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Abstract We connect two important conjectures in the
theory of knot polynomials. The first one is the property
AlR(q) = Al[1](q |R|) for all single hook Young diagrams
R, which is known to hold for all knots. The second con-
jecture claims that all the mixing matrices Ui in the relation
Ri = UiR1U

−1
i between the i th and the first generators Ri

of the braid group are universally expressible through the
eigenvalues of R1. Since the above property of Alexander
polynomials is very well tested, this relation provides new
support to the eigenvalue conjecture, especially for i > 2,
when its direct check by evaluation of the Racah matrices
and their convolutions is technically difficult.

1 Introduction

An indisputable advantage of knot theory from the point of
view of representation theory is that the former provides a set
of quantities that adequately capture and reveal the basic hid-
den properties of the latter. These quantities, knot polynomi-
als [1–8] are the most natural in quantum field theory (QFT)
realization of knot theory: they are just the Wilson loop aver-
ages in the topological Chern–Simons model [9,10], which
is one of the simplest in the family of Yang–Mills theories.
The power of knot polynomial QFT methods in knot and
representation theories is an impressive manifestation of the
effectiveness of string theory approach to mathematical prob-
lems, especially when their calculational (algebraic) aspects
are concerned.

This letter is an attempt to “explain” the amusing property
of Alexander polynomials, the specializations of the (col-
ored) HOMFLY polynomials at A = 1,

AlKR (q) := HK
R (A = 1, q). (1)
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The property is that

AlKR (q) = AlK�
(
q |R|) (2)

for all knots K and all single hook Young diagrams R =
[r, 1s] of size |R| = r + s. This phenomenon was “experi-
mentally” observed in [11] (and later discussed in [12]) as a
“dual” to the property of special polynomials [13] (discussed
in [12,14] and generalized to superpolynomials in [15–17]),
arising from the HOMFLY polynomial at q = 1,

HK
R (A, q = 1) =

(
HK

� (A, q = 1)
)|R|

, (3)

which is in fact valid for all Young diagrams R (not oblig-
atory single hook), and which was actually proved rather
fast [14]. Equation (2), however, got less attention and still
remains a mystery. In the present text, we reduce it to another
“experimental” discovery, the eigenvalue conjecture of [18],
moreover, (2) follows from its stronger version, applicable
to arbitrary number m of strands in the braid (the weak form
considered in most detail in [18] concerned only m = 3 and
the ordinary Racah matrices).

Namely, we decompose the explanation of (2) into five
steps:

• Realize the knot K as a closure of an m-strand braid; a lot
of such realizations is possible for any K, equivalence of
the HOMFLY polynomials for different choices is guar-
anteed by invariance under the Reidemeister moves. Then
(see [13,19–40])

HK
R (A, q) =

∑
Q�m|R|

CRQ(q) · χ∗
Q

χ∗
R

(A, q) (4)

where all the dependence on A is localized in the quantum
dimensions (q-graded traces) χ∗.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5765-5&domain=pdf
mailto:mironov@lpi.ru
mailto:\protect \kern +.1667em\relax  mironov@itep.ru
mailto:morozov@itep.ru


284 Page 2 of 4 Eur. Phys. J. C (2018) 78 :284

• The quantum dimensions are given by the (hook) product
formula over all boxes of the Young diagram:

χ∗
Q =

∏
�∈Q

{Aql ′�−a′
� }

{ql�+a�+1} (5)

where {x} = x − x−1, while l, a, l ′, a′ are the lengths of
legs, arms, co-legs and co-arms, respectively.

Contributing to (4) at A = 1 are diagrams Q with no l = a
factors (which vanish at A = 1). One such factor is obligatory
present for any Q, but it drops away from the ratio χ∗

Q/χ∗
R .

For a single hook R = [r, 1s], however, contributing Q are
also only single hook. Since their sizes are |Q| = m|R| =
m(r + s), and at the same time the numbers of rows and
columns are restricted by mr and m(s + 1), respectively, the
set of Q contributing to (4) at A = 1 consists just of m single
hook diagrams,

Q = [mr − k, 1ms+k], k = 0, . . . ,m − 1. (6)

• If the knot K is realized as a closure of the m-strand
braid

(
a1,1, . . . , a1,m−1|a2,1, . . . a2,m−1| . . .

)
, then the

coefficients CRQ in (4) are actually equal to [25–40]

CRQ = TrVQ

(
Ra1,1

1 . . . Ra1,m−1
m−1 Ra2,1

1 . . . Ra2,m−1
m−1 . . .

)
.

(7)

Here the trace is taken over the space of intertwining opera-
tors (multiplicities), R⊗m = ⊕Q V (m)

Q ⊗Q and theR-matrix
Ri standing at the intersection of i th strand with the (i+1)th
one is obtained by the conjugation

Ri = UiR1U
−1
i . (8)

It is associated with the fact that the usual R-matrix which
acts in the space of product of two representations R ⊗ R if
diagonalized, is proportional to unity in the space of the irre-
ducible representation Y that appears in the decomposition
of the square of R, R ⊗ R = ⊕Y V (2)

Y ⊗ Y :

Ri = ⊕Y εi q
�Y · I

V (2)
Y

(9)

where εi = ±1, depending on whether Y belongs to the
symmetric or antisymmetric square.

