of perturbation theory in
high energy region – even if the integral domain of the first
term is chosen to be (−∞, (M −m)2], the integral still con-
verges. That property guarantees the results to be insensitive
to high energy contributions. However, perturbative calcula-
tions would inevitably become invalid when w is too large,
so one has to assign the integral domain a cut-off param-
eter sc. In principle the exact value of sc is unknown, and
may be fixed by fitting to the data if one tentatively regards
Eq. 17 as a parameterization of the left-hand cut. On the other
side, it is also educative to chose sc to be at the boundary of
perturbation theory convergence region, in order to evaluate

4 The full analytic structure of the l.h.c.s can be found in Ref. [31]. At
O(p2) level, there is no circular cut.
5 Note that even though due to the s−1/2 factor, the limits for T (s)
when s → 0± do not equal, from Appendix B it is found that each
channel satisfies T (s → 0) ∼ s−c for constant c, which leads to the
result f (0) = 0 as proposed in Ref. [23].
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Table 1 Intermediate poles added in each channel

Channels I
(
J P

)
Poles

S11
1
2

(
1
2

−)
N∗(1535), N∗(1650), N∗(1895)

S31
3
2

(
1
2

−)
�(1620),�(1900)

P11
1
2

(
1
2

+)
N , N∗(1440), N∗(1710), N∗(1880)

P31
3
2

(
1
2

+)
�(1910)

P13
1
2

(
3
2

+)
N∗(1720), N∗(1900)

P33
3
2

(
3
2

+)
�(1232),�(1600),�(1920)

the contributions from where perturbation theory is valid. Of
course, meaningful physical outputs should be immune from
such an ambiguity of the left-hand cut integral.

Actually the contribution from the u-channel cut is numer-
ically very small,6 hence the dominant contribution is from
the first term of Eq. (17), which is always negative in physi-
cal region (s > (M + m)2), since ρ(w)w(w − s) > 0 when
w < (M −m)2 and |S| > 1 in perturbation theory. Besides,
the r.h.i.c. is not considered for the moment, since the energy
region to be analyzed (from the πN threshold to 1.16 GeV) is
below the inelastic threshold, where the r.h.i.c. contribution
is empirically small. However, this topic is to be discussed
further in Sect. 3.3.

2.2 Known-pole contributions estimated from experiments

The above discussions are devoted to the estimation of the cut
contributions from chiral perturbative amplitudes. In prac-
tice, one also needs to take into account the pole contri-
butions. The known poles (nucleon bound state and above-
threshold resonances), listed in Table 1 [32], are under our
consideration.

However, the PKU method can only deal with poles on the
first and second Riemann sheets, namely, the poles located
on the third Riemann sheet given by experiments

√
s

III = Mpole − i

2

(
inelastic + πN

)

cannot be used directly.7 Under narrow width approximation,
the second sheet poles (usually called shadow poles) may be
estimated by

√
s

II = Mpole − i

2

(
inelastic − πN

)
. (18)

6 This is due to that the near threshold u channel exchange 1/(u−M2)

can be approximately represented as a contact interaction, which leaves
no left-hand cut at all.
7 The information of the poles on third or higher sheets is hidden in the
inelastic cut in Eq. (5) and their contributions are rather indirect [23].

With the preparations made in this section, we proceed with
the numerical study in the next section.

3 Numerical results and discussions

3.1 Prelude: a K -matrix fit and spurious poles

Here we use K -matrix method to determine the coupling con-
stants ci . The influence of different choices of ci parameters is
mild as discussed in Appendix. C.1. In our numerical compu-
tation, values of the masses and O(p1) coupling constants,
see Eq. (6), are taken from Ref. [33]: M = 0.9383 GeV,
m = 0.1396 GeV, F = 0.0924 GeV and g = 1.267. A K -
matrix fit is performed to the data of S11, S31, P11, P31 and
P13 channels8 provided by George Washington University
(GWU) group [35]. Unfortunately, the uncertainties of data
are not provided by GWU group. Therefore, we assign errors
to the data in the same way as done in Ref. [5]:9

�i =
√
e2
s + e2

r δ
2
i , (19)

where �i is the total error of the phase shift δi , while the
systematic error is assigned as es ∼ 0.1◦ and for relative
statistical error er ∼ 2%. The tree-level K -matrix formula is

TK = T

1 − iρ T
,

δK = arctan
[
ρ T

]
.

(20)

We fit 20 data points (corresponding to W ≡ √
s ∈

[1.0776, 1.1600] GeV) in each channel. The fitted values of
parameters are

c1 = −0.841 GeV−1, c2 = 1.170 GeV−1,

c3 = −2.618 GeV−1, c4 = 1.677 GeV−1 , (21)

with the fit quality χ2/d.o.f = 1.850. The fit results are
plotted in Fig. 1.

Since K -matrix method gives the unitarized amplitudes
(see Eq. (20)), it seems that poles can also be extracted. For
instance, in S11 channel, the poles given by K -matrix are
listed in Table. 2.

