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Abstract Recently a lot of progress has been made in deriv-
ing the heavy quark potential within a QCD medium. In this
article we have considered heavy quarkonium in a hot quark
gluon plasma phase. The heavy-quark potential has been
modeled properly for short as well as long distances. The
potential at long distances is modeled as a QCD string which
is screened at the same scale as the Coulomb field. We have
numerically solved the 1+1-dimensional Schrodinger equa-
tion for this potential and obtained the eigen wavefunction
and binding energy for the 1S and 2S states of charmonium
and bottomonium. Further, we have calculated the decay
width and dissociation temperature of quarkonium states in
the QCD plasma. Finally, we have used our recently proposed
unified model with these new values of decay widths to calcu-
late the survival probability of the various quarkonium states
with respect to centrality at relativistic heavy ion collider and
large hadron collider energies. This study provides a unified,
consistent and comprehensive description of spectroscopic
properties of various quarkonium states at finite tempera-
tures along with their nuclear modification factor at different
collision energies.

1 Introduction

Heavy quarkonium production and suppression was one of
the earliest proposed tool to study the properties of the
medium created in heavy ion collisions. In mid 1980s, Matsui
and Satz [1] has proposed theoretically that quarkonium sup-
pression is the signal of the possible creation of quark gluon
plasma (QGP) in collision experiments. From there onward,
the physical picture of quarkonium dissociation in a thermal
medium has undergone various theoretical and experimental
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refinements [2]. Recent experimental observations suggest
that the charmonium suppression in QCD plasma is not the
result of a single mechanism, but is a complex interplay of
various physical processes. Heavy quarkonia (QQ̄) has a
special edge over many other proposed tools since the heavy
mass scale (mJ/ψ = 3.1 GeV for J/ψ and mϒ = 9.2 GeV
for ϒ) makes this system possible for analytical treatment
theoretically. On the other side, decay of heavy quarkonia
via dileptonic channel lead to relatively clean signal which
can be precisely measured experimentally.

We can get the physical insight of the medium depen-
dence by analyzing the behavior of spectral function of heavy
quarkonium. The two useful approaches to study the produc-
tion and suppression via spectral function of heavy quarko-
nium are potential method and lattice approach [3–10]. As
we all know that lattice QCD method is first principle tool
to study the properties and behavior of heavy quarkonium
thus none of the potential method can be alternative to this
approach. However, the lattice observations are suffering
from discretization effects and statistical errors. In this sce-
nario, potential models can be utilized to serve the purpose.
As we now know that the problem of heavy quark bound
state at zero temperature involves different energy scales, i.e.,
hard scale, which is the mass mQ of heavy quark, soft scale
which is inverse size mQv ∼ 1/r of bound state and ultra-
soft scale, which is the binding energy mv2 ∼ αs/r . After
integrating out the hard scale modes, one obtains an effective
field theory non-relativistic QCD (NRQCD) [11,12]. Subse-
quently, integrating out the modes related with the inverse
size scale, potential NRQCD (pNRQCD) appears [13,14].
In this pNRQCD, the heavy quark–antiquark pair in singlet
and octet state are included via dynamical singlet and octet
fields (or potentials).

The generalization of this approach at finite temperature
involves three different thermal scales : T , gT and g2T . In
the static limit and if the binding energy is larger than the
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temperature T , the derivation of pNRQCD proceed in the
same way as in zero temperature theory and heavy quark
potential is not affected by the medium. However, the bound
state properties can be affected through interaction of bound
states with the ultrasoft gluons of the medium. The main
effect of this interaction is the reduction of binding energy of
the heavy quark bound state and emergence of a finite ther-
mal width. In second case when one of the thermal scales
is higher than binding energy, the singlet and octet potential
become temperature dependent and will acquire an imagi-
nary part [15]. It is important to state here that the real part of
the potential leads to colour screening while imaginary part
of the potential introduces the Landau damping to the heavy
quark bound states [16–19].

