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Abstract Recently, Will calculated an additional contribu-
tion to the Mercury’s precession of the longitude of perihelion
� of the order of �̇W � 0.22 milliarcseconds per century
(mas cty−1). It is partly a direct consequence of certain 1pN
third-body accelerations entering the planetary equations of
motion, and partly an indirect, mixed effect due to the simul-
taneous interplay of the standard 1pN pointlike accelera-
tion of the primary with the Newtonian N -body accelera-
tion, to the quadrupole order, in the analytical calculation of
the secular perihelion precession with the Gauss equations.
We critically discuss the actual measurability of the mixed
effects with respect to direct ones. The current uncertainties
in either the magnitude of the Sun’s angular momentum S�
and the orientation of its spin axis Ŝ� impact the precessions
�̇J�

2
, �̇LT induced by the Sun’s quadrupole mass moment

and angular momentum via the Lense–Thirring effect to a
level which makes almost impossible to measure �̇W, even
in the hypothesis that it comes entirely from the aforemen-
tioned 1pN third-body accelerations. On the other hand, from
the point of view of the Lense–Thirring effect itself, the mis-
modeled quadrupolar precession δ�̇J�

2
due to the uncertain-

ties in Ŝ� corresponds to a bias of � 9% of the relativistic
one. The resulting simulated mismodeled range and range-
rate times series of BepiColombo are at about the per cent
level of the nominal gravitomagnetic ones.

1 Introduction

Recently, Will [18] calculated a new general relativistic con-
tribution

�̇W � 0.22 mas cty−1 (1)

to the secular precession of the longitude of the perihelion �

of Mercury arising from the other planets of our solar system

a e-mail: lorenzo.iorio@libero.it

up to Saturn. A similar scenario, but with the perturbing body
moving in an inner orbit with respect to the test particle, was
treated in Yamada and Asada [19]. The precession of Eq.
(1) is, partly, a direct consequence of some post-Newtonian
accelerations of order O (

c−2
)

(1 pN) induced by a distant,
pointlike body X; see1 [a]Cross in Eq. (4) of Will [18]. On the
other hand, a mixed, indirect contribution, allegedly of the
same order of magnitude of the direct ones, comes also from
the interplay between the standard Newtonian third-body2

acceleration, which, to the quadrupole order, is

AX = −μXr

rX

[
r̂ − 3

(
r̂ · r̂X

)
r̂X

]
, (2)

and the usual 1pN pointlike acceleration due to only the pri-
mary’s mass

AM
1pN = μ

c2r2

[(
4μ

r
− v2

)
r̂ + 4

(
v · r̂) v

]
(3)

in the perturbative calculation by means of the Gauss equa-
tions inasmuch the same way as in the case of the Newtonian
acceleration due to the quadrupole mass moment of the pri-
mary and Eq. (3) [9,17]. In particular, the largest contribution

�̇W max � 0.16 mas cty−1 (4)

to the new precession of Eq. (1) is due to the direct and mixed
effects which do not depend on the velocity vX of the distant
perturber. Will [18] did not display the direct and indirect
contributions to Eq. (4) separately, so that it is not possible to

1 Note that the appellative “Cross” in Eq. (4) of Will [18] may turn out
somewhat misleading if taken literally in that it may induce an inat-
tentive reader to believe, at a first superficial reading, that it refers to
a mixing of standard Newtonian and pN accelerations in the analytical
calculation of the secular effects through the standard Gauss pertur-
bative scheme [9]. Instead, in a broad sense, it simply points to the
presence of both the primary and X in certain pN accelerations.
2 The perturber X was assumed to move in a circular orbit coplanar
with the Sun–Mercury orbital plane [18]. Also Yamada and Asada [19]
made the same assumptions.
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establish the weights of both the effects. Actually, it may have
its importance in view of the fact that, as explained below, the
mixed effects may be unobservable. The direct acceleration
in Eq. (4) of Will [18] which contains vX gives rise to a de
Sitter-like precession which is about 0.4 times smaller than
Eq. (4) [18]. In Appendix B, we offer our contribution by
analytically working out the direct precessions induced by
all the accelerations entering [a]Cross in Eq. (4) of Will [18]
without making any simplifying assumptions concerning the
orbital configuration of both the perturbed test particle and
the distant pointlike perturber X. For Mercury, we find a total
pN third-body perihelion precession induced by the plan-
ets from Venus to Saturn which amounts to 0.15 mas cty−1,
which disagrees with Eq. (1). In particular, the total direct
precession due to the first two accelerations entering Eq. (4)
of Will [18] amounts to 0.087 mas cty−1 instead of3 Eq. (4).