Firstly we discover that the K -matrix gives a near-
threshold resonance locating at 0.954 − 0.265i GeV, but the

8 The P33 channel cannot fit to the data well at tree level without explicit
�(1232) field, hence is excluded.
9 Actually, a more adequate way is to use the phase shifts data (with
errors) generated by the recent Roy–Steiner-equation analysis of the πN
scattering [13], as was done in Ref. [12]. This alternative will be adopted
in the future work of PKU-representation analysis at O(p3) level [38]
, aiming at a more precise justification of the somewhat qualitative
conclusions in this paper.
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Fig. 1 O(p2) K -matrix fit results of five channels

Table 2 The pole positions given by K -matrix method of S11 channel

Resonances (GeV) Spurious poles (GeV)

0.954 − 0.265i 0.733 + 0.089i

2.254 − 0.067i 1.431 + 0.253i

K -matrix also generates some poles on the first sheet off the
real axis, which are called spurious poles,10 and have already

10 The spurious poles satisfy the equation 1 − iρ T = 0, and always
give negative phase shifts in the convention of PKU representation.

been discussed in Ref. [21]. Those poles violate causality and
hence are not allowed. Due to the existence of nearby spuri-
ous poles, the other poles given by K -matrix become unau-
thentic. If one uses PKU representation to separate the contri-
butions in K -matrix, it is found that the “good” description of
data rooted in the cancellation between large contributions
from resonances and spurious poles, leaving a vigorously
suppressed left-hand cut contribution, see Fig. 2.

In fact K -matrix amplitude in other channels may behave
even worse. For example, in S31 channel the K -matrix ampli-
tude generates two bound states as well as two spurious poles,
see Table. 3.
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Fig. 2 PKU representation of the phase shift of S11 channel based on
K -matrix fit

Table 3 The pole positions given by K -matrix method of S31 channel

Bound states (GeV) Spurious poles (GeV) Resonances (GeV)

0.959 0.647 + 0.064i 0.784 − 0.215i

0.916 1.150 + 0.317i 0.938 − 0.0006i

1.626 − 0.142i
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Fig. 3 PKU representation of the phase shift of S31 channel based on
K -matrix fit

The PKU representation analyses of the K -matrix ampli-
tude in S31 channel is plotted in Fig. 3.

In fact, the K -matrix method is constructed only relying
on the right-hand unitarity, while PKU representation is more
sophisticated since both analyticity and unitarity are main-
tained. From statements above, it is clear that the K -matrix
approach is not at all admirable in determining distant poles,
though we use it as a rough approximation to extract the
O(p2) coefficients. Therefore, it is pleasurable to use the

strategy of PKU representation proposed in Refs. [19,21–
23] to tackle the spurious-pole problem.

3.2 Pertinent PKU representation of phase shifts

To apply PKU representation, one needs a value of the cut-off
parameter sc. As discussed before, we at first assess its value
from the region where perturbation calculation works. That
region can be obtained via different methods, e.g. through
the unitarity bound (see Figure 14 in Ref. [9]), or by assum-
ing the validity of perturbation calculation till meeting the
first resonance pole. Here we use the shadow pole location
of N∗(1440), which is the first resonance related to compli-
cated couple-channel dynamics.11 Since the chiral expansion
is at the point s = u = M2 + m2, t = 0, we set the dis-
tance between M2 + m2 and N∗(1440) shadow pole loca-
tion as the convergence radius r , and hence the cut-off on
the left-hand cut is at sc = M2 + m2 − r  −0.08 GeV2.
In what follows, actually, it is seen that this choice of sc is
reasonable in most channels; even if in quantitative analyses
of P11 channel the cut-off parameter should be tuned, the
major physical outputs and conclusions are insensitive to its
value.

The contributions from known poles and l.h.c.s to the
phase shift in the S- and P- wave12 channels are plotted
in Fig. 4, within the scheme of PKU representation.

From Fig. 4, firstly we observe significant contributions
from well established poles: in P11 channel the nucleon
itself serves as a bound state of the πN system, generat-
ing a large and negative phase shift, while in P33 chan-
nel the �(1232) resonance gives a large positive contri-
bution. Secondly, the background terms usually contribute
sizable and negative phase shifts as expected. Surprisingly,
it is found that there exist huge disagreements between the
phase shifts from known poles plus cut and the data, espe-
cially in S11 and P11 channels. Therein the results of known
poles plus cut have missed some important positive contri-
butions.

One may find that in other channels discrepancies also
exist, but are less significant. The discrepancies in P13 and
P33 channels indicate that these channels need a slightly
larger sc parameter; the S31 channel may require fine-tuning
of sc parameter and higher order corrections (of the l.h.c.);
while in P31 channel the discrepancy is a bit larger – an sc
closer to (M +m)2, higher order perturbation calculation or

11 In principle a complete calculation of the l.h.c.s should contain
�(1232) as a genuine state, but the l.h.c. contribution from t and u
channel �(1232) exchange is ignorable.
12 In order to separate the contributions clearly, here we do not use free
parameters to constraint the near-threshold behavior (δ(s) ∼ O(k3)) of
the P- wave amplitudes. As can be seen in Fig. 4, the near-threshold
condition can not be satisfied automatically due to the absence of some
hidden contributions and the uncertainties in evaluating the l.h.c.s.
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Fig. 4 Tree level PKU representation analyses of the πN elastic scattering in s and p waves

other contributions may be needed. Moreover, changing the
ci parameters may have some impact on those channels. One
refers to Appendix. C.1 and C.2 for the different choices of
ci and the cut-off parameters. All in all, the discrepancies
in those four channels are at quantitative level and may be
ascribed to some details of dynamics. On the contrary, the
discrepancies in S11 and P11 channels are qualitatively severe
and can never be remedied through such tricks: only when
some extra large and positive contributions intrude would
they disappear.