Another observation from numerical lattice calculations
show the crossover type of deconfinement transition from
hadron gas to QGP [20]. Thus, we can expect some non-
perturbative effects such as non-vanishing string tension in
heavy quark–antiquark potential above the critical temper-
ature TC as well. So it is reasonable to assume the string
term above TC [21–23]. Further this potential should also
incorporate the effect of Landau damping induced thermal
width by calculating the imaginary part of the potential. In
the recent years, the real [24,25] and imaginary parts [17,26]
of the heavy quark potential have been calculated by mod-
ifying both the perturbative and non-perturbative terms of
the Cornell potential in the static as well as in a moving
medium. The complex static interquark potential at finite
temperature has also been derived in Ref. [27] by considering
both the coulombic and linear string terms. One can calcu-
late the dissociation coefficient at a given temperature by
solving the Schrödinger equation using the modified heavy
quark complex potential [17,24,25,28,29]. Recently we have
constructed a unified model for charmonium suppression in
Ref. [30]. Here we want to incorporate this modified heavy
quark potential from Refs. [17,24] in unified model to cal-
culate the survival probability of heavy quarkonium states.
The survival probability of heavy quarkonium states has been
studied recently in Refs. [31,32]. Specially we will focus
here on the double ratio of two states of charmonium since
most of the suppression models are failed to reproduce the
suppression pattern of this double ratio.

In this article we have modified our unified model to prop-
erly include perturbative as well as nonperturbative effects
on quarkonium suppression. We have constructed this model
based on the kinetic approach whose original ingredients was
given by Thews et al. [33–35]. In this approach, there are two
terms written on the basis of Boltzmann kinetic equation as
shown in Sect. 2.4. First term, which we call as dissociation
term, includes the dissociation process like gluo-dissociation
and collisional damping. The second term (formation term)
provides the (re)generation of J/ψ due to the recombina-
tion of charm–anticharm quark. These two terms compete

over the entire temporal evolution of the QGP and we get
the multiplicity of finally survived quarkonia at freezeout
temperature. To define the dynamics of the system created
in the heavy ion collisions, we have used the 1 + 1 dimen-
sional viscous hydrodynamics. Here we have included only
the shear viscosity and neglected the bulk viscosity. We have
also suitably incorporated the overall feed-down correction
from the higher states to the low-lying states. Rest of the paper
is organised as follows: in Sect. 2, model formulation, we
have provided four subsections which discuss briefly about
modified heavy quark potential at finite temperature, binding
energy, decay width and calculation of survival probability,
respectively. Further in Sect. 3, we have presented our results
along with their discussions. In the end of this section, we
have also summarized our present work.

2 Model formalism

2.1 Heavy quark complex potential

In this section we discuss about the heavy quark–antiquark
potential which have both the coulombic and string-like parts.
Authors in Ref. [16] have derived the static potential between
heavy quark–antiquark pair at finite temperature by defining
a suitable gauge-invariant Green’s function and computing
it to first order in hard thermal loop (HTL) resummed per-
turbation theory. In medium both the coulombic and string-
like part of potential receive modification. Further compli-
cations arise from the fact an imaginary part of the poten-
tial arises due to the presence of scattering of light medium
degrees of freedom with the color string spanning in between
the heavy quarks and antiquarks. It has been pointed out
that the physics of the finite width originates from the Lan-
dau damping of low-frequency gauge fields. Further it has
been studied non-perturbatively by making use of the clas-
sical approximation. In the view of above observations, a
meaningful description of the relevant physics of quarko-
nium must therefore consist both the effects of screening of
the real part of potential and imaginary part of the potential.
There are several efforts to derive and/or phenomenologi-
cally construct HQ potential which can be used as an input
in the quarkonium suppression models [16,27,36–40]. The
standard Polyakov loop correlator is fail to reproduce the
expected Debye-screening potential at asymptotically large
distances. Many modified descriptions of Polyakov loop cor-
relator are affected by gauge ambiguities. There are studies
based on generalized Gauss law and further its combina-
tion with the characterization of in-medium effects through
the perturbative HTL permittivity. The use of Gauss law,
non-local concept leads to a self-consistent descriptions of
both screening and damping effects. Recently, direct lat-
tice determination of the quarkonium spectral function have
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been attempted [10]. However, these calculations are again
plagued by the model assumptions as there are very finite
number of points in time direction and data is of statisti-
cal nature in these lattice studies. On the other side, sim-
ilar observables have been calculated for strongly-coupled
N = 4 super Yang–Mills theory through AdS/CFT cor-
respondence [41–45]. In these derivations, static potentials
in real time can be calculated by computing the standard
Wilson loop in Euclidean spacetime, and then carry out the
analytic continuation. In other words, the expectation value
of a particular timelike Wilson loop defines the potential
between a static quark and antiquark at finite temperature.
The medium modified heavy quark potential can be obtained
by correcting both the coulombic (short-distance) and string
(long-distance) terms, not its Coulomb term alone, with a
dielectric function encoding the effects of the deconfined
medium as discussed in Refs. [17,24,25]. In the literature
only a screened Coulomb potential was assumed above crit-
ical temperature (Tc) and the non-perturbative (string) term
was usually overlooked (assumed zero), was certainly worth
investigation. Recent lattice results indicate the phase tran-
sition in full QCD appears to be a crossover rather than a
phase transition with the related singularities in thermody-
namic observables as discussed in introduction section. The
effects of string tension between the QQ̄ pairs should not
be ignored beyond Tc. Therefore, it is important to incor-
porate the string term while setting up the criterion for the
dissociation. In our approach, we make the assumption that
medium potential can be derived from the vacuum poten-
tial by multiplying it with a field-theoretically determined
complex permittivity in momentum space. It is possible to
reproduce the real and imaginary part of the corresponding
in-medium potential in by using the hard thermal loop per-
mittivity. The real part of the medium modified heavy quark
potential can be written as [24,25]

