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Abstract If dark matter is composed of massive bosons,
a Bose—FEinstein condensation process must have occurred
during the cosmological evolution. Therefore galactic dark
matter may be in a form of a condensate, characterized by
a strong self-interaction. We consider the effects of rotation
on the Bose—Einstein condensate dark matter halos, and we
investigate how rotation might influence their astrophysical
properties. In order to describe the condensate we use the
Gross—Pitaevskii equation, and the Thomas—Fermi approx-
imation, which predicts a polytropic equation of state with
polytropic index n = 1. By assuming a rigid body rotation
for the halo, with the use of the hydrodynamic representation
of the Gross—Pitaevskii equation we obtain the basic equa-
tion describing the density distribution of the rotating con-
densate. We obtain the general solutions for the condensed
dark matter density, and we derive the general representa-
tions for the mass distribution, boundary (radius), potential
energy, velocity dispersion, tangential velocity and for the
logarithmic density and velocity slopes, respectively. Explicit
expressions for the radius, mass, and tangential velocity
are obtained in the first order of approximation, under the
assumption of slow rotation. In order to compare our results
with the observations we fit the theoretical expressions of the
tangential velocity of massive test particles moving in rotat-
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ing Bose—Finstein condensate dark halos with the data of 12
dwarf galaxies and the Milky Way, respectively.
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1 Introduction

The assumption of the existence of dark matter (DM) is one of
the cornerstones of present day cosmology and astrophysics
[1-5]. The first evidence for its presence in the Universe
was provided by the study of the galactic rotation curves.
More exactly, the idea of DM was first suggested to explain
the rotation curves of spiral galaxies, whose rotation curves
decay far more slowly than one would expect by taking into
account the effects of baryonic matter (gas and stars) only.
This behavior is considered as evidence for the existence of a
supplementary (and exotic) missing mass component, most
likely consisting of new particle(s) lying beyond the standard
model of particle physics. The rotation curves still represent
the most powerful and convincing evidence for DM [6-9].
But various other astrophysical and cosmological observa-
tions have also provided evidence for the existence of dark
matter, like, for example, the recent determination of the cos-
mological parameters from the Planck satellite observations
of the cosmic background radiation [10]. These observations
have also shown that dark matter cannot be explained by
baryonic matter only, thus confirming the standard A cold
dark matter (ACDM) cosmological paradigm. Other types
of observations, such as gravitational lensing also require the
existence of dark matter for a consistent interpretation of the
data[11-13]. A particularly strong evidence for the existence
of dark matter is provided by the observations of a galaxy
cluster called the Bullet Cluster. In this cluster the baryonic
matter and the dark matter components are separated due to a
collision of its two components that occurred in the past [14].
Measurements of the cosmological parameters by using the
Planck data on the cosmic microwave background radiation
indicate that the Universe is composed of 4% baryons, 22%
non-baryonic dark matter and 74% dark energy [10].

Dark matter models can be divided into three types: cold,
warm and hot dark matter models, respectively, by the energy
of the particles composing them [15]. The main candidates
for dark matter are the WIMPs (weakly interacting massive
particles) and the axions [15]. WIMPs are heavy particles that
interact via the weak force [16,17]. Axions are bosons that
were first proposed to solve the strong CP problem [18,19].
If the axions form the dark matter, then at low temperature
the axion gas will form a Bose—Einstein condensate (BEC).

There are also other theories that try to explain the obser-
vations without introducing dark matter. These theories are
based on a modification of the law of gravity at the galac-
tic scales. The earliest one of them is the MOND theory
(modified Newtonian dynamics) [20]. Modified gravity the-

@ Springer

ories have also been used extensively as an alternative to dark
matter [21-31]. An interesting possibility to detect the pres-
ence of dark matter is via its possible annihilation. If such a
physical process does indeed occur, then a large number of
gamma-ray photons and positrons could be produced. Obser-
vationally, some excess positron emission in our galaxy has
been detected [32-39]. Therefore, it may be possible that the
excess positron and gamma-ray emissions could be explained
by the annihilation of dark matter with mass m ~ 10-100
GeV [32-34]. For a detailed discussion of this problem, as
well as of the possibility of alternative interpretations of the
observational data see [35-39].

Even though dark matter models can give a good explana-
tion of the qualitative behavior and constancy of the rotation
curves, an important contradiction did arise as a result of
the in depth comparison of the simulation results with the
observations. Data on almost all observed rotation curves
show that they rise less steeply than cosmological simula-
tions of structure formation in the standard ACDM model
in the presence of a single pressureless dark matter com-
ponent do predict. The simulations indicate a central dark
matter density profile that behaves as p ~ 1/r (a cusp) [40],
while the observed rotation curves indicate the presence of
constant density cores [41,42]. This is the so-called core—
cusp problem in dark matter physics. Another important open
question dark matter models have to face is the “too big to
fail” problem [43,44]. By using the Aquarius simulations it
was shown that the most massive subhalos in the dark matter
halos predicted in the ACDM model are inconsistent with the
dynamics of the brightest Milky Way dwarf spheroidal galax-
ies [44]. While the best-fitting hosts of the dwarf spheroidals
galaxies have 12 < Vipax < 25 km/s, the ACDM simulations
all predict at least ten subhalos with Vx> 25 km/s. These
results cannot be explained in the framework of the ACDM-
based models of the satellite population of the Milky Way.
The main problem emerging here is related to the densities
of the satellites, with the dwarf spheroidals required to have
dark matter halos that are a factor of ~ 5 more massive than
is observed.

These problems related to the physics of the dark matter
may be solvable if one goes one step beyond the standard
ACDM model and assumes that the dark matter particles
may possess some forms of self-interaction. Such a possi-
bility has gained some observational support after the study
of the data provided by the observations of 72 cluster colli-
sions, including both ‘major’ and ‘minor’ mergers, with the
observations done by using the Chandra and Hubble Space
Telescopes [45]. Collisions between galaxy clusters can pro-
vide an important test of the non-gravitational forces acting
on dark matter, and the analysis done in [45] gives an upper
limit of the ratio of the self-interaction cross-section opy and
of the mass m of the dark matter particle as opy/m < 0.47
cm?/g (95% confidence level). A new upper limit on the self-
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interaction cross-section of dark matter of opy < 1.28 cmz/g
(68% confidence level) was obtained in [46]. From a theo-
retical point of view different self-interacting dark matter
models were investigated in [47-50]. The effects of self-
interacting dark matter on the tidal stripping and evaporation
of satellite galaxies in a Milky Way-like host were inves-
tigated in [51]. Velocity-independent self-interacting dark
matter models show a modest increase in the stellar strip-
ping effect with satellite mass, whereas velocity-dependent
self-interacting dark matter models show a large increase
in this effect towards lower masses, making observations of
ultra-faint dwarfs prime targets for distinguishing between
and constraining self-interacting dark matter models. The
response of self-interacting dark matter halos to the growth
of galaxy potentials using idealized simulations, each run in
tandem with standard collisionless cold dark matter (CDM)
was investigated in [52]. A greater diversity in the self-
interacting dark matter halo profiles was found, as com-
pared to the standard CDM halo profiles. A self-interacting
dark matter halo simulated with cross-section over mass
opm/m = 0.1 cm?/g provides a good match to the mea-
sured dark matter density profile of A2667, while an adia-
batically contracted CDM halo is denser and cuspier. The
cored profile of the same halo simulated with opy/m = 0.5
cm?/g is not dense enough to match A2667. These findings
are in agreement with previous results [45] suggesting that
opm/m > 0.1 cm?/g is disfavored for dark matter collision
velocities in excess of about 1500 km/s. Therefore the pos-
sibility that dark matter is a self-interacting component of
the Universe cannot be rejected a priori, and physical mod-
els whose component particles naturally exhibit this prop-
erty may provide valuable explanations and suggestions for
the dark matter candidates, and for their properties. From
both a fundamental theoretical point of view, as well as from
a phenomenological perspective, the physically best moti-
vated self-interacting dark matter model can be obtained by
assuming that dark matter is in a Bose—Einstein condensate
phase.

The idea that at very low temperatures all integer spin
particles may occupy the lowest quantum state, at which
point macroscopic quantum phenomena become apparent,
was proposed, from a statistical physical point of view by
Bose and Einstein in the 1920s [53-55]. The Bose—Einstein
condensation process is determined by the quantum mechan-
ical correlation of the gas particles, which implies that the de
Broglie thermal wavelength is greater than the mean interpar-
ticle distance. The transition to the condensate phase begins
when the temperature 7 of the boson gas is lower than the
critical one, T¢r, given by [56-59]

27?3

= OBGDm Ry W

cr

where m is the particle mass in the condensate, p¢ is the
critical transition density, kg is Boltzmann’s constant, and ¢
denotes the Riemmann zeta function.