There could be some possible interpretations of the huge
discrepancies in the S11 and P11 channels: firstly it is natural

to suspect that the one-loop contributions in those two chan-
nels may be crucial; secondly, other branch cuts which are
not included in the discussions above may be non-ignorable,
e.g. the r.h.i.c. and the type of cut proposed by Ref. [18];
thirdly, the previous calculation of the shadow poles is carried
out under a rough approximation, while the actual shadow
pole positions may be very different from what the approx-
imation gives; finally, we can not exclude the existence of
some hidden poles, e.g. virtual states, resonances below the
threshold, resonances with extremely large widths, or two-
pole structures [17], which cannot be observed directly by
the experiments.
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As for the first interpretation above, we believe that the
higher order contributions of BChPT may have some sig-
nificance numerically, but they are very unlikely to distort
the results totally. As already mentioned before, the back-
ground function in Eq. (5) is of logarithmic form and once-
subtracted, which would make the function insensitive to the
higher order terms. This is also a lesson we learned from ππ

scatterings in Ref. [22]. One refers to Appendix. C.3 for the
assessment of the dependence of the results on the order of
chiral expansion at O(p1) and O(p2) level. We also extend
our calculation of the l.h.c. to the O(p3) level in S11 chan-
nel. The result confirms our speculation that the high order
corrections to the l.h.c. are not qualitatively important. The
other interpretations will be discussed in the following two
subsections.

3.3 Estimation of the right-hand inelastic cut

The contribution from r.h.i.c. is expected to be less significant
below the inelastic threshold. Actually, analogous to Eq. (17),
the contribution from the r.h.i.c. can be estimated by

fR′(s) = s

π

∫ �2
R

(2m+M)2

σR(w)dw

w(w − s)
,

σR(w) = −
{ ln[η(w)]

2ρ(w)

}
,

(22)

where 0 ≤ η ≤ 1 represents the inelasticity of πN scat-
terings above the inelastic threshold, i.e. the ππN thresh-
old (2m + M)2, and the cut-off parameter of the integral in
Eq. (22) is denoted as �R . Equation (22) indicates that the
r.h.i.c. contribution is positive definite. In the following com-
putation, the inelasticity functionη(s) is taken from Ref. [35].
As for the cut-off �R , the energy region of the data is only up
to 2.48 GeV, but in P11 channel the inelasticity is still near
0.1 when the centre of mass energy reaches 2.48 GeV. Hence
to avoid the disappreciation of right-hand cut contribution,
we take a cut-off of �R = 4.00 GeV and employ an extrap-
olation of the data to 4.00 GeV to estimate the function fR′
in Eq. (22). The phase shifts from inelastic cuts of different
channels are plotted in Fig. 5.

It is clear to see that in P11 channel the r.h.i.c. con-
tributes sizeably to the phase shift (about 8 degrees at

√
s =

1.16 GeV), but this is still far from enough to compensate the
discrepancy (nearly 32 degrees at

√
s = 1.16 GeV); mean-

while, the phase shifts from r.h.i.c. in other channels are much
smaller, thus the discrepancy of S11 channel can neither be
interpreted by it.

Besides, to investigate other possible hidden cut structures
(as suggested by Ref. [18]) goes beyond the scope of present
paper.
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Fig. 5 The phase shifts from r.h.i.c.

3.4 Hidden pole analyses: P11 channel

After all the discussions above, it seems that the existence of
hidden poles is the last remaining interpretation. It is noticed
that we can not tell the differences between shadow pole
positions very different from Eq. (18) and extra hidden poles,
because shadow pole positions determined by Eq. (18) con-
tributes little to the phase shifts at low energies;13 however,
the missing positive contributions in S11 and P11 channels are
too large to be filled by shadow pole positions close to what
Eq. (18) gives, so it is more natural to believe that the dis-
crepancy stems from extra hidden poles, which are discussed
as follows.

We proceed by keeping the known poles and the inelastic
cut, meanwhile we still keep the values of ci coefficients in

13 This argument also indicates that the two-pole structures under Eq. 18
cannot explain the discrepancy.
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Fig. 6 The phase shift results with extra virtual states in P11 channel

Eq. (21). Threshold P- wave behavior is used as a constraint:
the phase shift cannot contain O(k1) term (here k is the 3-
momentum of the πN system in center of mass frame). It is
found that if we set the extra pole to be one resonance and
perform a fit to the data, it always automatically runs to the
real axis and become two virtual poles: one survives while the
other falls to the pseudo-threshold (

√
s = M − m) and van-

ishes. The P11 data requires passionately one single virtual
state near the πN threshold. Notice that both the resonance
pole and the virtual pole give similar positive phase shift, it
is amazing that the fit using PKU representation can easily
distinguish the two very similar contributions. This is very
remarkable – as will be revealed later, that a single nearby
virtual state is actually what is needed physically. It is found
that in P11 channel a good fit requires a much larger sc than
−0.08 GeV2, but a nearby virtual state always exists irrespec-
tive of the choice of the cut-off parameter.14 Figure 6 affords
an example with χ2

P11
/d.o.f = 0.201, where the virtual pole

locates at 980 MeV (with statistical error 0.496 MeV). Note
that the unnaturally small value of the χ2/d.o.f, here and in
the next subsection, is a warning that the error estimation
budget specified in Eq. (19) is rather rough.