ReV (r, T )= − αmD

(
e−r̂

r̂
+ 1

)
+ 2σ

mD

(
e−r̂ − 1

r̂
+ 1

)
,

(1)

where r̂ = rmD and α = 4/3 αs with αs as the one loop
running coupling constant given as

αs(T ) = g2
s (T )

4π
= 6π(

33 − 2N f
)

ln
(

2πT
�MS

) . (2)

Here we take �MS = 0.1 GeV and the string tension,
σ = 0.184 GeV2. mD is the Debye screening mass which is
defined as

m2
D = g2T 2

6

(
N f + 2Nc

)
, (3)

with N f and Nc as the number of flavours and colours,
respectively.

In the small r limit, the real part of potential reduces to the
Cornell potential.

ReV (r) ≈ − α

r
+ σr. (4)

On the other hand, in the large distance limit (where
the screening occurs), potential is reduced to a long-
range Coulomb potential with a dynamically screened-color
charge. However, if we compare our QQ̄ potential (Eq. 1)
with the classical concept of Debye–Hückel theory by Digal
et al. [46], we found that in the asymptotic limit (r → ∞),
Eq. (1) reduces to

ReV (r → ∞, T ) = F(∞, T ) = 2σ

mD
− αmD, (5)

whereas in Ref. [46] free energy reduces to

FDigal(∞, T ) = �(1/4)

23/2�(3/4)

σ

mD
− αmD, (6)

here the difference can be seen only in the string term only
and may be due to the treatment of the problem classically or
quantum mechanically. Also in the framework of Debye–
Hückel theory, Digal et al. employed different screening
functions, fc and fs for the Coulomb and string terms, respec-
tively, to obtain the free energy. Here we have used the same
screening scale, mD for both the coulombic and linear terms.

The imaginary part of the medium modified heavy quark
potential can be calculated in the similar way as in Ref. [17]
and is given by

ImV (r, T ) = −αT φ(mDr) − 2σT

m2
D

ψ(mDr), (7)

where the functions φ(r̂) and ψ(r̂) are defined as

φ(r̂) = 2
∫ ∞

0

z dz

(z2 + 1)2

(
1 − sin zr̂

zr̂

)
(8)

and

ψ(r̂) = 2
∫ ∞

0

dz

z(z2 + 1)2

(
1 − sin zr̂

zr̂

)
, (9)

In the small r limit, we can expand the potential and at
leading logarithmic order in r̂ we get

ImV (r̂ , T ) ≈ −αT
r̂2

3
log

(
1

r̂

)

− 2σT

m2
D

(
r̂2

6
− r̂4

60

)
log

(1

r̂

)
. (10)