It took around 70 years to achieve the experimental real-
ization of the Bose—Einstein condensation, which was first
observed in dilute alkali gases in 1995 [60—62]. From a phys-
ical point of view the presence of a BEC in an experimental
framework is indicated by the appearance of sharp peaks in
both coordinate and momentum space distributions of the
particles.

Up to now, the main evidence for the existence of BECs
comes from laboratory experiments, performed on a very
small scale. However, the possibility of the presence of some
forms of condensates in the cosmic environment cannot be
rejected a priori, and the implications of the possible exis-
tence of a condensate state of matter in a astrophysical or
cosmological background is certainly worth to investigate. It
has been hypothesized that due to their superfluid properties
in general relativistic compact objects, like neutron or quark
stars, the neutrons may form Cooper pairs, which would con-
dense eventually. Bose—Einstein condensate stars could have
maximum masses of the order of 2 My, maximum central
densities of the order of 0.1-0.3 x 1010 g/cm3, and minimum
radii in the range of 10-20 km, respectively. Their interest-
ing physical and astrophysical properties were investigated
in [63-72].

The idea that dark matter is in the form of a Bose—Einstein
condensate was proposed initially in [73], and then rediscov-
ered/reinvestigated, in [74-84]. A systematic study of the
properties of the BEC dark matter halos, based on the non-
relativistic Gross—Pitaevskii (GP) equation in the presence
of a confining gravitational potential, was initiated in [85]. A
further simplification of the mathematical formalism of the
gravitationally bounded BECs can be achieved by introduc-
ing the Madelung representation of the wave function, which
allows the representation of the GP equation in the equivalent
form of a continuity equation, and of a hydrodynamic Euler
type equation. Hence with the use of the Madelung represen-
tation we obtain the fundamental result that dark matter can
be described as a non-relativistic, Newtonian Bose—Einstein
condensed gas in a gravitational trapping potential, with the
pressure and density obeying a polytropic equation of state,
with polytropic index n = 1. The validity of the BEC dark
matter model was tested by fitting the Newtonian tangen-
tial velocity equation to a sample of rotation curves of low
surface brightness and dwarf galaxies, respectively.

The thermal correction to the dark matter density profile
where obtained in [86]. In [87] it was shown that the density
profiles of the Bose—Einstein condensed dark matter gener-
ally show the presence of an extended core, whose formation
is explained by the strong interaction between dark matter
particles. A further observational test of the model can be
obtained by computing the mean value of the logarithmic
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inner slope of the mass density profile of dwarf galaxies,
and by comparing it with the observations. The study of the
properties of the Bose—Einstein condensate dark matter on
a cosmological and astrophysical scales is presently a very
active field of research [88—125]. The properties of the fuzzy
dark matter, assumed to be formed of a light (m ~ 10722
eV) boson, having a de Broglie wavelength A ~ 1 kpc, were
recently investigated in [126].

If the static properties of the BEC dark matter halos have
been studied extensively, their rotational properties have
attracted less attention. In [81] the presence of vortices in
a self-gravitating BEC dark halo, consisting of ultra-low
mass scalar bosons was investigated, and it was pointed out
that rotation of the dark matter imprints a background phase
gradient on the condensate, which induces a harmonic trap
potential for vortices. A detailed study of the vortices in rotat-
ing BEC dark matter halos was performed in [91], where
strong bounds for the boson mass, interaction strength, the
shape and quantity of vortices in the halo, and the critical
rotational velocity for the nucleation of vortices were found.
An exact solution for the mass density of a single, axisym-
metric vortex was also found. The effects of rotation on a
superfluid BEC dark matter halo were explored in [92], by
assuming that a vortex lattice forms. With fine-tuning of the
bosonic particle mass and the two-body repulsive interaction
strength, it was found that sub-structures on rotation curves
that resembles some observations in spiral galaxies could
exist. The study of the equilibrium of self-gravitating, rotat-
ing BEC halos, which satisfy the Gross—Pitaevskii—Poisson
equations was performed in [103]. Vortices are expected to
form for a wide range of BEC parameters. However, vortices
cannot form for avanishing self-interaction. The question if
and when vortices are energetically favored was also con-
sidered, and it was found that vortices form as long as the
self-interaction is strong enough.

It is the goal of the present paper to study the properties
of the BEC dark matter halos in the presence of rotation.
Rotation might be a general property of galaxies, whose ori-
gin may be traced back to some physical processes in the
early Universe. In order to describe the Bose Einstein con-
densate dark matter we adopt the Gross—Pitaevskii equation,
which gives an effective mean-field description of the multi-
particle bosonic system. The mathematical description of the
condensate is significantly simplified after introducing the
Thomas—Fermi approximation, which allows for the descrip-
tion of the dark matter as a gas obeying a polytropic equation
of state, with polytropic index n = 1. By assuming a rigid
body rotation for the halo, with the use of the hydrodynamic
representation of the Gross—Pitaevskii equation, we obtain
the basic relation describing the density distribution of the
rotating condensate, which naturally generalizes the previ-
ously obtained static profile. From the density distribution
of the rotating condensate we derive the general representa-
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tions for the mass distribution, boundary (radius), potential
energy, velocity dispersion, tangential velocity, as well as for
the logarithmic density and velocity slopes. From the general
results we obtain explicit expressions for the radius, mass,
and tangential velocity in the first order of approximation,
under the assumption of slow rotation. A comparison of our
results with the observations is performed by fitting the the-
oretical expressions of the tangential velocity of massive test
particles moving in rotating Bose—Einstein condensate dark
halos with the data of 12 dwarf galaxies and of the Milky
Way galaxy, respectively.

The present paper is organized as follows. The mathemat-
ical and physical description of the Bose—Einstein conden-
sate dark matter is introduced in Sect. 2, where the Gross—
Pitaevskii equation, and the Thomas—Fermi approximation
are presented. The rotating Bose—Einstein condensate dark
matter structures are investigated in Sect. 3, by using the gen-
eral approach that allows us to obtain the exact expression of
density as expressed in terms of Legendre polynomials. The
slowly rotating dark matter halo in the framework of the first-
order approximation is considered, and the density profile
and the radius are also presented. The gravitational and astro-
physical properties of the rotating Bose—Einstein condensate
dark matter halos are studied in Sect. 4. In this section we
derive the expressions of a number of important astrophysical
quantities, like, for example, the mass distribution, potential
energy, logarithmic slopes of the density and velocity, which
could allow an in depth comparison between the theoretical
model and observations. The fitting of the theoretical model
with astronomical/astrophysical data is performed in Sect. 5,
where we compare the predicted Bose—Einstein condensate
galactic rotation curves with the observational data from 12
dwarf galaxies and from the Milky Way galaxy. We discuss
and conclude our results in Sect. 6.

2 The Bose-Einstein condensate dark matter model

In the present section we briefly introduce the fundamental
physical concepts related to the Bose—FEinstein condensation,
as well as the basic equations describing the rotating conden-
sate. It has been shown that if the dark matter is composed
of ultra-light boson particles with mass m ~ 10722 eV and
wavelength A ~ 1 kpc, then the transition temperature to
a Bose—Einstein condensate is of the order 7, ~ 10° K
[83]. Hence, if dark matter is composed of Bose particles,
like, for example, the axion, it is quite natural to assume
that dark matter is in a Bose—Einstein condensate state. For
a recent discussion of the arguments from particle physics
that may motivate the existence of the ultra-light dark mat-
ter, as well as of its properties and astrophysical signatures
see [126].
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2.1 The Gross—Pitaevskii equation

A Bose-FEinstein condensate is a phase of matter in which
all the particles are localized in the ground state. The Bose—
Einstein condensation occurs for particles that have integer
spins, and thus obey Bose—Einstein statistics. We will assume
in the following that the bosons are weakly interacting and
that their interaction is described by a two-body interparti-
cle potential. We start our analysis by writing down first the
many-body Hamiltonian of the bosonic system,

2
A= / ard’ | - 2 4 V) + Ve ()] (r)
2m )
+ % / drdr’ VT ()T = YY) (),

where W (r) and U (#') are the annihilation operator and the
creation operator at the position r, respectively, V denotes
the interparticle interaction potential, and m is the mass of
the particle in the condensate. In the case of a rotating dark
matter halo, the external potential V. is the gravitational
potential, and Vi is the effective centrifugal potential. In
the following we will adopt the comoving frame, that is, the
frame that is rotating with the same speed as the system.