In the following we show that through investigating the
amplitude, the existence of that pole is found to be quite
reasonable – actually, it is just a kinematic companionate
pole of the nucleon bound state. In the vicinity of the nucleon
bound state pole, the S matrix takes the form

S(s) ∼ r0

s − M2 + b0 + O(s − M2)

where r0 ∈ R is the residue and the constant b0 represents
the background. The dominant term r0/(s − M2) is a typical

14 When sc = −0.08 GeV2, the fit quality is poor, but the P-wave
constraint gives a virtual state at 944 MeV, which is above the nucleon
pole and not far from the location when sc = −9 GeV2, which generates
Fig. 6.

hyperbola with the horizontal axis being one of its asymp-
totes, while arbitrary non-zero real b0 would lead the function
to generate a zero on the first Riemann sheet, which, accord-
ing to the rule of analytic continuation SII = 1/SI, indicates
the existence of a virtual state pole on the second sheet.15

Such a simple explanation on the necessity of a nearby vir-
tual state, is firstly revealed here, to the best of our knowledge.
For example, in Ref. [4], a somewhat arbitrary CDD pole is
introduced to take the role of such a virtual state without
further investigation of its origin.

Of course a bound state does not always induce a nearby
virtual state (a famous example is the deuteron), but here the
nucleon pole is an “elementary” state and is already contained
in the perturbative amplitude, which is totally different from a
molecular bound state generated from some non-perturbative
re-summation. We think this mechanism of kinematical part-
ner should be rather general for non-molecular bound states.
Actually we believe an “elementary” bound state must have
a nearby companion regardless of the dynamical details, at
least in the weak coupling situation. Our statement can actu-
ally be related to the result given in Ref. [36] at least in S-
wave. For P- wave, even a molecular bound state is associ-
ated with a virtual companion as revealed by potential scat-
tering theory (see for example Ref. [37]).

To proceed, the partial-wave S matrix given by perturba-
tive calculation also suggests a zero at
[
M2 + 2g2m3M

3F2π
− g2m6(3 + 4g2 − 4c3M + 8c4M)

18F4π2

+ · · ·
]1/2

∼ 976 MeV, (23)

see Fig. 7, which is, as it should be, close to the result
980 MeV given by the fit of PKU representation with the
P- wave constraint in Fig. 6.16

In addition, one can also use the subthreshold expan-
sion with the constants given by Roy-Steiner equations in
Ref. [13] to verify the existence of such a zero, see Appendix.
D.

In order to further examine the importance of such a virtual
state, we calculate its residue rv in S matrix on the second
Riemann sheet as follows:

rv = lim
s→sv

s − sv
S(s)

= 0.046 GeV2; (24)

here S(s) is the complete S matrix of P11 channel including
the hidden virtual state (at

√
sv = 980 MeV) determined by

15 Exactly speaking, b0 is complex due to the existence of the u-channel
nucleon exchange. Nevertheless, since the u-channel cut is numeri-
cally very small, the main conclusion of the observation here remains
unchanged.
16 A perturbative study at O(p3) level shows that the S matrix zero is
at 978 MeV, so it is very stable against the chiral expansion.
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Fig. 7 The absolute value of perturbative calculated S matrix in P11
channel below threshold. The vertical red dashed line marks the position
of the nucleon bound state pole, and the red circle illustrates the zero
of the S matrix. The two spikes correspond to the two branch points of
the u-channel cut

fit. The residue of the nucleon pole (rN ) is also calculated as
a control:

rN = lim
s→M2

(s − M2)S(s) = −0.146 GeV2, (25)

which is approximately three times as large as that of the
virtual state (to be compared with perturbative result rN =
−0.114 GeV2). Whereas the virtual state is closer to the
threshold than the nucleon, its residue cannot be regarded
ignorable compared to the nucleon pole.

Furthermore, it is found that the virtual state plays a crucial
role in determining the sign of the residue at nucleon pole.
From the analytical expressions in Eq. (1), one can easily ver-
ify it with some primary algebra that all the terms contribute
to the residue of the nucleon pole positively (notice that in
the present scheme different contributions to the residue are
productive), except for virtual states lying above the nucleon
pole. In other words, to reproduce the negative residue at
nucleon pole, i.e., ∝ iρ(M2)g2

πN < 0, a virtual state as dis-
covered in this paper is essential.

The above analysis demonstrates that the PKU represen-
tation is very sensitive to the low lying pole positions and
hence is very powerful and reliable in pinning down the cor-
rect low-energy pole positions, which encourages us to find
out the hidden contribution in S11 channel similarly.