In view of the fact that the largest 1pN contribution to the
Mercury’s perihelion precession of

�̇1pN =
(

1 + 2γ − β

3

)
3nbμ

c2 p

=
(

1 + 2γ − β

3

)
42.98 arsec cty−1 (5)

is rescaled in terms of the PPN parameters β, γ , which are
equal to 1 in general relativity, Will [18] argues that, since the
forthcoming BepiColombo mission is expected to improve
out knowledge of β, γ to the 10−6 level [6,14], then it would
be likely possible to measure Eq. (1). Indeed, the resulting
theoretical mismodeling in Eq. (5) would be as little as

δ�̇GR � 0.03 mas cty−1. (6)

More specifically, Will [18] in the Abstract writes: “At a few
parts in 10−6 of the leading general relativistic precession
of 42.98 arcseconds per century, these effects are likely to
be detectable by the BepiColombo mission”. Furthermore,
Will [18] at pag. 191101-4 writes: “If BebiColombo can
reach a part per million accuracy in measuring the perihe-
lion advance, […] it will measure, for the first time, relativis-
tic effects on Mercury’s orbit arising from the planets that
surround it.” Conversely, if one is interested in determining
the Sun’s quadrupole mass moment and angular momentum
through their precessions, Eq. (1) would act as a systematic
bias on them. Will [18] at pag. 191101-4 writes about his
new effects: “[…] their existence and cross-correlations may
play a role […] in measurements of the contributions to Mer-
cury’s perihelion advance arising from the solar quadrupole
moment and frame dragging that will be carried out using
data from BepiColombo”.

In this Communication, we will show that measuring
Eq. (1), or our smaller result in Appendix B, is unlikely,

3 According to a personal communication by C. M. Will to the author,
the rest is due to the indirect, mixed effects.

mainly because of the uncertainties in the magnitude of the
Sun’s angular momentum entering the gravitomagnetic apsi-
dal rate of change and in the spatial orientation of the Sun’s
spin axis affecting especially the precession induced by the
solar quadrupole mass moment. As a byproduct, our results
will be useful in assessing the impact of the latter source
of systematic uncertainty on the possible measurement of
the Lense–Thirring effect itself with BepiColombo. Finally,
our exact calculation of the direct precessions have a general
validity, and can be fruitfully applied in several astronomi-
cal and astrophysical scenarios like, e.g., exoplanets or the
stellar system orbiting the supermassive black hole in the
Galactic Center characterized by arbitrary eccentricities and
inclinations.

2 Our analysis

As a general remark, we note that the indirect, mixed effects,
which arise from the simultaneous interplay of at least two
accelerations A, B in the calculation of the averaged preces-
sions of the Keplerian orbital elements with the Gauss equa-
tions [9,17], are likely undetectable in practical data reduc-
tions. Indeed, as far as our case is concerned in which A is,
say, Eq. (3) and B is Eq. (2), data analysts of virtually all
groups scattered around the world routinely model the New-
tonian N -body interactions and the 1PN pointlike acceler-
ation due to the primary to the best of our current knowl-
edge of the parameters entering them which, of course, is
necessarily imperfect. Thus, the actual output of data reduc-
tions like residuals of, say, ranges, range-rates, etc. would
not show the indirect, mixed effects in full. They could only
contain negligible signatures, if any, due to the mismod-
eling in the planetary masses and in the PPN parameters
β, γ in terms of which the 1PN point particle acceleration
is expressed. Instead, at least in principle, the observables’
residuals should fully display the direct effects (unless they
have been somewhat removed in the estimation of, say, the
initial state vectors) induced by some new accelerations, like
those of [a]Cross in Eq. (4) of Will [18] which, perhaps, may
still not be included in the dynamical models fit to the obser-
vations by some groups. Otherwise, one should not model
both Eqs. (2) and (3) at all, and subtract their theoretically
computed signals from the resulting huge residuals. It does
not seem certainly viable. Even from the point of view of a
covariance analysis, while it would be possible, in principle,
to explicitly solve for and estimate dedicated scaling param-
eter(s) accounting for every single acceleration entering the
equations of motion, this could not be done for the indirect,
mixed effects. In the following analysis, we will treat Eq. (1)
as if it were a potentially measurable effect, irrespectively of
its origin.
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In addition to the well known 1PN pointlike precession
of Eq. (5) due to solely the primary’s mass, there are other
two further effects affecting the perihelion of Mercury which
should be regarded as serious sources of potential systematic
uncertainties: they are due to the first even zonal harmonic J�

2
of the multipolar expansion of the Sun’s Newtonian gravita-
tional potential, and the general relativistic gravitomagnetic
field of the Sun induced by its angular momentum S�. Their
precessions depend not only on the size of J�

2 , S�, but also

on the orientation of the Sun’s spin axis Ŝ� in space which
must enter the error budget as well. Their exact expressions,
valid in any coordinate system and for arbitrary orbital con-
figurations, are [7]

�̇J2 = −3nbR2 J2

4p2

{
2

[
− 1 +

(
Ŝ · m̂

) (
Ŝ · n̂

)
(1 − cot I )

]

+3

[(
Ŝ · m̂

)2 +
(
Ŝ · l̂

)2
]}

, (7)

�̇LT = − 2GS

c2a3
(
1 − e2

)3/2 Ŝ · [
2 n̂ + (cot I − csc I ) m̂

]
.

(8)

The Sun’s quadrupole mass moment and angular momentum
are currently known to the level of accuracy listed in Table 1
along with the nominal values of the precessions of Eqs. (7),
(8). It can be noted that, if, on the one hand, it could be hoped
that the expected determinations of J�

2 by BepiColombo to
the � 10−10 level [1,6,14] may be accurate enough to make
Eq. (1) at least larger than the mismodelled J�

2 -induced pre-
cession, on the other hand, a lingering � 6% uncertainty
in S� would imply an a priori theoretical uncertainty in the
Lense–Thirring precession of Eq. (8) as large as 0.13 mas cty
corresponding to � 58% of Eq. (1) and � 86% of our result
in Table 2.

As announced before, also the current uncertainties in the
Carrington elements parameterizing Ŝ� play a crucial role
in view of the resulting mismodeling in Eq. (7). Indeed, a
standard Root-Sum-Square (RSS) calculation of the error
in �̇J�

2
due to the uncertainties in i�, ��, treated as two

independent variables, yields

δ�̇J�
2

<

√(
∂�̇J2

∂��

)2

σ2
�� +

(
∂�̇J2

∂i�

)2

σ2
i�

= 0.18 mas cty−1 (9)

Furthermore, Figs. 1, and 2 straightforwardly depict Eq. (7)
as function of J�

2 , i�, �� as independent variables allowed
to vary within their ranges of assumed uncertainties [2,6].
Their full range of variation is about twice Eq. (9). Instead,
as shown by

Table 1 Relevant Sun’s physical parameters along with the most recent
uncertainties for some of them appeared in the literature, and nominal
quadrupolar and Lense–Thirring perihelion precessions for Mercury.
As far as S�is concerned, the values quoted for its size and uncertainty
were obtained by calculating the mean and the standard deviation of the
figures quoted in Table 1 of Iorio [8]

Sun’s physical parameters Value

μ� [12] 1.3271244 × 1020 m3 s−2

R� [12] 6.957 × 108 m

�� [2] 73.5◦ ± 1◦

i� [2] 7.155◦ ± 0.002◦

J�
2 [16] 2.295 × 10−7

σJ�
2

[11] 9 × 10−9

σJ�
2

[5] 2.2 × 10−9

σJ�
2

[16] 1 × 10−9

σJ�
2

[6] 5.5 × 10−10

σJ�
2

[14] 4.1 × 10−10

S� [8] 192.0 × 1039 kg m2 s−1

σS� [8] 12.0 × 1039 kg m2 s−1

�̇J�
2

31 mas cty−1

�̇LT −2 mas cty−1

δ�̇LT <

√(
∂�̇LT

∂��

)2

σ2
�� +

(
∂�̇LT

∂i�

)2

σ2
i�

= 3 × 10−4 mas cty−1 (10)

the Lense–Thirring precession is not significantly impacted
by the uncertainty in the Sun’s spin axis orientation. From
the point of view of a possible measurement of the Lense–
Thirring effect, Eq. (9) corresponds to a 9% uncertainty in
the gravitomagnetic precession. Figure 3 shows the impact
of the uncertainties in the Carrington elements on the direct
BepiColombo observables, i.e. range and range-rate. It can be
noticed that the resulting mismodeled signatures amount to
� 1 − 1.5% of the nominal Lense–Thirring ones. Schettino
et al. [13], with dedicated covariance analyses performed
with simulated data of BepiColombo, detailed the practical
difficulty of satisfactorily separating J�

2 from S�, and the
impact of S� itself in estimating of J�

2 in various scenarios.