2.2 Binding energy

Binding energy can be calculated by knowing the energy
eigen value of different quarkonia state. The binding energy
here is a function of temperature instead of a constant factor.
To know the energy eigen value and energy eigen function of
different quarkonia states, we have solved the Schrodinger
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equation with the real part of heavy quark potential as
described above and a angular momentum dependent part.
The motivation behind using only the real part of the potential
in solving Schrodinger equation is the large magnitude of real
part over imaginary part (one can easily verify it from Figs. 1
and 2). We have used the method of Ganesh and Mishra [29]
to numerically solve the one dimensional Schrodinger equa-
tion on a logarithmic equally spaced one dimensional lattice.
We have obtained the energy eigen values and eigen func-
tions of different quarkonium states. Then we calculate the
energy eigen value at infinity (U∞). The binding energy of a
given quarkonia state with principal quantum number n and
orbital quantum number l is calculated by using the following
relation [47]

B.E .(n, l) = gnl −U∞. (11)

2.3 Decay width (�)

We have calculated the decay width (�) of 1S and 2S of
quarkonia state numerically. As we know that the thermal
width can be calculated from the imaginary part of the poten-
tial by using the following expression [17,26,42]

� = 4π

∫
g∗
nl [ImV ]gnl r2dr. (12)

It is important to mention here that analytically one can
calculate the decay width by folding the imaginary part of
the potential with 1S and 2S hydrogen atom wavefunction(
g1S = 1√

πa3
0

exp
(
− r

a0

)
, and g2S = 1√

32πa3
0

(
2 − r

a0

)
exp(

− r
2a0

))
which are assumed to represent most of the prop-

erties of heavy quarkonia states. However as we will show in
our results that the various quarkonia wavefunctions actually
depends on temperature very strongly and thus assuming a
temperature independent coulombic wave function to calcu-
late the decay width is not realistic. Thus we have used the
wavefunctions as obtained by us, solving Schrodinger equa-
tion at different temperatures.

For the sake of comparison, we are providing here the
expression of decay widths obtained by folding the imaginary
part of the potential with the coulombic wavefunctions of
different quarkonia state as follows:

�1S = 4T

αm2
Q

m2
D log

(
αmQ

mD

)

+ 4σT

α2m2
Q

[
1 − 3m2

D

α2m2
Q

]
log

(
αmQ

mD

)
, (13)
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Fig. 1 Variation of the real part of potential with the separation distance
r between the QQ̄ pair at three different values temperatures, i.e., T =
160, 320 and 480 MeV
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Fig. 2 Variation of the imaginary part of potential with the separation
distance r at three different values of temperature

and

�2S = 56T

αm2
Q

m2
D log

(
αmQ

mD

)

+ 8σT

α2m2
Q

[
7 − 192m2

D

α2m2
Q

]
log

(
αmQ

2mD

)
, (14)

The dissociation temperature for the quarkonium states
can be determined by using the conservative quantitative con-
dition �n, l(TC ) ≈ 2 × B.E .n, l(TC ) [7], where TC is the
dissociation temperature of that particular quarkonia state
having principal quantum number n and azimuthal quantum
number l.
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2.4 Survival probability including regeneration

The survival probability or the nuclear modification factor
of various quarkonia states with respect to centrality, rapid-
ity and transverse momentum is key signatures to quan-
tify the properties of medium created in heavy ion colli-
sion experiments. As we have the decay width of various
quarkonia states from our calculation, we can calculate their
survival probability by using our recently proposed unified
model [30]. Here we show the variation of survival proba-
bility with respect to participant number (Npart ) which actu-
ally measures the centrality of collision. To understand the
evolution dynamics of the system created in heavy ion col-
lisions, we have used 1 + 1 dimensional viscous hydrody-
namics in which we have included the shear viscous effect.
We have done our calculation for mid-rapidity region only
where Bjorken scaling are applicable. We have derived the
cooling law for temperature [48,49] which depends only on
proper time τ and then extend this cooling law to make it τ

and Npart dependent using Refs. [29,50]. To calculate the
survival probability we have used the following expression:

S = N f
HM

Ni
HM

(15)

where Ni
HM and N f

HM is the initial and final multiplicity of
heavy meson (quarkonia). The final multiplicity of quarkonia
can be calculated as [30]:

N f
HM = ε(τ f )

[
Ni
HM + N 2

QQ̄

∫ τ f

τ0

� f (V (τ )ε(τ ))−1dτ

]
.