3.5 Hidden pole analyses: S11 channel

For S11 channel, we keep Eq. (18) as a solution for N∗(1535)

shadow pole position, and add one more resonance with
mass and width as free parameters, meanwhile we keep
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Fig. 8 The hidden pole fit to data in S11 channel. The background con-
tribution can be read off from Fig. 4a. The “crazy resonance” saturates
the gap between the data and the background contribution

sc = −0.08 GeV2. Unlike P11 channel, our fit leads to
a resonance pole lying below the πN threshold:

√
sII =

0.808 − 0.055i GeV, with the fit quality χ2
S11

/d.o.f = 0.109
(see Fig. 8), and its residue of S can be calculated in the same
way as Eq. (24), resulting in (0.422+0.107i)2 GeV2. Notice
that this pole location may not be that accurate even though
we have little doubt on the very existence of such a pole.
The dependence of the pole location on the variation of back-
ground contribution is analyzed in Appendix. C.2. For exam-
ple, taking sc = −∞, one gets

√
sII = 0.914 − 0.205i GeV,

which still locates well below threshold, with a similar fit
quality χ2

S11
/d.o.f = 0.018. From these analyses, we see that

the vast change of cut-off parameter does not lead to a signif-
icant change of the pole position. From Table. 4 we roughly
estimate the pole location to be17

√
s

II = (0.861 ± 0.053) − (0.130 ± 0.075)i GeV. (26)

At current stage, we think it is very difficult to further
pin down the uncertainty of the imaginary part of the S11

pole. In principle, one can use some models (like resonance
exchange models or Regge model) to evaluate the left-hand
cut contributions in high energy region, and this is left for
future investigation.

The hidden resonance found above is beyond direct exper-
imental observations and is difficult to understand. However,
we would try to give it a reasonable interpretation based
on our past experiences about potential scatterings. The S11

channel does not contain the nucleon as an s channel inter-
mediate bound state, so the interaction is dominated by con-
tact interaction and u channel nucleon exchange, which can

17 The statistical errors are too small hence omitted here. See Table. 4
for details.
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Fig. 9 The fit to the data with phase shift given by square well potential
scatterings

be simulated as a potential. Typical potential scatterings can
generate resonances below threshold; for example, we use
the square-well potential as a toy model to show how this
happens. The potential is

U (r) = 2μV (r) =
{

−2μV0 (r ≤ L),

0 (r > L),
(27)

where μ is the reduced mass of the pion and nucleon, r is
the radial coordinate, V0 > 0 and L > 0 are two parameters
labeling the depth and range of the potential respectively. The
textbook calculation of S- wave Schrödinger equation gives
the phase shift, as a function of 3 − momentum k in centre
of mass frame:

δsw(k) = arctan

[
k tan k′L − k′ tan kL

k′ + k tan (kL) tan (k′L)

]
, (28)

with k′ = (k2 + 2μV0)
1/2. The fit to the data in S11 channel

(20 data points) results in L = 0.829 fm and V0 = 144 MeV,
with fit quality χ2

sw/d.o.f = 0.740, see Fig. 9.
The poles are extracted via the equation 1− i tan δsw(k) =

0, the nearest one of which locates at k = −346i MeV as a
deep virtual state, which in

√
s plane turns out to be a “crazy

resonance”:18

√
s =

√
k2 + m2 +

√
k2 + M2 ∼ 0.872−0.316i GeV. (29)

Note that the deep virtual state suggested by the square
well potential is already out of the non-relativistic energy
region, but it still agrees with the result of PKU representa-
tion analyses (Eq. 26) qualitatively. Even though the square

18 The second pole given by square-well potential is at 2.28 −
1.06i GeV, which is too far away from the expected N∗(1535) position.
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Fig. 10 The left-hand cut contributions in S11 channel up to O(p2)

and O(p3). The cut-off parameters are determined by the N∗(1440)

shadow pole location, and the values of the low energy constants are
taken from Table. 1 (Fit II) in Ref. [9]

well potential calculation is only a toy model analysis, one
expects that it may be helpful to reveal the correct physi-
cal picture that the “crazy resonance” is of potential scat-
tering nature, generated from a not very strong but attrac-
tive potential. However, it should be warned that the hidden
pole position in S11 channel is inside the circular left-hand
cut Re(s)2 + Im(s)2 = (M2 − m2)2, which, though only
appears when the one loop contributions are under consid-
eration, indicates that the one loop results may have crit-
ical impact on the hidden pole. One may even doubt that
such a hidden pole is only a fake effect simulating the circu-
lar cut contribution, which are not presented at the moment.
Nevertheless, as already discussed in Sect. 3.2, higher order
calculations to the left-hand cut should not alter the qualita-
tive picture presented here. This expectation is supported by
the crucial calculation at O(p3) level [38]. Briefly speaking,
our O(p3) preliminary result shows the hidden pole remains
below threshold, since the left-hand cut contribution up to
O(p3) in S11 channel differs little from O(p2), see Fig. 10.

4 Conclusions and outlook

In this work, we apply PKU representation, which separates
the phase shifts into terms corresponding to different poles
and branch cuts, to analyse processes of πN elastic scat-
terings. The contribution of background term, i.e. left-hand
cut contribution, is deduced from tree amplitude derived in
manifestly covariant BChPT. It is found that the left-hand cut
in each S- or P- wave channel contributes negatively to the
phase shift, in agreement with conventional wisdom.

Having estimated the left and right-hand cut contributions,
it is found, particularly in P11 and S11 channels, the total con-
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tribution of the known poles and branch cuts are apparently
insufficient to yield a satisfactory description of the exper-
imental data. Thus certain significant positive contributions
are required to compensate the discrepancies in those two
channels.