This is why one can work with R, which acts already in
the space of intertwining operators V (2)

Y . One can diagonal-
ize, say, R1 with acts on the first two strands. However, all
matrices Ri cannot be diagonalized at once. For m > 2 each
multiplicity space V (2)

Q , arising in the mth tensor power of
R, contains descendants of different Y from the second level,
and while R1 remains diagonal, the other Ri (and thus ele-
mentary building blocks of Ui [35,37]) after a proper order-
ing of columns and rows are block-diagonal matrices with
blocks of the size V (2)

Q ⊗ V (2)
Q [35,37,38].

If both R and Q ∈ R⊗m are single hook diagrams, then
Y ∈ R⊗2, lying on the path from R to Q in the representation
graph [38], are also single hook, and there are just two of the
present, those with k = 0 and k = 1. Up to a common
R-dependent shift, the eigenvalues (9) are equal to

�Y = shift +
∑

(i, j)∈Y
(i − j)

(6)= shift ± (r + s)︸ ︷︷ ︸
|R|

(10)
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for Y = [2r, 12s] and Y = [2r − 1, 12s+1]. In other words,
the difference between eigenvalues for representation/Young
diagram R and for the fundamental representation � is
exactly in the |R|th power of q, the same as in (2) (this is
since the common shift is irrelevant: it is the same in the two
cases in the topological framing).

• It is a simple exercise to check that exactly the same is
true for the ratios of quantum dimensions χ∗

Q/χ∗
R :

χ∗
[rm−k,1ms+k ]

χ∗[r,1s ]

∣∣∣∣∣
A=1

= [r + s]
[m(r + s)] =

[|R|][
m|R|] (11)

where the quantum numbers are defined as [N ] = {qN }
{q} =

qN−q−N

q−q−1 .
Keeping all this in mind, for the m = 2-strand knots with

odd n, one obtains from (4)

Al(n)
[r,1s ] = [r + s]

[2(r + s)] ·
(
qn(r+s) + q−n(r+s)

)

= qn(r+s) + q−n(r+s)

qr+s + q−(r+s)
= qn|R| + q−n|R|

q |R| + q−|R| (12)

which for odd n (i.e. for the 2-strand knots rather than links)
is indeed a polynomial, satisfying (2).

• For m > 2 just the same reasoning would work with
the only correction: the mixing matrices U emerge. For
(2) to be true, it is sufficient if U -matrices depend on
R = [r, 1s] through qr+s = q |R| only – and this is
exactly what follows from the eigenvalue conjecture of
[18]. The conjecture claims that the VQ ⊗ VQ block of
U , associated with representation Q, are made entirely
from the normalized eigenvalues εY q�Y of the R-matrix
R1 for Y on the path from R to Q, and (10) shows that
in our single hook case these are in turn made exactly
from qr+s = q |R| (“normalized” means that the “shifts”
in (10) can be neglected).

It is, of course, important in this argument that the paths
in representation graph from a single hook R to a single
hook Q are restricted to single hook diagrams at all steps.
As a result, the encountered diagrams and, thus, the entire
paths are labeled by the parameters k, which are actually R-
independent: the paths and contributing eigenvalues are just
the same for the fundamental representation and for any other
single hook R.

Thus, the eigenvalue conjecture implies (2).

This is the main claim of the present letter. However, in
practice this statement is evidence in favor of the eigenvalue
conjecture rather than of (2). This is because (2) is very

easy to check, once colored HOMFLY is known, and recent
advances in HOMFLY calculus [41–53] provided quite a
number of examples, which allows one to consider (2) rather
well tested. The situation with the eigenvalue conjecture is
much worse: it was quite difficult to check it for the matrix
sizes (dimensions of W (Q)) 2,3,4,5 even in the simplest case
of m = 3 strands. For size 6 it was validated very recently
within the framework of the knot universality of [54,55] and
by application to advanced Racah calculus in [46,48,49].
This was an important step, because, beginning from the size
6, the eigenvalue conjecture does not immediately follow
from the Yang–Baxter relations only [18,56]; still for knot
calculus it works well. Evidence for the eigenvalue hypothe-
ses for a higher number of strands m > 3 is still nearly
negligible. Mixing matrices are now not just Racah matrices
but their convolutions [57,58], which are extremely difficult
to calculate, and not much has been yet done since [25–40].
In this text we presented the claim that, if true for all m,
the eigenvalue conjecture would explain the well-established
equation (2), and this is new and reasonably strong evidence.
It is far from proving anything, both because (2) is not proved
and because the eigenvalue conjecture is sufficient, but not
necessary for (2) to hold. Still, this new relation between the
two conjectures should attract new attention to both of them
and hopefully lead to a considerably better understanding.

From this interpretation of (2) it becomes clear what is so
special about the single hook diagrams. For R with h hooks
contributing to the sum (4) at A = 1 will also be the h-
hook diagrams Q, which will be parameterized by 2h − 1
parameters instead of a single k. Analysis of this situation is
now possible and straightforward, however, it is not a surprise
that the answer is more sophisticated than (2).
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