(16)

Here � f is the reactivity for the recombination of uncorre-
lated Q and Q̄ quark to form a quarkonia and it can be cal-
culated by using decay width [30]. NQQ̄ is the number den-
sity of quark–antiquark pair. ε(τ f ) is the dissociation factor
which can be calculated using the following expression :

ε(τ f ) = exp

(
−

∫ τ f

τ0

� dτ

)
(17)

where τ0 and τ f are initial and final proper time which actu-
ally spans over the QGP lifetime, i.e., τ0 = 0.5 fm and
τ f = 6.0 fm. We have used τ and Npart dependent cool-
ing law for temperature as follows [48,50]:

T (τ ) = Tc

(
Npart (bin)

Npart (bin0)

)1/3 (τQGP

τ

)1/3
, (18)

where Npart (bin0) is the number of participant correspond-
ing to the most central bin as used in our calculation and
Npart (bin) is the number of participant corresponding to the
bin at which we want to calculate the temperature. τQGP is
the lifetime of QGP.

The cooling law for volume is derived using the condition
of isentropic evolution of the medium and can be expressed
as follows [30]:

V (τ, b) = V (τ0, b)
(τ0

τ

)(
1
R −1

)
(19)

where V (τ0, b) = π (rt − b/2)2τ0 is volume at the initial
time τ0 and an impact of b fm.

Ncc̄ and Nbb̄ are calculated in our model using the help
of Glauber model. The extrapolation to the nucleus-nucleus
collisions is done via standard overlap integral scaling as
follows:

Ncc̄(b) = σ NN
cc̄ TAA (20)

where σ NN
cc̄ is the cross section for cc̄ pair production in

p+p collision. The σ NN
cc̄ has been calculated using pQCD

approach for GRV HO hadronic structure function [33–35],
we have obtained σ NN

cc̄ = 3.546 mb and σ NN
bb̄

= 0.1105 mb

for large hadron collider (LHC) at
√
s = 2.76 TeV. Further

we have obtained σ NN
cc̄ = 0.346 mb σ NN

bb̄
= 0.01035 mb

for relativistic heavy ion collider (RHIC) at
√
s = 200 GeV.

Here, TAA(b) is nuclear overlap function, its impact param-
eter (b) dependent values have been taken from Ref. [51].
Here it is important to mention that we have not incorpo-
rated any type of cold nuclear matter (CNM) effect in the
present calculations.

3 Results and discussions

The main ingredient of this paper is the heavy quark potential
in QCD plasma [17,24]. We first show few characteristics of
this potential. In Fig. 1, we demonstrate the variation of the
real part of the heavy-quark potential with respect to the sep-
aration distance (r ) between the QQ̄ pair. We have plotted
the real part of potential at three different values of temper-
ature, i.e., T = 160, 320 and 480 MeV by solid, dashed
and dash-dotted curve, respectively. The real potential starts
from negative value and increases very sharply to zero as
we increase the distance from zero to 0.5 fermi. Further the
real part of potential increases from zero to 0.4 GeV as we
increase the distance at T = 160 MeV. We choose this spe-
cific value of temperature since we take 160 MeV as the crit-
ical crossover temperature (TC ) in our calculation. We also
show the variation in the saturation value of real potential
with increase in temperature. As we increase the tempera-
ture the potential saturates at lower values, i.e., 0.4 GeV at
T = 160 MeV to 0.05 GeV at T = 480 MeV. In Fig. 2,
we have plotted the imaginary part of heavy-quark potential
with respect to r . The imaginary potential starts from zero
value at r = 0 fm and then decreases and became negative
with increase in r . As we increase the temperature the mag-
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Fig. 3 The variation of radial part of wavefunction of different char-
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dashed curve is for 2S(ϒ) and dash-dotted curve represents the radial
wavefunction of 1P(χb) state

nitude of imaginary potential also increases in the negative
direction. At higher temperatures, we observed a fluctuating
behaviour for r > 0.4 fm. This is due to the sine term in
imaginary potential.