In P11 wave, with the assistance of PKU representation,
a kinematical near-threshold virtual state induced by the
nucleon bound state pole is discovered, the location of which
is found to be compatible with that calculated from per-
turbation theory. The discovery of that pole demonstrates
the uncertainties from left-hand cut contributions extracted
from the perturbation amplitudes is well under control in the
framework of PKU representation. Further, the origin of such
a virtual pole has not been discussed in the literature before.

Assuming that the S11 channel includes an extra hidden
pole, we determine its position on the second Riemann sheet
by fitting to phase shift data. It is found that the S11 channel
may cache a pole lying well below the πN threshold, behav-
ing as a so-called “crazy resonance”. To reveal the existence
of such a pole is completely novel.

There are still many follow-ups of this work to be done in
future. For instance, the calculation of the left-hand cut inte-
gral could be extended to O(p3) level, which is underway;
methods based on crossing symmetry, e.g. Roskies relation
or Roy-Steiner equations [6], may be incorporated into to
get a cross-check on the determination of pole location in
S11 channel. The physics related to such a novel resonance
remains to be explored.
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Appendices

A Tree-level A, B functions

The expressions of the A, B functions can be found else-
where, e.g., Refs. [8,9]. For completeness, we show the
results as follows. At O(p1) level

A1/2
1 = g2M

F2 , (30)

B1/2
1 = 1 − g2

2F2 − 3M2g2

F2(s − M2)
− M2g2

F2

1

u − M2 , (31)

A3/2
1 = g2M

F2 , (32)

B3/2
1 = −1 − g2

2F2 + 2M2g2

F2(u − M2)
; (33)

and for O(p2)

A1/2
2 = − 4c1m2

F2 + c2(s − u)2

8M2F2 + c3

F2 (2m2 − t)

− c4(s − u)

F2 , (34)

B1/2
2 =4Mc4

F2 , (35)

A3/2
2 = − 4c1m2

F2 + c2(s − u)2

8M2F2 + c3

F2 (2m2 − t)

+ c4(s − u)

2F2 , (36)

B3/2
2 = − 2Mc4

F2 , (37)

where the subscripts denote the chiral orders.

B Partial wave helicity amplitudes

In this section, we express the explicit expressions of πN
partial wave amplitudes at tree level, which presents the left-
hand cut structure clearly. To the best of our knowledge, these
expressions have never been exhibited in previous literature.
In what follows, we use the abbreviations: Rm = M2 − m2,
Rp = M2+m2, cL = (M2−m2)2/M2 and cR = M2+2m2.
The kinematic factor ρ(s) is given by Eq. (4).

B.1 O(p1) amplitudes

The O(p1) partial wave helicity amplitudes are written as

T I,J
++ =AI,J + BI,J I JC (s), (38)

T I,J
+− = 1√

s
(CI,J + DI,J I JS (s)), (39)

with definite isospin I and angular momentum J . In Eqs. (38)
and (39), the IC,S functions corresponding to the u-channel
nucleon exchange are singled out from the partial wave helic-
ity amplitudes with the coefficients A, B, C and D. The IC,S

functions have the form of
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I 1/2
C (s) =

∫ 1

−1

1 + zs
2(u − M2)

dzs

= − 2

s2ρ4

[M2

s
(s − cL)

(
ln

M2

s
+ ln

s − cL
s − cR

)
+ sρ2

]
,

(40)

I 1/2
S (s) =

∫ 1

−1

1 − zs
2(u − M2)

dzs

= 2

s2ρ4

[
(s − cR)

(
ln

M2

s
+ ln

s − cL
s − cR

)
+ sρ2

]
, (41)

for J = 1/2 and

I 3/2
C (s) =

∫ 1

−1

(1 + zs)(3zs − 1)

4(u − M2)
dzs

= 1

s5ρ6

{
2M2(s − cL)

[
2s(s − m2)

− M2cL − scR
](

ln
M2

s
+ ln

s − cL
s − cR

)

+ s2ρ2(s2 − 2m2s − 5M2cL + 4M2s)
}
, (42)

I 3/2
S (s) =

∫ 1

−1

(1 − zs)(3zs + 1)

4(u − M2)
dzs

= − 1

s4ρ6

{
2(s − cR)(s2 + M2s − 2m2s

− 2M2cL)
(

ln
M2

s
+ ln

s − cL
s − cR

)

+ sρ2[4(s − cR)s − 2sm2 + s2 − M2cL
]}

,

(43)

for J = 3/2, where the Mandelstam variable u is given by

u(s, zs) = Rp − s2 − R2
m

2s
− (s − sL)(s − sR)

2s
zs . (44)

The expressions of A,B,C and D in Eqs. (38) and (39) are
as follows.