To simplify the mathematical formalism, we introduce
the mean-field description, in which we decompose the field
operator in the form U (r)y= Yo+ o’ (r), and treat the oper-
ator W’ (r) as a small perturbation. Then for the mean-field
component ¥ we have Wy = /N/V, where N is the total
particle number, and V is the volume. Hence W is equal to
the square root of the number density of the particles [56].

In the general time-dependent case, the field operator in
the Heisenberg picture is given by

U, 0=y, 0+ (r,1), (3)

where Y (r, t) = (\fJ (r, 1)) is also called the condensate wave
function. Then for the number density of the condensate we
have p,(r,t) = |¥(r, t)|2. The normalization condition is
N = [ pu(r,t)d’r.

In the Heisenberg representation the equation of motion
of the field operator is

9 . SN K2
iho U, =¥, Hl = [— %vz + Viot(r) + Ve (r)

+fdr’xiﬁ(r’,t)V(r —r’)\i/(r’,;)}i/(r,z).
4)

In the theory of the Bose—Einstein condensation one usu-
ally assumes that the interparticle interaction is a short range
interaction, and hence we can write the interaction potential
as being proportional to a constant, which is related to the
scattering length, times a Dirac delta function [127]:

V' —r)=x8G" —r), 5)
with
4 ah?
a= T ©)
m

where a is the scattering length. To obtain a more gen-
eral description, in the following we introduce the function
g (r, 1)]?) to describe the self-interaction term [85]. In
the standard approach to Bose-Einstein condensation the
self-interaction is assumed to have a quadratic form, so that
gy (r.n?) = Ay, 0)|* [56].

With this approximation of the potential, and with the use
of the mean-field approximation, by integrating over Eq. (4)
we obtain the Gross—Pitaevskii equation, describing the main
properties of a Bose—Einstein condensate, as

9 h’
ihaw(", 1) = [_ EV2 + Viot(r) + Vext(r)

+g/(lw(r,t)lz)}¢(r,t)~ )

To give a more direct physical interpretation of the Gross—
Pitaevskii equation, we introduce the Madelung representa-
tion of the wave function,

Y. 1) =/ pon(r. 1) en ST, ®)

which separates the wave function into two components, its
magnitude, and a phase factor, respectively. The function
S(r, t) has the dimensions of an action. Then in the Madelung
representation we have [59]

ihoy 0S| ik 0p, 1
Voot dt  2p, Ot Y

hz 2 / 2
X —%V 4+ Viot + Vexe + 8 (1Y 7)) |¥

_ 12 Vim
C2m b

+&' () —

1
+ _|VS|2 + Vrot + Vext
2m

i
2pn

(vp,, VS + ,onVZS> .
Then the Gross—Pitaevskii equation is separated into two
parts. From the imaginary part we obtain

0pn
ot

where v = % is the velocity of the quantum fluid. This is
the continuity equation. On the other hand, from the real part
we obtain the equation

pn<aa—l;+v x (V x v)—{—(v'V)v) = —=VP(pon)

—onVViot = pn Vet — V- 02, (11)
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which is the momentum conservation, or the hydrodynamic

Euler equation [117]. In Eq. (11) P is the thermodynamic

pressure, which is related to the mass density p = p,m of the

condensate by a barotropic type equation of state [85,127],
P\ P P

Py =g (2) 2 -¢(2). (12)
m/ m m

w2 VP

2mJp

gence is called the quantum stress tensor.

Therefore the two equations describing the evolution of
a Bose—Einstein condensate are the continuity and the Euler
equations of classical fluid dynamics, which describe vis-
cosity free flows. Also, we can see from the definition of the
velocity that the flow must be automatically irrotational. We
will discuss this issue later.

The term o < is given by 0 ¢ = — , and its diver-

2.2 Thomas—Fermi approximation

When the number of particles in the condensate get large
enough, the contribution to the energy of the quantum pres-
sure term V - o can be neglected except near the boundary
[58]. Then the equations describing the condensate become
purely classical in their mathematical form, even though their
physical interpretation must be given in the framework of
quantum statistical physics.

If we consider the Bose—Einstein condensate to be static,
or have a rigid body rotation, and we work in the corotating
frame, then v = 0. Thus from Eq. (11) we obtain

V2 [1(0) + Viot + Vext] =0, (13)

where Vi(p) = (1/p) VP (p). For the exterior potential we
assume that it is the gravitational potential, Vext = Vgray =
V, and that it satisfies the Poisson equation,

vV =4nGp, (14)

where G is the gravitational constant. For the rotational
potential we adopt the expression

1
Viot = —5w2<x2 + ), (15)

where w is the angular velocity of the dark matter halo. In the
case of the quadratic nonlinearity we have g’'(p) = Ap/m,
and g(p) = Apz / 2m?), respectively. Thus for the equation
of state of the condensate we obtain

Ao
P(p) = —=p?, 16
(0) P (16)
giving
1 A
—V3(P) = = V?p. (17)
0 m

From the equation of state of the condensate we can see that
P  p2, and since for a general polytropic equation of state

@ Springer

' =14 1/n = 2, it follows that the polytropic index of the
condensate isn = 1.

Hence with the use of the equation of state of the BEC
dark matter from Eq. (13) we obtain the equation describing
the variation of the density of the rotating dark matter halo as

2
otk (p—2_)=o, (18)
217G

where

4 Gm? Gm3
k=== (19)

Equation (18) is the Helmholtz equation. If the system had a
different polytropic index n # 1, instead, we will get a gen-
eral Lane—-Emden equation [85], which will be nonlinear.

If the halo is nonrotating, w = 0, and, under the assump-
tion of spherical symmetry, Eq. (18) has the solution [85]

sin kr
kr
where A is an integration constant. One can obtain the radius

R of the static halo from the boundary condition p(R) = 0,
which gives

p(r) = Ag

(20)

R T ah?
= — =7
k Gm?

a 12 m \

The central density is p. = p(0) = Ag. We can see from
the expression of the density that the radius only depends
on the mass and scattering length of the particles. The size
of the halo is independent of the central density. We can
determine p. from the normalization condition, | drp =
M, thus obtaining

M M M (Gm3\?
(22)

pe=A)g=—5 = W

472 T 4R?  4x?

Once the BEC dark matter density profile is known, all the
global parameters of the BEC dark matter halo (mass, radius,
central density), as well as the rotational speeds of particles
in stable circular motion can be obtained in an exact form.
These results open the possibility of the observational test of
the BEC dark matter model.

2.3 Emergence of vortices

We have already mentioned that from the definition of the
velocity v = VS, the flow must automatically satisfy the con-
dition V x v = 0, and hence the quantum BEC fluid motion
should be irrotational. However, if we expect the dark matter
halo to be rotating, we must introduce singularities of the
vorticity, and therefore the halo will contain a vortex lattice.
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First, let us recall the concepts of vortex and vorticity.
A vortex is a region of fluid in which the flow is rotating
around an axis line. Its vorticity is the curl of the velocity,

= V x v. If the fluid rotates like a rigid body with an
angular velocity £ = (0, 0, ), we have the velocity v =
Q? xr = (—Qy, Qx, 0) and the vorticity w = V x v = 2%.
A vortex can also be irrotational; if it has angular velocity

= (0,0, ar’z), its vorticity will be 0 except at the axis line,
where the vorticity will be infinite. If a fluid is irrotational,
then although the particles have an angular velocity, they will
not rotate over themselves.

If we expect the dark matter halo to rotate like a rigid
body, it will give rise to a vortex lattice [91,92]. It was
already shown in laboratory experiments that such vortex
lattices arise when an asymmetry is introduced [128,129]. It
has been shown experimentally that vortices arise at a crit-
ical angular velocity, at which the energy of the system is
lower if it generates vortices [91]. When the angular velocity
gets higher, instead of generating a bigger vortex, a lattice of
several vortices will be generated [128].

How a vortex will influence the properties of the dark
matter halo was studied in [91]. Significantly, a core appears
at the center of the vortex, and within the core the density is
zero. In [92], this feature was used to explain the wiggles in
the rotation curves of the galaxies.

For simplicity, we will not study the vortices in this paper.
We will assume that the halo rotates like a rigid body, we
will ignore the cores that generate inhomogeneities in the
density profile, and we will concentrate our attention on how
rotation causes the deformation of the halo, and influences
its observable physical properties.