Figure 3 represents the variation of radial part of eigen
wavefunction for a given state n and l, i.e., gnl(r) of J/


and 

′

and χC states with respect to the r at the critical
temperature, TC . Similarly, Fig. 4 demonstrates the radial
part of wavefunction of different bottomonia states and their
variation with respect to r at TC .

Figure 5 presents a comparison between eigen wave func-
tion of charmonium (J/
) and bottomonium (ϒ(1S)). Here
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Fig. 5 Comparison of radial part of wavefunction of ϒ(1S) and J/ψ
at critical temperature TC = 160 MeV
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one can clearly see the difference in peak height and peak-
width of J/
 and ϒ(1S) and understand the strong binding
of b− b̄ quark in ϒ(1S) in comparison to the binding of c− c̄
quark in J/
.

Figure 6 shows the change in the radial part of wavefunc-
tion of charmonium as we increase the temperature from TC
to 2.5 TC in the step of 0.5 TC . From here it is clear that as
we increase the temperature the peak-height of eigen func-
tion decreases and the peak-width increases which causes
the binding between the heavy quark and anti-quark in the
bound state of charmonium to decrease. Similarly we have
shown the change in eigen function of ϒ(1S) with respect to
temperature in Fig. 7.

In Figs. 8 and 9, we demonstrate the change in shape of
eigen functions of 


′
and ϒ(2S) state with respect to tem-

perature going from TC to 2.5 TC , respectively. Figure 10
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Fig. 10 Variation of binding energy (B.E.) with respect to temperature
in units of TC . Solid and dashed curves represent the binding energy of
J/ψ and ψ

′
, respectively
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Fig. 11 Variation of binding energy (B.E.) with respect to temperature
in units of TC . Solid and dashed curves represent the binding energy of
ϒ(1S) and ϒ(2S), respectively

represents the variation of binding energy of J/
 and 

′

with respect to temperature. Here we present the tempera-
ture in the unit of TC . It is clear from the plot that initially
when the temperature is near TC , the binding energy of J/


is large and thus charmonium can still survive after critical
temperature. As we start to increase the temperature from TC
to higher values, the binding energy of charmonium starts
decreasing and acquires a low value which is near to zero.
However, our calculation shows that even at 2.5 TC , there is
a finite value of binding energy for J/
. For 


′
, the binding

energy starts from a lower value in comparison to J/
 which
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Fig. 12 Comparison of binding energy of ϒ(1S) and J/ψ
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Fig. 13 Variation of decay width (�) with respect to T/TC . Solid and
dash-dotted curves represent the decay width of J/ψ and ψ

′
, respec-

tively

is quite obvious and it decreases with increase in temperature
and acquire almost zero value at 2.0 TC .

Bottomonia wavefunction is more coulombic at TC in
comparison to charmonia states due to the large mass of
ϒ(1S) and ϒ(2S) in comparison to J/
 and 


′
. Therefore

the binding energy of various bottomonia states start from
a higher value in comparison to corresponding charmonia
states. Figure 11 represents the variation of binding energy
of ϒ(1S) and ϒ(2S) with respect to T/TC . Further, Fig. 12
shows the comparison of binding energy of charmonia 1S
state with bottomonia 1S state.

We now present the decay width coming only due to the
imaginary part of the heavy quark potential. In Fig. 13, we

CT/T
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1
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(2S)Υ

Fig. 14 Variation of decay width (�) with respect to T/TC . Solid and
dashed curves represent the decay width of ϒ(1S) and ϒ(2S), respec-
tively

demonstrate the variation of decay width of 1S and 2S char-
monia states with respect to T/TC . As we have earlier shown
in Fig. 10 that the binding energy of J/
 is large at TC and
thus the decay width should be small at TC . As the binding
energy of 


′
is less in comparison to J/
 over the entire

temperature range therefore 

′
has a larger decay width than

J/
 as shown in this figure at each temperature. Further,
the decay width increases with the increase in temperature.
Furthermore, the difference between the decay width of J/


and 

′

increases with the temperature.
In Fig. 14, we have plotted the variation of decay width

of ϒ(1S) and ϒ(2S) with respect to T/TC . The trend is
quite similar with the charmonia states but the decay width
of ϒ(2S) increases rapidly after T = 3.5 TC . Figure 15
presents a comparison between the decay width of J/
 and
ϒ(1S). This figure clearly shows that decay width of J/


and ϒ(1S) starts from almost similar value at TC . However,
the width of J/
 increases more rapidly in comparison to
ϒ(1S). This means that the J/
 dissociates at lower tem-
peratures in comparison to bottomonium which is a tightly
bound state and thus survive to higher temperatures.