• I = 1/2, J = 1/2

A1/2,1/2 = s − Rp

32F2π
− g2(s2 − Rps − 2m2M2)

32F2π(s − M2)
, (45)

B1/2,1/2 = −g2M2(s − Rp)

32πF2 , (46)

C1/2,1/2 = M(s − Rm)

32F2π
− Mg2(scR − M2Rm)

32F2π(s − M2)
, (47)

D1/2,1/2 = −g2M3(s − Rm)

32πF2 . (48)

• I = 3/2, J = 1/2

A3/2,1/2 = −(s − Rp) + g2(s + 3M2 − m2)

64F2π
, (49)

B3/2,1/2 = g2M2(s − Rp)

16πF2 , (50)

C3/2,1/2 = M
[ − (s − Rm) + g2(3s + Rm)

]

64πF2 , (51)

D3/2,1/2 = g2M3(s − Rm)

16πF2 . (52)

• I = 1/2, J = 3/2

A1/2,3/2 = 0, (53)

B1/2,3/2 = −g2M2(s − Rp)

32πF2 , (54)

C1/2,3/2 = 0, (55)

D1/2,3/2 = −g2M3(s − Rm)

32πF2 . (56)

• I = 3/2, J = 3/2

A3/2,3/2 = 0, (57)

B3/2,3/2 = g2M2(s − Rp)

16πF2 , (58)

C3/2,3/2 = 0, (59)

D3/2,3/2 = g2M3(s − Rm)

16πF2 . (60)

B.2 O(p2) amplitudes

The helicity amplitudes of O(p2) with J = 1/2 are

T I=1/2,J=1/2
++

= c2 I
1/2
C2 − 8M2

{
4c1m2 − c3 I

1/2
Ct + c4

[
I 1/2
C1 − 2(s − Rp)

]}

128πMF2 , (61)

T I=1/2,J=1/2
+−

= 32c4M4(s − Rm ) + (s + Rm )
[
c2 I

1/2
S2 + 8M2(c3 I

1/2
St − c4 I

1/2
S1 − 4c1m2)

]

256πM2F2
√
s

,

(62)

T I=3/2,J=1/2
++

= c2 I
1/2
C2 + 4M2

{ − 8c1m2 + 2c3 I
1/2
Ct + c4

[
I 1/2
C1 − 2(s − Rp)

]}

128πMF2 , (63)

T I=3/2,J=1/2
+−

= −16c4M4(s − Rm )+(s+Rm )
[
c2 I

1/2
S2 +4M2(2c3 I

1/2
St +c4 I

1/2
S1 − 8c1m2)

]

256πM2F2
√
s

,

(64)

where the I 1/2··· are some partial-wave integrals, specifically,
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I 1/2
C1 =

∫ 1

−1

zs + 1

2

[
s − u(s, zs)

] = − R2
m

3s
− 4

3
Rp + 5

3
s,

(65)

I 1/2
C2 =

∫ 1

−1

zs + 1

2

[
s − u(s, zs)

]2 = R4
m

6s2 + 2R2
m Rp

3s

+ (m4 + 6m2M2 + M4) − 14

3
Rps + 17s2

6
, (66)

I 1/2
Ct =

∫ 1

−1

zs + 1

2

[
2m2 − t (s, zs)

] = R2
m

3s

+ 2

3
(2m2 − M2) + s

3
, (67)

and

I 1/2
S1 =

∫ 1

−1

zs − 1

2

[
s − u(s, zs)

] = −2R2
m

3s
− 2

3
Rp + 4

3
s,

(68)

I 1/2
S2 =

∫ 1

−1

zs − 1

2

[
s − u(s, zs)

]2 = R4
m

2s2 + 2R2
m Rp

3s

− 3m4 − 14m2M2 + 3M4

3
− 2Rps + 11s2

6
, (69)

I 1/2
St =

∫ 1

−1

zs − 1

2

[
2m2 − t (s, zs)

] = 2R2
m

3s

+ 2

3
(m2 − 2M2) + 2s

3
, (70)

with

t (s, zs) = 2m2 − s2 − R2
m

2s
− (s − sL)(s − sR)

2s
zs . (71)

For the case of J = 3/2,

T I=1/2,J=3/2
++ = c2 I

3/2
C2 + 8M2(c3 I

3/2
Ct − c4 I

3/2
C1 )

128πMF2 , (72)

T I=1/2,J=3/2
+− = (s+Rm)

[
c2 I

3/2
S2 +8M2(c3 I

3/2
St −c4 I

3/2
S1 )

]

256πM2F2
√
s

,

(73)

T I=3/2,J=3/2
++ = c2 I

3/2
C2 + 4M2(2c3 I

3/2
Ct + c4 I

3/2
C1 )

128πMF2 , (74)

T I=3/2,J=3/2
+− = (s+Rm)

[
c2 I

3/2
S2 +4M2(2c3 I

3/2
St +c4 I

3/2
S1 )

]

256πM2F2
√
s

,

(75)

with

I 3/2
C1 =

∫ 1

−1

(zs + 1)(3zs − 1)

4

[
s − u(s, zs)

]

=−2m2(s + M2) + m4 + (s − M2)2

6s
, (76)

I 3/2
C2 =

∫ 1

−1

(zs + 1)(3zs − 1)

4

[
s − u(s, zs)

]2

=2(s − sL)(s − sR)(4s2 − 3Rps − R2
m)

15s2 , (77)

I 3/2
Ct =

∫ 1

−1

(zs + 1)(3zs − 1)

4

[
2m2 − t (s, zs)

]

= − −2m2(s + M2) + m4 + R2
m

6s
, (78)

and

I 3/2
S1 =

∫ 1

−1

(zs − 1)(3zs + 1)

4

[
s − u(s, zs)

]

=−2m2(s + M2) + m4 + (s − M2)2

6s
, (79)