3 Deformation of the slowly rotating BEC dark matter
halos

There have been many studies considering the problem
of rotating polytropes, using different approximations and
building different models, like, for example, in [130,131].
For a detailed discussion of the rotational properties of n = 1
polytropes see [132]. We will assume the halo to be rotat-
ing slowly, and thus a first-order approximation is suffi-
cient. Chandrasekhar has worked on this problem in 1933
[133,134], and we will mainly follow his method (for a com-
parative study of the different approaches to the rotation prob-
lem see [131]).

3.1 The energy density and the gravitational potential of
the rotating BEC dark matter halos

We have already obtained the Helmholtz equation (18)
describing the matter distribution inside a rotating BEC dark
matter halo. Its general solution is given by

2

—G + Z Aoy joi (kr) Py (cos 6), (23)
=0

p(r,0) =
where j;(X) are spherical Bessel functions, which are the
solutions to the radial part of the equation, while P;(cos6)
are the Legendre polynomials—they are the solutions to the
angular part of the Helmholtz equation. In the solution, we
have neglected all the terms of odd order, since it has been
shown that a rotating mass must be symmetric about its equa-
tor. This result is called Lichtenstein’s theorem [135]. To
determine the coefficients Ay; in the first order of approxi-
mation, we will write down the solution for the gravitational
potential, and use the fact that it is continuous at the boundary
of the dark matter halo.
The gravitational potential satisfies the equations

ViV = 4 Gp,r < rg, (24)
V2V =0,r > ro, (25)

where rq is the radius (boundary) of the halo. We can repre-
sent the potential in a general form as

V = Vo(kr) + Y Vy(kr) Py(cos6). (26)
=1

Then the gravitational potential equation inside the halo
becomes

Lo (L0VY, 1 8 (. 0V
re— — | sinf —
r2or \" or ) " rZsin6 96 36

2

2 G

=47 G [ + Z Aoy joi (kr) Py (cos 9)] 27

In the following we denote £ = kr, and . = cos 8, respec-
tively. Thus Eq. (27) takes the form

o (£55) * as [0 -5
20 \° 98 ) " E2ou Ko
4 G
= 7,:2 [2 G+ZA21121(§)P21(M)} (28)

Now we separate the terms in the above equation. For the
zeroth order term we obtain

Ld (pdVo) _ 20? L6 29
g2de \° ag ) T k2 T g Ao
The solution of the above equation is

w? 4 G
mg T2 —5—AoJjo(§) + constant. (30)

For the higher-order terms, since the P»; satisfy the equation

Vo =

a4 (1—;&)ﬂ Y+ DP, =0,jeN 31)
du du / ’ ’
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we obtain the equation

1 d dv. 2021+ 1) 4G
—— & 2= s— Vau+—
£°dg dé 3 k

Since V2 (j21 Pa1) = — joi Po1, and by taking into account that
the Bessel functions jp; satisfy the equation

Az jau(§). (32)

Ld (djy)  20QI+1)

—— —— )| = ————Jju — Jju, 33

22 (5 dE ) g2 Ju T (33)

it follows that

) 1 d ( 2dj21> 2020+ 1)

=z E—— |+ ——F—Ju (34)
£2dg dg g2

By substituting the above relations into Eq. (32) we obtain

ii( 2dV2]> AQI+1D
e\t e ) e ™
dn G 1 d [ ,djy 2121+ 1) |
=T [?@ (g E) N 5—2’2’] 33

A particular solution of the above equation is

A G .
Vo = —k—2A21J2[ (€) + constant. (36)
The regular solution of the equation

li( 2dV2]>_21(21+1)
£2 d& : d§ £2

which behaves well near £ = 0 is

Vo =0, 37

2
Vo = Co™, (38)
where Cy; are arbitrary integration constants. Hence the gen-

eral solution for the V»; is

4 G
=T

giving for the gravitational potential V the general solution

[Azzjzz (&) + Byé 2’] + constant, (39)

) 4nG
3k2 Nz

VE w = V@) + Z Vo (€) P () =

=1

o0
X Z [Azzjzl é) + Bzzézl] Py (1) + constant

1=0
? 4G w?
= ﬁgz—? 2 G ZBZISZIPZZ(M)
+constant. 40)

3.2 The continuity conditions

To determine the Bj;, we consider the behavior of the pres-
sure P, which is given by the static limit of the Euler equation
(11) as

P A%

= —p— 4 patr(l — u?), (41)
or or

@ Springer

or, equivalently,

P AV 2 pw’E
A 9E 3 k

(1= P2(w)]. (42)

After substituting the pressure with the use of the Bose—
Einstein condensate equation of state, and equating the coef-
ficients of the series expansions, we obtain

2
Br=fopg B2 =0 171 (43)
Therefore
o0
VE w = %5 - 4k—2G ;Azljzz(E)le(M)
_Wé P>(u) + constant. (44)

To the accuracy we are working in, this potential should be
continuous with the external potential on the sphere of radius
&1 = kR, where R is the boundary of the non-rotating sphere,

47‘[G Cz[
= »1(cos onstan
Zgzz“ Py;(cos ) + Constant. (45)

To determine the coefficient A;, we will equate the potentials
and their first derivatives at &1,

. 2
—Arjp(&1) — pgEl = g— o)
. 2
—A2jy(&1) — grgbl = —%.
Hence we obtain
5 262
Ay = — w8 (47)

127G [3)2(61) + j3(EDE1]

and, for all [ # 0,1, Ay = 0. Ag is not determined by
the boundary condition of the potential at radius R, since an
arbitrary constant can always be added to the gravitational
potential. We can determine it by the boundary condition of
the matter density at the center of the dark matter halo,

dpo(0) »*
=0, po(0 —— + A 48
dE po(0) = mG + Ay = (48)
Hence we find
2
w
Apg = pp — ——. 49
0= Pec G (49)

3.3 The first-order corrections to density and radius

With the use of the expressions for the coefficients obtained
above, after substituting &1 = 7 and £ = kr, respectively, we
find the first-order correction to the density p of the rotating
Bose-Einstein condensate dark matter halo as
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p(&E)]pe

Fig. 1 Variation of the dimensionless ratio p(§)/p. as a function of
& = kr for a rotating Bose—Einstein condensate dark matter halo for
different values of 2: Q2 = 0 (solid curve), 22 = 0.01 (dotted curve),
Q2 = 0.0225 (short dashed curve), Q% = 0.04 (dashed curve), Q2 =
0.0625 (long dashed curve), and Q% =0.09 (ultra-long dashed curve),
respectively

2n G 2n G
2

w? w?
p(r,0) = —+ (pc - —) Jo(kr)

2k Pa(cos ), (50)

or, equivalently,

p(r,0) .
- (1 . 92) Jokr)
Pc
’ 572
+ Q11— T]z(kr)Pg(COSG) , (€28
where
2 2
2 w w
= = 0.238 . —
21 Gp, x (10*16 s*l)
-1
Pe
_— . 52
x (10—25 g/cm3> (52)

We will describe the effect of the rotation on the struc-
ture of the dark matter halo by using the dimensionless
parameter 2. In particular, the case of slow rotation cor-
responds to values of Q2 so that 2 << 1. In the limit case
Q% — 0 we recover from Eq. (51) the static limit for the
halo density, p(r)pc = jo(kr). The angular momentum is
usually described by using the dimensionless spin parameter
A= J|E|1/2/GM5/2, where J is the angular momentum,
and E is the gravitational energy of the halo [136]. From a
physical point of view the spin parameter A is the ratio of the
actual angular momentum of the galaxy and of the maximum
angular momentum value needed for rotational support. Sim-
ulations have shown that A is in the range 0.02-0.10 [136].

The comparative variation of the density in the non-
rotating and rotating cases at = /2 (corresponding to
the equatorial plane) is presented in Fig. 1.

To see how the halo is deformed by rotation, we need to
obtain the boundary, or the radius where p = 0. Since the
deformation from the spherical shape is small, in the first
approximation we write

fo=8&+¢&, & <<t (53)
Expanding Eq. (50) to the first order we have

a)2 CL)2 . y /
G (Pc - —2nG> Lo + jgEnE']

5 2
B 1wz_g Pa(cos0) [j2(§1) + j5(51)E'] = 0. (54)

By substituting £; = 7w we obtain

3[2 — 5Py(cos 0)] w?