After that we have obtained the dissociation temperature
for the different quarkonium states. Different dissociation
criteria have been discussed in the literature. The first criteria
is that a quarkonium state should dissociate at the temperature
T where B.E . = T . Here B.E . is the binding energy of that
particular quarkonia state. This criteria can provide an upper
bound on the dissociation temperature. Here we use a more
strict dissociation criteria which suggest that any quarkonium
state should dissociate at that temperature where the decay
width of the quarkonium state becomes equal to two times
of its binding energy, i.e., � = 2 B.E . [7,17].
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Fig. 15 Comparison of decay width of J/ψ and ϒ(1S)

CT/T
1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

)ψ (J/Γ

)ψ2*B.E. (J/

Fig. 16 Variation of two times of binding energy of J/ψ and decay
width with respect to T/TC

In Fig. 16 we have plotted the decay width and two times
of binding energy of J/
 with respect to T/TC . The two
curves intersect each other at 2.4 TC . Thus the dissociation
temperature of J/
 comes out as 2.4 TC in our calcula-
tion. We have plotted the width and the two times of binding
energy of 


′
with respect to T/TC in Fig. 17. The dissocia-

tion temperature of 

′
as obtained from the graph is 1.6 TC .

Figures 18 and 19 are the similar graphs but for ϒ(1S)

and ϒ(2S) states, respectively. The dissociation temperature
as obtained from the respective Figs. 18 and 19 are 3.2 TC
and 2.2 TC (Table 1).

In Fig. 20, we present the variation of survival probability
of J/
 and 


′
with respect to Npart at highest RHIC energy,
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Fig. 17 Variation of two times of binding energy of ψ
′
and decay width

with respect to T/TC
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Fig. 18 Variation of two times of binding energy of ϒ(1S) and decay
width with respect to T/TC

i.e.,
√
sNN = 200 GeV. As it is clear from the binding energy

and decay width curve of J/ψ and ψ
′
, the dissociation prob-

ability of ψ
′
is large in comparison to J/ψ . Thus the survival

probability of J/ψ is larger than the ψ
′

at each centrality.
In other words, it means a less suppression of J/ψ in com-
parison to ψ

′
. We have compared our J/ψ results with the

corresponding results obtained by STAR experiment [52].
Our model results underestimate the data in most peripheral
collisions. However, it suitably describes the data for central
and semi-peripheral collisions. Figure 21 shows the variation
of survival probability of J/ψ and ψ

′
with respect to cen-
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Fig. 19 Variation of two times of binding energy of ϒ(2S) and decay
width with respect to T/TC

Table 1 Dissociation temperature (Td ) for various quarkonium states

Charmonium
states

Diss. temp.
(Td )

Bottomonium
states

Diss. temp.
(Td )

J/ψ 2.4 TC ϒ(1S) 3.2 TC

ψ
′

1.6 TC ϒ(2S) 2.2 TC

trality at LHC energy, i.e.,
√
sNN = 2.76 TeV. As the energy

increases, the corresponding temperature and energy density
in each centrality class also increases and thus the survival
probability of J/ψ and ψ

′
decreases in comparison to RHIC

energy results. We have compared our model result with the
experimental data obtained by CMS Collaboration [53,54].
Model results for J/ψ satisfy the data over the entire central-
ity region except in extreme central collisions. From this plot,
one can observe that as we move towards the central colli-
sions from the semiperipheral collisions, there is a small rise
in the survival probability. This rise is quite clearly visible
in the case of ψ

′
. The rise of survival probability in central

collisions at LHC energy is due to the rise of regeneration
effect through recombination of charm–anticharm pairs in
the later stage of the medium evolution. We found in our
calculation that the regeneration effect is negligibly small at
RHIC energy.