3 Conclusions

The overall post-Newtonian third-body precession of the lon-
gitude of the perihelion of Mercury recently calculated by
Will [18] amounts to �̇W � 0.22 mas cty−1; according to
Will [18], it should be measurable by the forthcoming Bepi-
Colombo mission. If, on the one hand, a determination of J�

2
at the � 5 × 10−10 level, expected from BepiColombo, may
reduce the mismodeling in the quadrupolar perihelion pre-
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Table 2 Doubly averaged 1pN third-body perihelion precessions of
Mercury, in mas cty−1, induced by Venus, Earth, Mars, Jupiter, Sat-
urn via Eqs. (B1)–(B7). The resulting total precession amounts to

0.15 mas cty−1; in particular, Eqs. (B1)–(B4) yield a combined overall
precession of 0.087 mas cty−1, contrary to 0.16 mas cty−1 claimed by
Will [18]. The discrepancy seems to be due to the indirect, mixed effects

Equation (B1) (mas cty−1) Equation (B4) (mas cty−1) Equation (B7) (mas cty−1)

Venus −0.00490 −0.00371 0.01409

Earth −0.00231 0.08183 0.00767

Mars −0.00007 0.00128 0.00029

Jupiter −0.00515 0.05683 0.03967

Saturn −0.00024 −0.00305 0.00260

Total −0.0127 0.0996 0.0643

Fig. 1 Plot of �̇J�
2

(���, �i�), with the Sun’s spin axis Ŝ� param-
eterized in terms of the Carrington elements ��, i�, as a function of
���, �i� allowed to vary within ∓1◦, ∓0.002◦ [2], respectively. As a
model of the J�

2 -induced precession of Mercury, Eq. (7) was used along
with J�

2 = 2.295×10−7 [16], and �� = 73.5◦, i� = 7.155◦ [2]. The
full range of variation amounts to about ��̇J�

2
� 0.35 mas cty−1. Cfr.

with Fig. 2. It is just twice the error calculated in Eq. (9)

cession of Mercury down to δ�̇J�
2

� 35% �̇W � 4% �̇LT,

on the other hand, the uncertainties in Ŝ� would yield
δ�̇J�

2
� 81% �̇W = 9% �̇LT. Furthermore, the current

� 6% uncertainty in S� would cause a further bias as large
as δ�̇LT � 58% �̇W. It seems that the indirect contribu-
tions to �̇W arising from the mixing of the Newtonian N -
body term with the 1pN pointlike acceleration of the Sun
in the perturbative analytical calculation, which may not be
measurable, amounts to about 0.07 mas cty−1. Indeed, our
calculation returns 0.15 mas cty−1 for the total direct post-
Newtonian perihelion precession of Mercury induced by the
other planets from Venus to Saturn, making, thus, even more
pessimistic the perspective of measuring it. The simulated
Earth–Mercury range and range-rate time series due to the
imperfect knowledge of Ŝ� are about at a per cent level of the

Fig. 2 Family of parametric plots of �̇J�
2

(
�J�

2 ; ���, �i�
)
, with

the Sun’s spin axis Ŝ� expressed in terms of the Carrington elements
��, i�, as a function of �J�

2 allowed to vary within ∓5.5 × 10−10

[6]. As a model of the J�
2 -induced precession of Mercury, Eq. (7) was

used along with the reference values J�
2 = 2.295 × 10−7 [16], and

�� = 73.5◦, i� = 7.155◦ [2]. Each curve corresponds to given
values of ���, �i� within ∓1◦, ∓0.002◦ [2], respectively. For
fixed values of �J�

2 , the full range of variation amounts to about
��̇J�

2
� 0.35 mas cty−1, in agreement with Fig. 1. It is just twice

the error calculated in Eq. (9)

nominal Lense–Thirring signatures. Finally, we not that our
exact calculation for such kind of general relativistic pre-
cessions are valid for any orbital configuration of both the
test particle and the third body. Thus, they can be applied
also to other astronomical and astrophysical natural labora-
tories characterized by large eccentricities and inclinations
like, e.g., several exoplanetary systems and the stars orbiting
the supermassive black hole in Sgr A∗ in which the copla-
narity condition is not fulfilled.
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Fig. 3 Upper row (blue): mismodelled Earth–Mercury range (in m)
and range-rate (cm s−1) J�

2 -induced perturbations due to the uncer-
tainties σ�� , σi� in the Carrington elements ��, i� of the Sun’s spin

axis Ŝ� as in Beck and Giles [2] during the expected extended mis-
sion of BepiColombo from 2026 March 14 to 2028 May 1. Lower row
(red): nominal Earth–Mercury range and range-rate perturbations due

to the Sun’s angular momentum S� through the Lense–Thirring effect
during the same temporal interval. A coordinate system with the mean
ecliptic at the epoch J2000.0 as fundamental reference {x, y} plane
was assumed. The initial values of the Earth and Mercury osculating
orbital elements were retrieved from the Web-Interface HORIZONS
maintained by the JPL, NASA. For the nominal values of the Sun’s
physical parameters used, see Table 1
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A Notations and definitions

Here, basic notations and definitions used in the text are pre-
sented [2–4,10,15]

G : Newtonian constant of gravita-
tion

c : Speed of light in vacuum
mX : Mass of the distant pointlike

perturber X
μX

.= GmX : Gravitational parameter of the
distant pointlike perturber X

rX : Distance of the distant pointlike
perturber X from the primary

r̂X : Unit vector of the position vec-
tor of the distant pointlike per-
turber X

vX : Velocity vector of the distant
pointlike perturber X

M : Mass of the primary
μ

.= GM : Gravitational parameter of the
primary

R : Equatorial radius of the primary
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J2 : Dimensionless quadrupole mass
moment of the primary

S : Magnitude of the angular
momentum of the primary

Ŝ : Unit vector of the spin axis of
the primary

�� : Longitude of the ascending
node of the Sun’s equatorial
plane with respect to the Vernal
Equinox� along the Ecliptic.
One of the Carrington elements

i� : Inclination of the Sun’s equa-
torial plane to the plane of the
Ecliptic. One of the Carrington
elements

Ŝ� = {
sin i� sin ��,

− sin i� cos ��, cos i�
} :

Sun’s spin axis unit vector in
terms of the Carrington ele-
ments

r : Distance of the test particle
from the primary

r̂ : Unit vector of the position vec-
tor of the test particle

v : Velocity vector of the test parti-
cle

a : Semimajor axis
nb

.= √
μa−3 : Keplerian mean motion

e : Eccentricity
p

.= a(1 − e2) : Semilatus rectum
I : Inclination of the orbital plane

to the reference {x, y} plane
adopted

Ω : Longitude of the ascending node
l̂ .= {cos Ω, sin Ω, 0} : Unit vector directed along the

line of the nodes toward the
ascending node

m̂ .= {− cos I sin Ω,

cos I cos Ω, sin I } :
Unit vector directed transversely
to the line of the nodes in the
orbital plane

n̂ .= {sin I sin Ω,

− sin I cos Ω, cos I } :
Unit vector of the orbital angu-
lar momentum

ω : Argument of pericenter
�

.= Ω + ω : Longitude of pericenter

B Exact calculation of the direct perihelion precession

The first line of Eq. (4) of Will [18] returns the following
1pN acceleration of order O (

G2
)

AG2 = 2μμX

c2r3
X

[
r̂ − 6

(
r̂ · r̂X

)
r̂X + 3

(
r̂ · r̂X

)2 r̂
]
. (B1)

We were successful in obtaining an exact expression for the
doubly-averaged perihelion precession induced by Eq. (B1)

without any a-priori simplifying assumption on the orbital
geometries of both the perturbed test particle and the distant
pointlike perturber. Nonetheless, it is far too cumbersome
to be explicitly displayed here; thus, we show it only to the
zeroth order in the eccentricity e. It reads

d�

dt
= − μX

√
μa

16c2a3
X

(
1 − e2

X

)3/2

{
1 + 48 (−1 + cos I )