/_
&= 127 Gpe + [—6 + 5P2(cos )] (12 — 9) 2

(55)

In order to obtain the first-order approximation we will fur-
ther expand this expression to the first order of w?/27 G, and
we obtain

b 202 — 502 Py(cos 0)
a 4Gp. '

(56)

This has the same form as in Chandrasekhar’s work [133].
Hence the boundary of the slowly rotating Bose—Einstein
condensate dark matter halo is located at

2

0) ==+ = [2—5P)(cos)] = —
ro( )_Z+4G,0ck[ —5P>(cos )]—z
x {1+92 [1 - ng(COSG)]}. (57)

For the equatorial radius of the dark matter halo we obtain

ro (%) - % (1 + 292) . (58)

In the non-rotating case only the first term exists. Rotation
adds an expansion and an ellipticity term to the halo radius.

4 Gravitational and astrophysical properties of rotating
Bose-Einstein condensate dark matter halos

In the present section we will obtain some basic gravitational
and astrophysical properties of the slowly rotating Bose—
Einstein condensate dark matter halos, which could allow
for an in depth comparison of the theoretical model with
the astronomical observations. In particular, we will consider
the mass distribution within the halo, as well as to its grav-
itational potential energy. Moreover, we will concentrate on
astrophysical parameters like velocity dispersion, logarith-
mic density and velocity slopes, and the tangential velocity
expression, which allows for a detailed comparison of the
model predictions with observational data.
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4.1 Mass and gravitational potential of the slowly rotating
BEC halo

As we have already seen, the general solution for the matter
density distribution p inside the rotating halo in spherical
coordinates is given by

61)2

o0
= — Aoy j P .
p(r0) = 5— +; 21 j21 (kr) Py (cos 6) (59)

The boundary (radius) ry of the halo is defined as the surface
whose points satisfy the condition p(r9) = 0. The equation
for the density involves infinitely many terms in general.

The mass profile m(r, & = m) within a radius r is given
by

m(r,@:n):Zn/

b r
sin 6d6 / r2p(r, 0)dr, (60)
0 0

which involves an integration of the spherical Bessel func-
tions, which can be done by using the relation

ro 3
[ e = g2 (143 )
0
~ 3 5 3 1
B4 5504 5,204 5= 7K%5 ) 61
><12<-|—2 +2 +2 4r0) 1)

where | F> is the is the regularized generalized hypergeo-
metric function , Fy (a; b; 2) / (T (b1) -+ T (by)). Thus we
obtain for the total mass the expression

T w2r3 00
M (ro) = f 3G° sin0do + 272 " Ay
0 =0

T
x/ dé Py;(cosO) sind
0

3
x |:ﬁ2_2(1+1)rgf‘ <z + 5) (kro)* |
. 3 5 301
Foll+ =0 +2,20+=:——kr2) |, (62
><2<-i-2 +2 +2 4r0>] (62)

For dark matter halos located within a radius r < w/k —
3w?/4Gpck, we can calculate the mass distribution within
radius r:

T r
m(r) = 271/ sinecw/ r2p(r, 0)dr
0 0

4rp, 20?
= — Zf‘(krcoskr—sinkr)—l—%
kr)? 4770,
x|:( ;) +krcoskr—sinkr:|: Z;O (kr)

sin kr

3
(63)

x|:(1—92)

2
—(1- Qz) coskr + Qz(kr)].
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m(&)/ M,

Fig. 2 Variation of the dimensionless ratio m(§) /M, M, = 4mwp./ K3,
as a function of & = kr for a rotating Bose—Einstein condensate dark
matter halo for different values of Q2: Q2 = 0 (solid curve), Q2 =0.01
(dotted curve), Q% = 0.0225 (short dashed curve), 22 = 0.04 (dashed
curve), Q2 = 0.0625 (long dashed curve), and Q% = 0.09 (ultra-long
dashed curve), respectively

As compared to the non-rotating case, a second term appears,
which is due to the presence of the rigid body type rotation.
The mass profile within radius r is bigger than in the non-
rotating case, and it depends on the central density p.. These
results are consistent with the slower decay of the density pro-
file for larger values of the radial coordinate r. The variation
of the dimensionless ratio m(&)/ M., where M, = 4yr,oc/k3,
is represented in Fig. 2.

The total mass of the condensate in the first order of
w? /271G is

e . ro 2 4772,0C
M (rg) = 2n sin fdO rep(r,0)dr ~ 3
0 0 k

+27rw2 72 ! _47T2 m 72 ) o2
G \ 3 R 3 '

(64)

For a given galaxy, the total halo mass is fixed by the physical
processes leading to its formation, and it is unchanged due to
the presence of rotation. But, as one can see from Eq. (64), a
rotating halo is able to hold more mass than a static one, and
in this sense the rotation of the dark matter halo becomes a
stabilizing factor against gravitational collapse.

To perform the integration in the accuracy of the first order
of w? /2 G, we first integrate over r, then expand the result
in the first order, and then we perform the integration over
. This procedure does not affect the final result obtained by
doing the series expansion after performing the full integra-
tion, since wz/ 27 G is independent of r and w, and thus the
power of it is not changed after each integration.

Then we can express the central density p. as a function
of the total mass and angular velocity as
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o Iy 2rw? (72 | 65)
Pe = 4R3 B \3 '

The total volume of the halo becomes
2R30?
Gpc

T o 4
VBEC = Zn/ sin Qd,u/ rldr ~ §”R3 +
0 0

_ %‘n R (1+27). (66)

From the above expression of the volume it follows that due
to rotation the halo has expanded. The added volume is pro-
portional to w?, and inversely proportional to .

With the help of the total mass and of the volume we obtain
the mean density of the BEC halo:

oy = M 3 () 12 w?
'O_VBE_JT2 27‘L’G
3pc 2 12\ , 3pc
=Zl14+—(1- Q , 67
a e n> R

which is smaller than in the non-rotating case.
In the previous section, we have already calculated the
gravitational potential inside the halo,

Vi(r,0) = m(kr) “ 2 |\ Jo(kr)
E w? )
~ TG Ja(kr)Py(cos6) | — ?(kr) P>(cos6)
+ constant. (68)

We can determine the constant by using the continuity of the
potential near the radius & = kR,

4G o 4 G Co
mél - 7(/% - n)]o(sl) + constant = —-— e
20?2 dn G w? y dn G Co
3?51 - k—z(,Oc - ﬁ)]o(gl) =2 2 (69)
1
Thus we obtain
4G o
constant = —k—zpc — k—z(n —2). (70)
Hence the gravitational potential is given by
47 G , 207
Vi(r,0) = — Tz P [1+ jo(kr)] + k_2]0(kr)
S5wt7?
- k2 J2(kr) Py(cos 0)
2

O k[l — Patcos)] — w—
32

(nz—Z).

(71)

Using the gravitational potential, we can calculate the grav-
itational binding energy U defined as

U(r) = %/,o(r, OV (r,0)dr. (72)

Hence the total gravitational potential energy of the BEC
dark matter halo is given by

T ro
Utro) = / Sin 0d6 / r2p(r, )V (r, 0)dr
0 0

o 1273 Gp? N 472 pew? 22}
k> k> 3

(73)

As compared to the non-rotating case, the total gravitational
energy has a second negative term, and hence for certain
values of p. it is lower than in the non-rotating case.
The centrifugal potential of the rotating dark matter halo
is
Lyoa, 2 1 22.2
Veen = —5® x*+y9) = —5 @ sin 0. (74)

Hence we can calculate the centrifugal potential energy as

T ro
Ucen = 271/ sin QdQ/ r2p(r, 0) Veendr
0 0

4n2pca)2 w2
~—2—-—). 75
£ (2-F) as)

The centrifugal potential energy is always lower than 0.
Hence the effective potential energy in the corotating
frame can be obtained:

1273Gp? 2
Ueff:U+Ucen:—k5 Pe |:1+§(R2—3)92].