Figures 22 and 23 presents the survival probability of
ϒ(1S) and ϒ(2S) at RHIC and LHC energies, respectively.
Due to their large mass in comparison to charmonia, the
decay width is small and thus the survival probability of
ϒ(1S) and ϒ(2S) is large at each Npart in comparison to
the survival probability of J/ψ and ψ

′
, respectively. We

have compared our model results with the experimental data
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Fig. 20 Variation of survival probability (S) of J/ψ and ψ
′

with
respect to Npart at center of mass energy

√
sNN = 200 GeV. Experi-

mental Data is taken from Ref. [52]
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Fig. 21 Variation of survival probability (S) of J/ψ and ψ
′

with
respect to Npart at center of mass energy

√
sNN = 2.76 TeV. Experi-

mental Data is taken from Refs. [53,54]

wherever they are available. In Fig. 22, we have shown the
STAR data [55,56] for ϒ(1S) and combined suppression of
ϒ(1S)+ϒ(2S)+ϒ(3S). Further in Fig. 23, we have plotted
the CMS data [53,54] for ϒ(1S) and ϒ(2S). We observed
that our model at RHIC energy is able to reproduce the exper-
imental data of ϒ(1S). Further at LHC energy, model results
regarding ϒ(1S) and ϒ(2S) satisfy the experimental data
satisfactorily. However our results underestimate the data
in semi-peripheral collisions. In central collisions, one can
again observe the clear effect of regeneration on the survival
probability of ϒ(1S) and ϒ(2S) which is negligibly small at
RHIC energy.
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Fig. 22 Variation of survival probability (S) of ϒ(1S) and ϒ(2S) with
respect to Npart at center of mass energy

√
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mental Data are taken from Refs. [55,56]
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Fig. 23 Variation of survival probability (S) of ϒ(1S) and ϒ(2S) with
respect to Npart at center of mass energy

√
sNN = 2.76 TeV. Experi-

mental Data are taken from Refs. [53,54]

Finally we have calculated the double ratio between char-
monia states (ψ

′
and J/ψ) and bottomonia states (ϒ(2S)

and ϒ(1S)) at 2.76 TeV with respect to Npart in Figs. 24 and
25, respectively. In Fig. 24, we have compared model result
for the double ratio of charmonium states with the recent
experimental data from CMS Collaboration at mid-rapidity
as well as at forward rapidity. Since we have done our cal-
culation for survival probability at mid-rapidity thus one can
observe that our model with modified heavy quark potential
satisfies the data well in most peripheral collisions while it
underestimates the data at semicentral and central collisions.
Similarly, in Fig. 25, we have compared our model results
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Fig. 24 Variation of survival probability (S) of
[ψ ′

/J/ψ]PbPb/[ψ ′
/J/ψ]pp with respect to Npart at center of

mass energy
√
sNN = 2.76 TeV. Experimental Data are taken from

Refs. [53,54]
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Fig. 25 Variation of survival probability (S) of
[ϒ(2S)/ϒ(1S)]PbPb/[ϒ(2S)/ϒ(1S)]pp with respect to Npart at
center of mass energy

√
sNN = 2.76 TeV. Experimental Data is taken

from Refs. [53,54]

for the double ratio of bottomonium states with the experi-
mental data. We observed that the model results satisfy the
data satisfactorily well. Only in the semi-peripheral region,
the model underestimates.

In summary, we have solved the 1 + 1 dimension
Schrodinger equation using a modified heavy quark poten-
tial and obtained the eigen function and eigen values of
the different charmonium and bottomonium states. We have
also calculated the binding energy by solving the 1 + 1
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dimensional Schrodinger equation for an infinite heavy quark
potential. Further we have obtained the decay width of dif-
ferent quarkonium states using temperature dependent wave-
function obtained by us and demonstrate their variation with
respect to temperature. Furthermore we have obtained the
dissociation temperature of different quarkonium states by
using the dissociation criteria, i.e., decay width = 2×binding
energy. After that we feed these decay widths in our recently
proposed unified model to calculate the survival probabil-
ity of various quarkonium states. We have also obtained the
nuclear modification factor for double ratios and observed
that our model suitably describes the experimental data
regarding nuclear modification factor (or survival probabil-
ity).
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