× cos I
(

cos2 IX − cos2 �� sin2 IX
)

+3

(
2 cos 2�� sin2 I + cos 2I

(
1 + cos 2IX

× (3 + cos 2�� − 9 cos 2ω)

+ 6 cos 2�� cos 2ω sin2 IX
)

+ cos 2IX

×
(

9 cos 2ω + 2 sin2 ��
)

+ 2

(
3 cos 2ω

(
sin2 I + 3 cos 2�� sin2 IX

)

+4 (3 (sin I sin 2IX sin ��−
+ cos I sin2 IX sin 2��

)
sin 2ω + cos �� sin 2IX

×
(

−2 sin I + 3 sin 2I sin2 ω + tan

(
I

2

)))))}

+ O
(
e2

)
. (B2)

If the hypothesis of circularity and coplanarity with the test
particle is assumed for the orbit of X [18], the exact preces-
sion yields a shift per orbit

�� = −2πμXa2
√

1 − e2

c2a3
X

. (B3)

The second line of Eq. (4) of Will [18] yields the following
1pN acceleration of order O (G)

AG = μXr

c2r3
X

{
4v

[(
v · r̂) − 3

(
r̂ · r̂X

) (
v · r̂X

)]

− v2 [
r̂ − 3

(
r̂ · r̂X

)
r̂X

]}
. (B4)

We were able to calculate its exact, doubly averaged perihe-
lion precession without a priori simplifying assumptions on
e, I, �, ω, eX, IX, �X, ωX. Unfortunately, it is particu-
larly cumbersome, and cannot be explicitly displayed here.
An important feature of it is that, for arbitrary orbital con-
figurations, the precession due to Eq. (B4) is not defined for
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e → 0 since it contains terms of order O (
e−k

)
, k = 2, 4.

By expanding it in powers of e, we have

d�

dt
= 9

√
μaμX

(
1 − 2e2

)

4c2e4a3
X

(
1 − e2

X

)3/2

{
cos 2ω

[
(1 + 3 cos 2IX) sin2 I

+ (3 + cos 2I ) sin2 IX cos 2�� − 2 sin 2I sin 2IX cos ��
]

+ 4 sin 2ω
(− cos I sin2 IX sin 2�� + sin I sin 2IX sin ��

)}

+ O (
e0) . (B5)

By assuming eX = 0, I = IX, � = �X [18], the resulting
full shift per revolution of the test particle turns out to be

�� = −7πμXa2
√

1 − e2

2c2a3
X

. (B6)

In the case of Mercury, the discrepancy between the full pre-
cession and the coplanarity-based approximated one, from
which Eq. (B6) was derived, amounts to � −0.03 mas cty−1

for X=Venus.
The third line of Eq. (4) of Will [18] provides us with

the following 1pN “gravitomagnetic” acceleration of order
O (G) due to the velocity vX of the third body

AvX = − μX

c2r2
X

[
4v × (

r̂X × vX
) − 3

(
r̂X · vX

)
v
]
. (B7)

Its exact, doubly averaged perihelion precession turns out to
be

d�

dt
= 2μXnX

b

c2aX
(
1 − e2

X

)
[

cos IX + sin IX tan

(
I

2

)
cos ��

]
.

(B8)

For �� = 0, I = IX, eX = 0, Eq. (B8) agrees with the
precession which can be inferred from the fourth term of
Eq. (1) of Will [18] by taking the ratio of it to the orbital period
Pb of the perturbed test particle. The numerical discrepancy
between Eq. (B8) and the approximated expression by Will
is negligible; indeed, in the case of Mercury perturbed by
Venus, they differ by just 2 × 10−5 mas cty−1 yielding both
�̇ = 0.014 mas cty−1. The total contribution of all planets
from Venus to Saturn to the Mercury’s precession of Eq. (B8)
amounts to �̇ = 0.06 mas cty−1.

See Table 2 for a detailed overview of the contributions
of the planets from Venus to Saturn to the Mercury’s direct
1pN third-body perihelion precession. It can be noted that,
while the total “gravitomagnetic” effect arising from the third
line of Eq. (4) of Will [18] agrees with the results by Will
[18] himself, our total precession due to the first two lines
of Eq. (4) of Will [18] is about half than that claimed by
Will [18]. Such a discrepancy seems to be attributable to the
indirect, mixed effects.
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