(76)

4.2 Velocity dispersion of particles in slowly rotating BEC
halos

In the following we consider the dynamics of a collection of
particles (stars) in the gravitational field of a Bose—Einstein
condensate dark matter halo. The statistical properties of the
motion are described by the Jeans equation, which for a sys-
tem of particles with number density n = n(x;, t) is given
by [137]

8<v]> 0 <vj>
~|—En<v,>—
0x;

2
v d ("Ui j)
=-n—~- _— 77
axj' Xz: ax,- ( )
where the notation <> means an average at a given point
and time (x, t), and

2

ojj =< (vi— < v >) (vj— < vj >) >

=<VV;>— <V ><Vj>. (78)

For a static spherical symmetrical system, one can further
simplify the radial Jeans equation by adopting the assump-
tions: (1) steady-state hydrodynamic equilibrium, which

. . av;
implies —*

=L = 0, and < v,

>= 0, respectively; (2)
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< vy >=< vy >= 0, and O'r29 = ar2¢ = 092 = 0, respec-

tively, which follows from the spherical symmetry of the
system, and (3) a single tangential velocity dispersion for all
directions 02 = 0929 = oq%

Hence when the tangential velocity dispersion tensor is

isotropic, 02, = o2 = o2, the Jeans equation reduces to

1apn02_ v
On Or ar

(79

By assuming that all particles have the same mass, the particle
velocity dispersion is obtained:

1 [ 3V
o?=1 f prA™ (80)
- ar

For a rotating system we can still adopt the following set
of assumptlons (1) U’ =0, (vy) = (vg) = 0; 2) (viv;) =
0, and (3) orr = 0¢ s = o2 (isotropic velocity distribution),
respectively.

Thus in the presence of rotation the radial Jeans equation

becomes

0, Vv

=) = —pn— (81)
r or

Therefore for the mean value of the square of the radial veloc-
ity we obtain

(W2, 9))

0
5(9#72) -

P(V 6)
(82)

In order to find an explicit expression for (vrz(r, 0)), we
expand the integrand to the first-order in w?/27G. Hence
for r < ro we find

(V2 (r, 0))
20.G w?
= % sinkr + ——— A3 cos(kr)

x { — 12k%r% + 10P>(cos 0) |:6k4r4 + 726 — 7k2r2)}

+|:12k2r2 + 10P,(cos )% (— 6 + ker)]
x cos(2kr) + 24k sin(kr)

+ 30k P> (cos G)nzr sin(2kr) } (83)

We define the kinetic energy K of the halo in terms of the
average velocity dispersion oy, as

3
K(r) =3 / o(r, )a2(r, 0)dV. (84)
If the velocity dispersion is a constant,

K@) = %M(r)af, (85)

@ Springer

[ r, e)av(r ) o ) sin e]dr.

and at the boundary K takes the value

6 2 2
723“ [1 L2 (% - 1)} o2. (86)

For the ratio of the kinetic and potential energy, after expand-
ing to the first order of w? /27 G, we obtain

K (ro) =

K (ro) k? K (r243) 57,
~ — ey 2w O'v
|U (ro) | 27 Gpc 36w-G-p,
k? 3
- _ T3 (87)
21 Gpe 9

Comparing this expression to the non-rotating case, we can
see that rotation generates a second (negative) term in the
parentheses, and hence in the presence of rotation the ratio
of the kinetic and potential energy of particles in motion in
a rotating BEC dark matter halo is lower than in the non-
rotating case.

4.3 The logarithmic density slopes

The logarithmic density slope of the rotating dark matter halo
is defined by [87]
dlnp(r,0)

aBgc(r, 0) = S dlnr (88)

By taking into account the general solution of the Helmholtz
equation 18 we can calculate the logarithmic slope of the
rotating BEC dark matter halo as follows. First for the deriva-
tive of the density with respect to the radial dimensionless
variable kr we have (for the proof see Appendix A)

dp ad 20+ 1
dkr) ZA”[ B

=0

Jan (k) + o1 ()| Pai (€05 0).

(89)
Hence for the logarithmic slope of the density we obtain
after a simple calculation

rdp
agpc(r) = ——
pdr

kr 320 Azl[ Tty (k) + i 1(kr)] Py (cos 9)
271G + 2720 Aot joi (kr) Py (cos 6)

(90)

By taking into account the explicit expression of the coeffi-
cients in the solution of the Helmholtz equation we finally
find

dlnp(r, 0)
dinr

6 (pe— 525) kr cos kr —sin kr) — 3222 > cos 6)[kr i (kr) =3 2k

agec(r, 0) =

kr {6 (=pe + 525 ) o(kn) + 52 <6+ 5Pa(cos 0)r2 o (k)] |
oD
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Fig. 3 Variation of the mean value of the logarithmic density slope
(aBgc) for a rotating Bose—Einstein condensate dark matter halo as a
function of 2, for different values of the core radius Rcore: Reore =
0.30R (solid curve), Reore = 0.35R (dotted curve), Rcore = 0.40R
(short dashed curve), Reore = 0.45R (dashed curve), Reore = 0.50R
(long dashed curve), and R¢ore = 0.55R (ultra-long dashed curve),
respectively

By expanding Eq. (91) to the first order of w?/27G, we
obtain

agpc(r0) = —[1 — kr cotkr] — ———kr cos(kr)
C

127Gp,

x{ — 6 + 6kr cot kr + 5P (cos 9)n2|:krj1 (kr)

— (2 + krcotkr) ja (kr)i| } 92)

As compared to the non-rotating case, a third term is added
to the expression of the logarithmic slope of the density. The
third term is smaller than the non-rotating value of aggc, and
it varies with 6. This seems reasonable, since the rotation
pushes the matter outward, and the ratio of the center density
to the density at larger radii is smaller.

Since the logarithmic density slope varies with 6, it is
no longer convenient to define the core radius Rcore as
oBEC(Reore) = 1. If we simply define it as Reore = nR =
nm/k, where n is a constant which must be determined from
observations (n = 0.6 gives the value of the core radius in
the static case [87]), we can define the mean value of the
logarithmic density slope within the radius 0 < r < Rcore as

1

RCOre
(aBEC) = /0 oBEC (T, 0)|g=r 2 dr-. (93)

RCOI‘C

The variation of the mean value of the logarithmic slope
of the density (aggc) is represented, as a function of €2, and
for different values of Rcore, in Fig. 3.

Also, we can calculate the density at the core radius,

2 T 2 2
P(Reore) = —pcy 1 + =71 — —
™ 2 .

(94)

5P>(cos ) (—12+n2)]}
+ :
3

The core density is small as compared to the non-rotating
case at 0 = 0, and larger at 6 = 7 /2.
For a given p., the quantity pc Reore can be obtained:

T 2rw? (7
T = (), 95
SRZ[ © (3 ﬂ ©2)

and its value depends on w?.
4.4 Tangential velocity of test particles in slowly rotating
BEC dark matter halos

PeReore =

In the Newtonian approximation the tangential velocity of
a test particle moving in the Bose—FEinstein condensed dark
matter halo is given by

V2(r) = G"i(”. (96)

In the slow rotation approximation, and for r < w/k —
3a)2/4G,ock, we have

47 Gp, sin(kr) 20?
Vé(r) = — 3 < [COS(kV) - r } 7
(kr)? sin kr 477 Gpe
kr — =
x[ + coskr o :| 2
o2 [sinkr 9_2 5
x{ (1 Q ) [ - coskri| + 5 )’

97

We can see that due to rotation a second positive term is
added to the expression of the tangential velocity, so that at a
distance r, the tangential velocity of a test particle becomes
higher as compared to the non-rotating case. This is because
the mass profile within the radius is higher. The variation of
the ratio Vig(§)/ Vi, as a function of & = kr, where V, =
47 Gpe/ k?, is represented in Fig. 4.
At the equatorial boundary of the halo we have

b GM(rg) 4nGp, 4mx> -39 ,
R0 T) -
e "0 ro(/2) 2T e @

2
4Gp.R? 472 -39
= 1+ Q). (98)

12

We can see that the second term proportional to w? is also
positive.

Hence in a rotating BEC dark matter halo, the tangential
velocity of a test particle is larger than in the static one. Since
the ratio of the density at larger and smaller radii is greater
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&

Fig. 4 Variation of the dimensionless tangential velocity of test parti-
cles Vig(§)/ Vi, Vi = 471pc/k2, as a function of & = kr, for a rotating
Bose-Einstein condensate dark matter halo for different values of £2:
Q% = 0 (solid curve), Q% = 0.01 (dotted curve), Q2 = 0.0225 (short
dashed curve), Q% = 0.04 (dashed curve), Q% = 0.0625 (long dashed
curve), and Q2 = 0.09 (ultra-long dashed curve), respectively

than in the non-rotating case, it follows that the tangential
velocity is bigger at larger radii than in the non-rotating case.