I 3/2
S2 =

∫ 1

−1

(zs − 1)(3zs + 1)

4

[
s − u(s, zs)

]2

= (s − sL)(s − sR)(7s2 − 4Rps − 3R2
m)

15s2 , (80)

I 3/2
St =

∫ 1

−1

(zs − 1)(3zs + 1)

4

[
2m2 − t (s, zs)

]

= − −2m2(s + M2) + m4 + (s − M2)2

6s
. (81)

CExaminations on the uncertainties of left-hand cut inte-
grals

C.1 Varying low energy constants

In this section we show that the variation ofO(p2) low energy
constants ci in Eq. (7) has little impact on the results of PKU
representation analyses. Three sets of ci values are employed:
set 1 is the result of K -matrix fit to the phase shift data in this
paper, see Sect. 3; set 2 is from the K -matrix fit to the phase
shift data at O(p3) level, see Table. 1 (Fit II) in Ref. [9]; set
3 is the values that are given by the fit to the subthreshold
parameters from Roy-Stainer analyses at O(p2) level, see
Table. 1 in Ref. [34]. From Fig. 11 it is clear that the left-
hand cut contributions of different ci values are quite close to
each other, hence the main results of this paper are irrelevant
to different ci determinations.

C.2 Changing integration cut-off sc

In what follows we investigate the effect of the variations of
the cut-off sc in Eq. (17): sc ranges from −0.08 GeV2 to −∞,
see Fig. 12. It is found that the cut-off parameter is actually of
some numerical importance, but the qualitative picture never
changes. Besides, the missing contributions in S11 and P11

channels can never be blotted out by changing sc.
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Fig. 11 Left-hand cut contributions with different values of low energy constants ci

In S11 channel, it is found that the extra pole stays below
threshold when sc changes, see Table. 4.

On the other hand, the residue at the hidden pole is also
non-negligible compared to that of N∗(1535), see Table. 5.

Finally, one may wonder what happens if a narrower inter-
val of the left-hand cut integral, i.e. sc > −0.08 GeV2, is cho-
sen. Actually, using sc = 0.32 GeV2 determined by �(1232)

pole location, one obtains rather small left-hand cut contri-
butions and subsequently very poor fit in each channel, such
that in S31, P31, P13 and P33 channels significant negative
phase shift contributions are needed to match the data. This

is ridiculous since the only source of negative contribution
(except those coming from left-hand cut) is the bound state
contribution, and bound states are physical and should be
observed in nature. The conclusion is that one needs nega-
tive phase shift contribution from the left-hand cut integral
beyond perturbation region. To say the least, even though
choosing sc = 0.32 GeV2, the existence of those extra states
are still for sure, since for all possible sc values the left-hand
cut can never give a significant positive contribution to match
the data.
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Fig. 12 Left-hand cut contributions given by PKU representation under different cut-off values

Table 4 The S11 hidden pole fit with different choices of sc

sc (GeV2) Pole position
(GeV)

Fit quality
χ2/d.o.f

Statistical error
(MeV)

−0.08 0.808 − 0.055i 0.109 8.2 − 18.5i

−1.00 0.822 − 0.139i 0.076 0.1 − 14.8i

−9.00 0.883 − 0.195i 0.034 0.7 − 10.1i

∞ 0.914 − 0.205i 0.018 2.1 − 8.1i

Table 5 The residues of the S11 hidden resonance and N∗(1535)

Shadow pole (in units of GeV2)

sc Residue of the
hidden state

Residue of N∗(1535)

shadow pole

−0.08 (0.422+0.107i)2 (0.229 + 0.029i)2

−1.00 (0.449+0.124i)2 (0.228 + 0.038i)2

−9.00 (0.460+0.173i)2 (0.223 + 0.059i)2

−∞ (0.456+0.199i)2 (0.218 + 0.074i)2
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Fig. 13 Comparison of PKU representation analyses between O(p1) and O(p2)

C.3 Truncating chiral orders: O(p1) versus O(p2)

The phase shifts from both O(p1) and O(p2) chiral ampli-
tudes are plotted in Fig. 13, where the cut-off parameter of
the background integral is taken as −0.08 GeV2. We present
the different estimation of the phase shifts here, for the pur-
pose of comparing the perturbative calculations at different
orders. It can be seen that the difference of phase shift results
between O(p1) and O(p2) are only at the order of a few
degrees, and at O(p1) the S11 and P11 channels also contain
significant disagreements between the known poles plus cut

and the data. In general, the qualitative conclusions remain
unchanged when the chiral order changes.

D Checking the S matrix zero in P11 channel with sub-
threshold expansion

Here we use the subthreshold parameters given in Ref. [13] to
search for the near-threshold S matrix zero in P11 channel, for
the sake of comparison to the perturbation result in Fig. 7. We
take the A, B functions in the form of Eq. (3.32), Eq. (3.33)
and Eq. (3.34), and the values of the constants in Table. 4 (the
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Fig. 14 The absolute value of S matrix in P11 channel. The cir-
cle marks the location of the P11 virtual state given by fit using
sc = −9 GeV2

RS results) in Ref. [13]; then we do partial wave projection
using Eqs. (13), (14) and (15) in this paper to extract the P11

amplitude. As shown in Fig. 14, the subthreshold expansion
gives almost the same result as the O(p2) calculation.
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