An important observational quantity is the logarithmic
slope of the tangential velocity B, defined by

dln Vi, (r)
IBtg(r) = —le- 99)
Generally, B can be obtained:
2 2
dln Vi dIn Vtg rthg
Ba(r) = - =- =
dInr 2dInr Q’Vtgdr
_ r |:Gm/(r) Gm(r)]
2V r r2
1 [m'(r)
= —= r—11. (100)
2| m(r)

At the center, where r = 0, we have B (0) = —1. This gives
the same result as in the static case, since @ = 0 at the center.

By expanding the logarithmic slope of the tangential
velocity to the first order in w? /27 G, we obtain

8 Nl - k22
) kr cot(kr) — 1

K33 |:3kr cos(kr) + (=3 + k2r%) sin kr]

Q2.
+ 6(—kr coskr + sin kr)?

(101)

This is smaller than the value without rotation. The variation
of the logarithmic slope of the tangential velocity is shown,
for different values of the dimensionless parameter €2, in
Fig. 5.
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B (&)

Fig. 5 Variation of the logarithmic slope of the tangential velocity Big
as a function of & = kr, for a rotating Bose—Einstein condensate dark
matter halo for different values of Q2: Q2 = 0 (solid curve), Q2 =0.01
(dotted curve), Q% = 0.0225 (short dashed curve), 22 = 0.04 (dashed
curve), Q2 = 0.0625 (long dashed curve), and Q% = 0.09 (ultra-long
dashed curve), respectively

5 Galactic rotation curves in the rotating Bose—Einstein
condensate dark matter model

As a next step in our analysis we compare the predictions
of the slowly rotating Bose—Einstein condensate dark mat-
ter model with the observational data obtained for a sam-
ple of HSB, LSB and dwarf galaxies. From a realistic astro-
physical point of view, the matter content in a galaxy con-
sists of a distribution of baryonic (normal) matter, obtained
as the algebraic sum of the masses Mgy, of the stars, of
the ionized gas with mass Mg,s, of the neutral hydrogen
of mass Myj etc., as well as of dark matter of mass Mpwm.
In the following we assume that dark matter is in the form
of a slowly rotating Bose—Einstein condensate. Therefore
the total mass of the galaxy is can be obtained: My =
Moy + Mgas + My + Mpm + -+ - = Mtgt -+ Mpm, where
MB, = Mgar + Mgas + My + - - - is the total baryonic mass
in the galaxy. The rotation velocity of a test particle v, is
given by the sum of the different matter contributions, as

2 2 2 2
Urot = Vgas F Vstars T+ 1 Vjalos (102)

2 2
gas and Ustars

gas and stars, respectively, while vﬁal o 18 the dark matter con-
tribution, which we assume to be given by Eq. (97). Hence
the contribution of the rotating BEC dark matter halo to the
rotational velocity can be represented as

2
2 Pc R
vhalo = 80.563 x (W) X <k_pc>

x{ [1 —0.0238 (ﬁﬂ

where v are the contributions of the baryonic
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Table 1 The best-fit parameters

for the 12 considered galaxies Galaxy R (kpe) pe (10724) g em™  (10719) 57! T (Mo/Lo) Xied
NGC0024 8.0 0.9 3.2 1.8 0.96

NGCO0100 6.9 1.1 2.9 0.5 0.38

NGC2976 8.2 4.0 0.1 0.5 0.51

NGC3877 6.0 6.0 2.9 0.1 1.81

NGC3949 7.6 1.4 5.0 0.5 0.55

NGC3972 4.9 2.4 3.6 0.6 1.15

NGC4051 6.7 1.6 2.7 0.5 0.37

NGC4085 4.9 4.4 3.1 0.2 1.34

NGC4389 7.9 1.6 4.0 0.1 0.41

UGC06667 4.4 2.4 3.1 0.7 0.87

UGCO07151 2.9 3.2 3.3 0.7 1.01

UGC08286 7.0 0.7 3.0 2.5 2.83

x [% — cos %] +0.00795 = < ! ) 3 (vrot,i —zvobs,i)z’ 104

1) 2 2 N i %
X (W) (?) } kmz/ 5%, (103) where Nyor is the number of degrees of freedom, vyq ; is the

In Eq. (103), R is the radius of the static BEC dark matter
halo, which is fixed by the numerical values of the scattering
length a and the mass m of the dark matter particle.

5.1 Fitting results

In order to test our model, we apply it to small nearby dwarf
galaxies (size < 12 kpc) and our Milky Way galaxy. We
use the data of the Spitzer Photometry and Accurate Rota-
tion Curves (SPARC) obtained in [138] for investigation. The
baryonic components (bulge, disk and gas) included in the
data are obtained by observations using the homogeneous
surface photometry at 3.6 wm [138]. The rotation curve con-
tributions of the baryonic components are only determined
by the mass-to-luminosity ratios Y ~ 1My /L of the disk
and of the bulge. Nevertheless, the surface brightness and the
resultant rotation curves obtained may also suffer from some
systematic uncertainties, such as the irregularities in bright-
ness profiles, uncertainties in inclination and patchy distribu-
tion of gas [138]. We choose the candidates which are Hubble
stage T = 0—06 galaxies, bulgeless galaxies, and with the dis-
tance to the galaxy D < 20 Mpc. Generally speaking, these
galaxies have less diffuse features and smaller uncertainties
in the observational data. Based on these criteria, we con-
sider 12 dwarf galaxies for testing the present Bose—Einstein
condensate dark matter model.

Based on Eq. (103), we have altogether four free parame-
ters for fitting (R, pc, w, Y'). The mass-to-luminosity ratio of
the disk Y mainly affects the central rotation curve, while the
other three control the entire shape of rotation curve. Here,
we define the reduced x?2 as

calculated rotation velocity, veps,; i the observed rotation
velocity, and o; is the observational uncertainties of the rota-
tion velocity. By minimizing the reduced x? value, we can
obtain the best-fit values of R, p., w and Y for each of the
considered dwarf galaxies (see Table 1).

In Fig. 6, we show the best-fit rotation curves for the 12
dwarf galaxies.

We can see that most of the best-fit values of R fall into
a small range R = 5-8 kpc. Although the best-fit R for the
UGCO07151 galaxy is quite small (R = 2.9 kpc), the accept-
able range of R is R = 2.5-6.5 kpc for Xfed < 4. Therefore,
the results for the 12 dwarf galaxies are still consistent with
a fixed value of R &~ 6.5.

With the help of Eq. (64), which gives the mass of the
Bose—Einstein condensate dark halo, we can predict the mass
of the considered sample of galaxies. In the limit of small
rotational values we obtain for the total mass the expression

)]

(105)

Pc

3

R
M=187043x 10" x [ — ) x ————
kpc 10-24 g/cm3

The predicted masses of the 12 dwarf galaxies are pre-
sented in Table 2.

We also apply our model to our Milky Way galaxy. By
using the data obtained in [139] and the baryonic model used
in [140], we perform a similar fit for the Milky Way data (see
Fig. 7). Since the mass-to-luminosity ratios of the bulge and
disk are included in the baryonic model, we only have three
free parameters to fit. The best-fit values are R = 6.9 kpc,
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Fig. 6 Best-fit rotational curves of the galaxy sample. The baryonic contributions are represented by the red lines (disk and gas contributions).
The black lines represent the best-fit resultant rotation curves. The error bars are the observational data obtained in [138]

pe=30x10"*gem P andw = 2.6 x 1071057 (42, =
0.54). We also show the fit for R = 10 kpc (szed = 1.02) for
reference in Fig. 7. Generally speaking, the best-fit values for
the Milky Way galaxy and the dwarf galaxies are consistent
with each other.

6 Discussions and final remarks
In the present paper we have investigated the possibility that

the BEC dark matter halos could be in fact rotating. Presently,
there is a common paradigm in the study of superfluidity

@ Springer

according to which rotational motion in a Bose—Einstein con-
densate can exist only in the presence of quantized vortices.
However, in a recent numerical study [141] it was shown
that the merging of two two-dimensional concentric Bose—
Einstein condensates with axial symmetry may lead to the
formation of a spiral dark soliton. This happens if one of
the two condensates has a non-zero initial angular momen-
tum. The spiral dark soliton makes possible the transfer of
angular momentum between the two condensates, and allows
the merged condensate to rotate, even in the absence of quan-
tized vortices. A similar physical process could have acted on
a galactic scale, since galactic collisions and merging, which
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Table 2 The predicted mass of

Mass (10'°M)
the dark halo for the 12

Galaxy

X = f\/(1+§2)(1_772)5in¢,2 = f&n, where f =

considered galaxies NGC0024 1.39

NGC0100 0.95
NGC2976 4.12
NGC3877 2.60
NGC3949 2.27
NGC3972 0.68
NGC4051 1.12
NGC4085 1.08
NGC4389 2.18
UGC06667 0.46
UGC07151 0.17
UGC08286 0.76

300

Rotation velocity (km/s)

| | |
00 5 10 15 20

r (kpc)

Fig. 7 The Milky Way rotation curve. The baryonic contributions are
represented by the red line (bulge) and green line (disk). The blue lines
are the dark matter contribution (solid: R = 6.9 kpc; dashed: R =
10 kpc). The black lines are the resultant rotation curves (solid: R =
6.9 kpc; dashed: R = 10 kpc). The gray lines and error bars are the
observational data obtained in [139]

occurred frequently in the early stages of the evolution of
the Universe, may have favored angular momentum transfer
between galaxies. Therefore the rotation of BEC dark mat-
ter halos may be possible even in the absence of quantized
vortices.

By using the Thomas—Fermi approximation, the basic
evolution equations of a rotating BEC halo reduce to the
case of the rotating polytropic spheres with index n =
1. Many mathematical methods have been developed for
the investigation of such systems. For example, in [131]
the first exact analytic solution for an arbitrarily rotat-
ing gaseous polytrope under the assumption of the oblate
spheroidal shape was derived. To obtain the solution the
authors have adopted oblate spheroidal coordinates (&, n, ¢),
which are related to the Cartesian coordinates by means

f/ (1+82) (1 —n?)cosg,

of the transformation x =

\/ RZ — R3/Re, where Re and Ry, are the equatorial and polar

radii, respectively. In [130] index n = 1 polytropes were
studied under the assumption that the shape of such a rotat-
ing fluid sphere is spheroidal. By introducing the spheroidal
coordinates (x, 1), defined as k?r> = (x? +¢?) (1 —»?),
and kz = xn, where k and c are constants, one can express
the gravitational potential by using spheroidal wave func-
tions.

The effect of the rotation of the dark matter halo in the
framework of the BEC dark matter model has also been
previously investigated. Two classes of models for rotating
halos were investigated in [103], in order to analyze their
stability with respect to vortex formation. In the first model
halos were modeled as homogeneous Maclaurin spheroids,
while in the second one an n = 1 polytropic Riemann-
S ellipsoid was considered. Generally, it was shown that
BEC halos in the polytropic Thomas—Fermi regime typically
form vortices. The dynamics of the rotating Bose condensate
galactic dark matter halos, made of an ultra-light spinless
boson gas was investigated in [104]. The basic approach in
this study was to obtain the numerical solution of the sys-
tem of the coupled Gross—Pitaevskii and Poisson equations,
ihdWw/ot = — (h*/2m) AV + VW + (2mh*a/m?) |V [* W
and AV = 4rx Gm|‘lf|2, respectively, in Cartesian coordi-
nates. It was found that ultra-light spinless boson dark matter
candidates can describe well the galactic astrophysical prop-
erties at local scales with the addition of angular momentum
to halos.

In our study we have considered the case in which the
halo has an overall rigid body rotation, and we have studied
the astrophysically relevant properties that such a rotating
halo may have. As a first (and basic) result we have obtained
the rotational corrections to the halo density profile, due to
rotation. In our investigations we have followed the approach
initiated in [133], and we have considered the rotation prob-
lem in spherical coordinates. While [133] considers poly-
tropic systems with arbitrary 7, in the present paper we have
systematically investigated the n = 1 configurations. In this
case the general expression of the density involves an infinite
summation over a set of radial Bessel functions, and angular
Legendre polynomials. We have restricted our investigations
of the astrophysical properties of the BEC halos to the slow
rotation case, when the deformation of the halo is small, and
the rotation parameter 2 satisfies the condition Q2 << 1.In
this case explicit and simple expressions of the density of the
rotating halo can be obtained. The knowledge of the density
distribution is the first step in the investigation of the physical
properties of BEC dark matter halos. The mass distribution
inside the halo can then be obtained, and the knowledge of the
mass profile leads to the expression of the tangential velocity
of test particles, following circular orbits around the galac-
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tic center. In our approach we have obtained the rotational
velocity in the first approximation of ©2, an approximation
that may allow for the investigation of the effects of slow
rotation on the halo.

The tangential velocity and the density profile essentially
depend on three physical parameters: the central density of
the dark matter, the radius of the static density profile, and the
angular velocity of the galaxy, respectively. In order to obtain
these parameter, we have compared our theoretical results
with a (small) set of observational data, and we have fitted
our BEC rotating model with 13 observed rotation curves.
The sample consisted of 12 dwarf galaxies and the Milky
Way galaxy. The fittings of the 12 dwarf galaxies provided
a range of central densities of p. = (0.7-6) x 10~2* g/em?,
indicating arelatively inhomogeneous distribution of the cen-
tral densities. The angular velocities also present a relatively
large spread, ranging from 0.1 x 10710571 t0 5 x 10716 s~
presenting an order of magnitude variation. The predicted
masses of the halos also did present a large variation, from
0.17 x 1019 Mg, to 4.12 x 10'° M, implying a difference
by a factor of about 24 between the smallest and the highest
galactic mass.

One of the important parameters in the theoretical models
of BEC dark matter is the radius R of the static (nonrotating)
halo. The value of R is determined by the scattering length
a and the mass m of the dark matter particle. As such, R
must be a universal constant, and its constancy, as proven
by the observations, could represent a strong argument in
favor of the condensate dark matter models. In the considered
sample of 12 dwarf galaxies R did vary between 2.9 and 8.2
kpc, respectively, by a factor of around 3. However, for this
sample of considered galaxies, a fixed value of R ~ 6.5
kpc can give a good fit to all considered observational data.
Moreover, such a value of R can give a good fit even to the
Milky Way rotation curve, which extends up to 30 kpc, a
result which, taking into account the numerous uncertainties
in the data and in the (baryonic) fitting model, suggests that
the assumption of an universal value of R cannot be ruled
out by present day observations.

Our theoretical results have also shown that introducing
an angular velocity gives a smaller central density p., and a
larger radius at the boundary of the halo. Also, slow rotation
slightly increases the total mass of the angular halo. On the
other hand, a good knowledge of the baryonic mass distri-
bution in the galaxies and of the total central mass density
can give, via the fitting of the galactic rotation curves, a good
indication on whether the halo is rotating, or not, and the
value of its angular velocity.

In the present analysis we did not include the contribution
to the gravitational potential of the baryonic galactic matter
when we derived the mass distribution of the dark matter
halo. This requires one to modify the Poisson equation to
AV = 47G (p + pp), where py, is the density of the bary-
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onic matter, and to systematically include the effect of the
baryonic matter in the model. In particular, the Helmholtz
type equation describing the density distribution of the dark
matter would also depend on the density of the baryonic mat-
ter. For more luminous galaxies, it may be necessary to take
this effect into account.

The analysis of the galactic rotation curves alone cannot
determine the basic physical properties of the condensate
dark matter. Alternative physical effects must be taken into
account to fully determine the properties of the dark matter
particle. One of such physical effects would concern gravi-
tational lensing by BEC halos. It was already shown in [85]
that the BEC dark matter gives a very different prediction for
gravitational lensing from other models of dark matter. One
might also include the effects of the vortices in the theoretical
analysis, and such an inclusion might explain the wiggles in
the rotation curves [92].

The observation of the possible rotation of the galactic
BEC dark matter halos would lead to a deeper understanding
of the physics of these complex systems, as well as to some
constraints on the nature and physical characteristics of the
dark matter particles. In the present investigations we have
developed some basic theoretical tools that could help in dis-
criminating between the standard dark matter and condensate
dark matter models.
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Appendix A: Derivative of the density profile with respect
to kr

The derivative with respect to the radial variable kr of the
density profile of the Bose—Einstein condensate dark matter
halo, given by the general solution of the Helmholtz equation,
can be obtained as follows:

Ao _ 4 s, (LY
d(kr) d(kr) = kr d(kr)
sin kr
X Py (cosB)

r

_ 4 > Ax,f T g (k) Pa(cos )
= — — r cos
dkr) = 2\ 2kr "2+ 2

= ;Azl{ - 5\/%‘]214%(/”)
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/ J. k 21+1/2J k P 50
+ kr 2/_1( r)— T 2+ 1 (kr) } 21(cos 0)
> 7 1 2041/2
BN (R
= r 2kr kr

21+ 1 (kr) + J2]_7 (kr)] P>(cos6)
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e 007
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